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Outline

Introduction and reminder
Divide-and-conquer convex hulls in 2D
Divide-and-conquer convex hulls in 3D
• Gift-wrapping in 3D

Convex hull of a polygonal line
• Incremental algorithm with linear complexity
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CH with Divide-and-Conquer

Optimal in the worst case in dimension 2
Optimal in the worst case in dimension 3
• Not the case for the incremental algorithm

Inefficient in dimensions higher than 3
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Polytope – a reminder

The convex hull of a finite set of points in 
Ed is called a polytope or a d-polytope

3-polytope                        2-polytope                    1-polytope
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Supporting Hyperplane

A hyperplane H divides the space Ed into 
2 halfspaces, H+ and H- (both include H)
A hyperplane H supports a d-polytope P
if H∩P is not empty and is entirely 
contained in either H+ or H-

P

H

H+

H-

In dimension 2:
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Faces of a Polytope – a reminder

The intersection of a d-polytope P with a 
supporting hyperplane H is called a face
of P with dimension between 0 and d-1
A face of dimension k is called a k-face
• A 0-face is called a vertex
• A 1-face is called an edge
• A (d-1)-face is called a facet of P

A 3-polytope
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Representation of a 2-polytope

The incidence graph The circular list of vertices
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Divide-and-Conquer Convex Hulls in 
Dimension 2: the Algorithm

Let A be a given final set of points in 2D
Sort A in order of increasing abscissa
Divide A into A1 and A2 (almost equal)
Recursively compute conv(A1), conv(A2)
Merge conv(A1),conv(A2) to a single CH
• conv(A) = conv(conv(A1) U conv(A2))
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D&C in 2D Algorithm (cont’)

We assume general position of points
Representation of a convex hull in each 
step: doubly linked circular list of vertices
The only subtle step is merging the two 
convex hulls
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Merging in 2D: Coloring Edges

The idea is similar to coloring facets in 
the incremental algorithm
An edge of conv(A1) is red with respect 
to conv(A2) if it is not an edge of conv(A)
An edge of conv(A1) is blue with respect 
to conv(A2) if it is an edge of conv(A)
The color of an edge of conv(A2) with 
respect to conv(A1) is defined 
symmetrically
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Coloring Edges (cont’)

Intuitively, the red edges of conv(A1) 
would be lit if conv(A2) were an extended 
source of light, whereas blue edges 
would remain in shadow

conv(A2)
conv(A1)
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Merging in 2D: Coloring Vertices

Each vertex of conv(A1) has one of the 
three colors with respect to conv(A2):
• Red: not a vertex of conv(A) 
• Blue: a vertex of conv(A) which is not incident 

to a red edge
• Purple: a vertex of conv(A) which is incident 

to a at least one red edge
The same for vertices of conv(A2) with 
respect to conv(A1) 
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Coloring Vertices (cont’)

Each of the convex hulls has either one 
or two purple vertices, in total at least 3:

4 purple vertices 3 purple vertices
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Merging Convex Hulls

We are looking for the upper and the 
lower bitangents (with respect to H0):

The upper bitangent

The lower bitangent

A lower tangent 
to conv(A1)

H0

conv(A1)

conv(A2)
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Finding the Lower Bitangent (1)

a is the rightmost point of conv(A1) 
b is the leftmost point of conv(A2) 
while ab is not the lower bitangent do
• while ab is not a lower tangent to conv(A1) do

• set a to pred(a) (i.e. move a CW)
• while ab is not a lower tangent to conv(A2) do

• set b to succ(b) (i.e. move b CCW)

return ab
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Finding the Lower Bitangent (2)

Testing for a tangent is trivial 
• Evaluating the sign of a 3x3 determinant

We find the upper bitangent similarly

conv(A1)

conv(A2)
a

b
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D&C in 2D: Complexity (1)

Testing for a tangent takes constant time
At most 2 tests in each step of merging
• Following a red edge or finding a bitangent

Red edges are not part of conv(A)
• So each red edge is tested only once
• The number of steps is at most proportional to 

the number of edges created by the algorithm

Each merging step creates 2 new edges
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D&C in 2D: Complexity (2)

There are O(n) merging steps
• So there are O(n) generated edges

Hence, the total time complexity of the 
D&C recursive calls is O(n)
Initial sorting takes O(n log n) time
• Dominates the complexity of D&C in 2D

Total time complexity: O(n log n)
• Space complexity is obviously O(n)
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Representation of a 3-polytope

The edge-list structure:
• org(E) – the origin of E
• left(E) – the incident facet 

on the left of the edge E
• sym(E) – the reverse edge
• onext(E) – edge that shares 

the origin with E and is 
incident to the same face

• lnext(E) – edge that follows 
E on the boundary of left(E)

left(E)

E

sym(E)

org(E)
onext(E)

lnext(E)
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Divide-and-Conquer Convex Hulls in 
Dimension 3: the Algorithm

Follows the same paradigm as in 2D
Let A be a given final set of points in 3D
Sort A in order of increasing abscissa
Divide A into A1 and A2 (almost equal)
Recursively compute conv(A1), conv(A2)
Merge conv(A1),conv(A2) to a single CH
• conv(A) = conv(conv(A1) U conv(A2))
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D&C in 3D Algorithm (cont’)

We assume general position of points
Representation of a convex hull in each 
step: the edge-list structure
• Encodes order of edges incident to a vertex

The only delicate step is merging the two 
convex hulls
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Merging in 3D: Coloring Faces

For two polytopes C1 and C2 we define:
• A face (facet, edge, or vertex) of C1 or C2 that 

is not a face of C is red
• A facet of C1 or C2 that is a facet of C is blue
• An edge of C1 or C2 that is an edge of C is 

purple if it is incident to at least one red facet, 
and blue otherwise

• A vertex of C1 or C2 that is a vertex of C is 
purple if it is incident to at least one red or 
purple edge, and blue otherwise
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Merging in 3D – Example

Question: Do the purple vertices and edges 
always form a cycle in the incidence graph?

C1
C2

H0

C0

x

y
z

O
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Purple Faces – Examples

3 purple edges 
are incident to a 
single purple 
vertex

No purple edges 
are incident to a 
single purple 
vertex
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The New Faces

The faces of C that are neither from C1
nor from C2 are the new faces
They necessarily intersect H0

A new edge is the CH of 2 purple vertices
A new facet is a triangle, the CH of a 
purple vertex and a purple edge
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The New Faces (cont’d)

The new edges intersect H0 at the 
vertices of C0

The circular order on the faces of the 2-
polytope C0 induces the order on the new 
faces (edges and facets) of C
The idea: building the new facets of C in 
turn, in the order given by the edges of C0
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The Merging Algorithm

Find a new edge of C
Discover the other new faces (facets and 
edges) of C in the order induced by C0
• At the same time, the purple faces (edges and 

vertices) of C1 and C2 are found

Find all red faces (facets, edges, vertices) 
of C1 and C2 and build the edge-list 
representation of C from those of C1 and C2
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Finding the First New Edge

Compute C’1 and C’2 – the projections of C1
and C2 on the plane z=0
Compute the bitangent of C’1 and C’2 by 
the two-dimensional merging algorithm
• Suppose we found the bitangent U’1U’2 (U’1 and 

U’2 are the projections of some points U1 and U2 )

The vertices U1 and U2 yield a new edge
• The vertical plane that contains U1U2 is a 

supporting plane of both C1 and C2 
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Finding the Other New Faces (1)

The gift-wrapping method
• Pivoting a plane around the current new edge
• H12 is either the supporting plane of the new edge or the 

affine hull of the most recently discovered facet A1A2A

C2
H0

y

z

C1

A1

A2A
H12
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Finding the Other New Faces (2)

Must discover the new facet right incident to A1A2
• It’s a triangle A1A2A’ where A’ is the first vertex of either C1

or C2 that is touched by the plane H rotating around A1A2

• A’1 (A’2) is the winner of C1 (C2) for the pivot A1A2

C2
H0

y

z

C1

A1

A2A
H12 A’2  (winner of C2)

A’1  (winner of C1)



31

Choosing between A’1 and A’2

Let Hi be the affine plane of A1A2A’i (i=1,2)

Choose A’i for which the angle between 
the normal to H12 and the normal to Hi is 
minimal

C2
H0

y

z

C1

A1

A2A
H12 A’2  (winner of C2)

A’1  (winner of C1)
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Finding the Winner (for C1)

For A’1 adjacent to A1 we define:
• pred(A’1) and succ(A’1) – vertices adjacent 

to A’1 that precede and follow A’1 in the 
CCW order around A1

• H’1 – the affine hull of A1A’1A2; H’1+ is “inner”.

C2C1

A1

A2

A’1

succ(A’1)
pred(A’1)

H’1
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The Winner – Lemma

Lemma 9.3.2: The winner of C1 for the 
pivot A1A2 is the unique vertex A’1 of C1
adjacent to A1 such that both pred(A’1) 
and succ(A’1) belong to half-space H’1+.

C2C1

A1

A2

A’1

succ(A’1)
pred(A’1)

H’1
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The Winner – Proof

Proof ( ):
• A’1 is the winner of the pivot A1A2

• A’1A1A2 is the face of polytope conv(C1 U {A2}) 
• H’1 is a supporting plane of conv(C1 U {A2}) 
• H’1 is a supporting plane of C1

• A1A’1 is an edge of C1 and both pred(A’1) and 
succ(A’1) belong to half-space H’1+.
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The Winner – Proof (cont’d)

Proof ( ):
• A’1 is a vertex of C1 adjacent to A1 such that 

pred(A’1) and succ(A’1) belong to H’1+ ;
• C1 is contained in the intersection of two half-

spaces defined by the facets A1A’1succ(A’1) and 
A1A’1pred(A’1) 

• C1 is contained in H’1+ and H’1 supports C1

• A’1A1A2 is the face of polytope conv(C1 U {A2}) 
• A’1 is the winner of the pivot A1A2 □
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Finding the Winner (cont’d)

So given a vertex A1 and a pivot A1A2 ,we 
can find A’1 – the winner of C1 as follows:
• Traverse vertices adjacent to A1 in the circular 

order (using e onext(e)) and test whether 
pred() and succ() belong to H’1+

Note that the same vertex can be incident 
to several pivots
• The next lemma shows that it is not necessary to 

check all vertices adjacent to A1 for each pivot



37

Incidence of a Vertex to Several 
Pivots - Lemma

Lemma 9.3.3: When a vertex A1 of C1 is 
incident to several pivots, the algorithm 
encounters these pivots in such an order 
that their winners are ordered clockwise 
around this vertex A1 of C1 . 
The same is for a vertex A2 of C2 , but 
the order of winners will be CCW.
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Incidence of a Vertex to Several 
Pivots – Proof

The main idea: consider a plane H1 that 
separates vertex A1 from all the other vertices 
of C1 and C2 (its normal points away from A1)

C2

H1

C1

A1

A2

A

A1A2 ∩ H1

A’1 – the winner for A1A2

A1A’1 ∩ H1
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Incidence of a Vertex to Several 
Pivots – Proof (cont’d)

When a plane pivoting around A1A2 touches the 
winner A’1 , the line L defined by its intersection 
with H1 supports C1∩H1 in the point A1A'1∩H1

C2

H1

C1

A1

A2

A

A1A2 ∩ H1

A’1 – the winner for A1A2

A1A’1 ∩ H1
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Incidence of a Vertex to Several 
Pivots – Proof (cont’d)

As we proceed, the trace of the next pivot on H1
moves CCW on the boundary of C1∩H1 and so 
does the point where L touches C1∩H1 
• So the edges incident to A1 are traversed in the CW order

C2

H1

C1

A1

A2

A

A1A2 ∩ H1

A’1 – the winner for A1A2

A1A’1 ∩ H1
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The Process of Finding Winners

To find the winner in C1 for a pivot incident 
to a vertex A1 we only need to consider 
the edges of C1 incident to A1 in CW order
When we consider the first pivot incident 
to A1 we start at any edge incident to A1

If we have already encountered one or 
more pivots incident to A1, then we start at 
the winner for the last pivot
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Finding Winners (cont’d)

When a new face is discovered:
• We get a new pivot to continue the process
• Purple edges and vertices are discovered
• The process terminates when we return to U1U2

C2
H0

y

z

C1

U2U1
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Reconstruction of conv(C1 U C2)

Identify the red faces (for C1 and then C2):
• Traverse the list of purple edges

• A facet incident to a purple edge is red if there is a new 
incident facet on the same side, blue otherwise

• Propagate the red color to other facets
• Facet that is not colored blue and incident to red is red

• Determine red edges and vertices from facets

Create the edge-list representation of C
• Easy, given C1 , C2 and the lists of red faces
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Complexity of the Algorithm (1)

We are interested in the complexity of 
the merge between C1 and C2
• Suppose they have n1 and n2 vertices, 

respectively

Stage 1 (finding the first edge):
• Building the projections – O(n1+n2) time

• Each edge of C1 or C2 is examined at most twice, 
once for each endpoint

• Finding the bitangent in 2D – O(n1+n2) time
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Complexity of the Algorithm (2)

Stage 2 (finding the other new faces):
• The complexity is proportional to the number of 

edges of C1 and C2 that are considered when 
searching for winners of each pivot

• The list of edges incident to a purple vertex is 
traversed at most twice (from lemma 9.3.3):
• To find the winner of the first pivot incident to it
• To find the winners of all the other pivots incident to it

• So the time complexity of this stage is O(n1+n2)
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Complexity of the Algorithm (3)

Stage 3 (reconstruction of C):
• Time for finding the red faces of C1 and C2 is proportional 

to the number of these faces and the number of purple 
edges – O(n1+n2)

• Edge-list structure is constructed in O(n1+n2) time

Thus, merging step takes O(n1+n2) time
The total time complexity of D&C: O(n log n)
• Sorting: O(n log n)
• Merging: T(n) = 2T·(n/2) + O(n) = O(n log n)
• Space complexity is O(n) – each face is stored once
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Convex hull of a Polygonal Line

In 2D both incremental and D&C convex 
hull algorithm complexity is dominated by 
the initial sorting
• Sorting along the x-axis forms a simple polygonal 

line (i.e. without self intersections)
• If such order is given, the algorithm works in O(n)

Q: Is it true for any simple polygonal line?
• I.e., can we find the convex hull of any simple 

polygonal line in O(n) time?
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Polygonal Line - Definitions

A polygonal line:
• An ordered sequence of points, called vertices
• The segments that join two consecutive 

vertices are called edges of the polygonal line

A simple polygonal line:
• All vertices are distinct, except perhaps the first 

and the last, which may be identical (“closed”)
• Two edges do not intersect, except perhaps in 

a common endpoint
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Polygonal Lines and Polygons

A simple and closed polygonal line is 
called a polygon
A polygon P separates the points in E2\P
into two connected regions (follows from 
the Jordan theorem):
• The bounded region, called the interior of P
• The unbounded region, called the exterior of P
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Examples of Polygonal Lines

A simple polygonal line A simple closed polygonal line (a polygon)

The interior of P

P



51

Theorem 9.4.1

Consider two polygons P and Q, such that the 
interior of Q is entirely contained inside the 
interior of P. The common vertices of P and Q
are encountered in the same order when both 
polygons are traversed in a CCW order.

P

Q
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Ranks of Vertices

A – the given set of n points in the plane
L(A) = (A1, A2, … , An) – a simple 
polygonal line joining the points of A
conv(A) – the convex hull of A
Am , AM – the vertices of conv(A) with the 
lowest and highest rank in L(A) 
respectively
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Ranks of Vertices (example)

Am , AM – the vertices of conv(A) with the 
lowest and highest rank in L(A), respectively

AM

An

A1

Am
L(A)

conv(A)

A1

An

Am

L(A)

conv(A) AM
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Corollary 9.4.2

When the boundary of conv(A) is oriented 
CCW, the vertices encountered between 
Am and AM on it form a subsequence of 
vertices of L(A).
• Similarly, the vertices encountered between AM

and Am form a subsequence of the polygonal 
line that is the reverse of L(A)

• The proof follows directly from Theorem 9.4.1 
(see the example on the previous slide)



55

The Algorithm that Builds 
Convex Hull of a Polygonal Line

Input:
• Let A be a set of n points in the plane
• L(A) = (A1, A2, … , An) – a simple polygonal 

line whose vertices are points of A

The algorithm is incremental
• Processes points in the order of L(A)
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The Algorithm – Data Structures

Let Ai be the set of the first i points of L(A)
The convex hull conv(Ai) of the set Ai is 
maintained as a doubly connected circular 
list of vertices
There is a pointer to the vertex of conv(Ai) 
with the highest rank in L(A)
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The Algorithm in general

The initial step:
• Build a circular list for the triangle A1A2A3

• The pointer points to A3

The current step:
• Insert Ai into the structure
• Replace conv(Ai-1) with conv(Ai)
• Update the pointer if required

• If conv(Ai) differs from conv(Ai-1) A1

A2

A3
An

Ai

AM

A1

A2

A3
An

AM
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The 2 Phases of the Algorithm

The current step of the algorithm consists 
of the following two phases:
Phase 1: Determine whether Ai belongs 
to the interior or the exterior of conv(Ai-1) 
• Lemma 9.4.3 (next slide) shows that it can be 

easily done in O(1) time
Phase 2: Update the convex hull if Ai
belongs to the exterior of conv(Ai-1) 
• Same as in the regular incremental algorithm
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Lemma 9.4.3 

Let pred(AM) and succ(AM) be the predecessor 
and successor of AM in a CCW enumeration of 
the vertices on the boundary of conv(Ai-1) 
Let Hp

+ (resp. Hs
+) be the half-space bounded by 

the line supporting conv(Ai-1) along the edge 
pred(AM)AM (resp. AMsucc(AM)), and that 
contains conv(Ai-1)
Lemma: Ai is interior to conv(Ai-1) if and only if Ai
belongs to Hp

+ ∩ Hs
+.
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Lemma 9.4.3 – Example

Ai is interior to conv(Ai-1) if and only if Ai
belongs to Hp

+ ∩ Hs
+.

Am

A1 Ai
AM

pred(AM)

succ(AM)

Hp

Hs

Hp
+

Hs
+Ai-1



61

Lemma 9.4.3 – Proof

Proof ( ):
• Trivial. Ai is interior to conv(Ai-1) and conv(Ai-1)

belongs to Hp
+ ∩ Hs

+, so Ai belongs to Hp
+ ∩ Hs

+.

Am

A1 Ai
AM

pred(AM)

succ(AM)

Hp

Hs

Hp
+

Hs
+Ai-1
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Lemma 9.4.3 – Proof (cont’d)

Proof ( ):
• The portion of L(A) that joins pred(AM) to 

succ(AM) together with the edges pred(AM)AM
and AMsucc(AM) of conv(Ai-1) form a simple 
closed polygonal line that bounds a region D. 

• D is contained in conv(Ai-1)

Am

A1
Hp

Hs

Ai-1

pred(AM)

succ(AM)

Ai
AM

Hp
+

Hs
+

D
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Lemma 9.4.3 – Proof (cont’d)

• A portion of L(A) also connects AM to Ai, and 
that portion cannot intersect the portion of 
L(A) that joins pred(AM) to succ(AM)
• Ai-1 is either inside D or AM itself, so:

• If Ai belongs to Hp
+ ∩ Hs

+

• Ai belongs to D
• Ai is interior to conv(Ai-1).

Am

A1
Hp

Hs

Ai-1

pred(AM)

succ(AM)

Ai
AM

Hp
+

Hs
+

D
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Complexity of the Algorithm

Phase 1:
• Evaluating sign of two determinants takes O(1) time at 

each step: [pred(AM)AMAi] and [AMsucc(AM)Ai] 

Phase 2:
• The time complexity is proportional to the number of 

edges of conv(Ai-1) that are red with respect to Ai

• Thus, the contribution of this phase to the total time 
complexity is proportional to the total number of edges 
created by the algorithm, i.e. O(n) time

Therefore, the total time complexity is O(n)
• Space complexity is also O(n) – storing a list of vertices


