Computational Geometry
(CS 236719)

http://www.cs.technion.ac.il/~barequet/teaching/cg/fa12

Chapter 1
Introduction
Copyright 2002-2012

Prof. Gill Barequet

Center for Graphics and Geometric Computing
Dept. of Computer Science
The Technion
Haifa

Thanks to Michal Urbach-Aharon who prepared the initial version of the presentations of this course.
Staff (Fall 2012-13)

- Lecturer: Prof. Gill Barequet
- Tel. (office): (04) 829-3219
- TA: Mr. Maor Grinberg
- E-mail: {barequet, maorg}@cs.technion.ac.il
- Office hours: Any time (by appointment)
- Lecture: Tuesday 10:30-12:30 (Taub 4)
- Recitation: Tuesday ??:30-??:30 (Taub ???)
- Exams: Moed A: Tuesday, February 5, 2013
 Moed B: To be fixed
 (hopefully no need to)
Bibliography

- **Computational Geometry: Algorithms and Applications**,
 M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,

- **Computational Geometry in C**,
 J. O’Rourke,

- Course slides
Assessment

- 3-4 homework assignments (~12.5%)
- One wet (running) exercise (~12.5%)
- No midterm exam
- Final exam (75%)
Syllabus

- Introduction
- Basic techniques
- Basic data structures
- Polygon triangulation
- Linear programming
- Range searching
- Point location
- Voronoi diagrams
- Duality and Arrangements
- Delaunay triangulations
- Applications and miscellaneous

Prerequisite course:
Data Structures and Algorithms
Questions?
Lecture Topics

- Sample problems
- Basic concepts
- Convex-hull algorithms
Sample Problems

Convex Hull demo
Voronoi Diagram demo
Visibility demo
Nearest Neighbor

- **Problem definition:**
 - Input: A set of points \((sites)\) \(P\) in the plane and a query point \(q\).
 - Output: The point \(p \in P\) closest to \(q\) among all points in \(P\).

- **Rules of the game:**
 - One point set, multiple queries

- **Application:** Cellphones
 - Store Locator
The Voronoi Diagram

Problem definition:

Input: A set of points (sites) S in the plane.

Output: A planar subdivision S into cells, one per site. The cell corresponding to $p \in P$ contains all the points to which p is the closest.
Point Location

- **Problem definition:**
 - Input: A partition S of the plane into cells and a query point p.
 - Output: The cell $C \in S$ containing p.

- **Rules of the game:**
 - One partition, multiple queries

- **Applications:** Nearest neighbor
 - State locator
Problem definition:
- Input: A polygon P in the plane and a query point p.
- Output: $true$ if $p \in P$, else $false$.

Rules of the game:
- One polygon, multiple queries
Shortest Path

- **Problem definition:**
 - Input: Obstacles locations and *query* endpoints s and t.
 - Output: The shortest path between s and t that avoids all obstacles.

- **Rules of the game:**
 - One obstacle set, multiple queries (s,t).

- **Application:** Robotics.
Range Searching and Counting

- **Problem definition:**
 - Input: A set of points P in the plane and a query rectangle R.
 - Output:
 - (report) The subset $Q \subseteq P$ contained in R; or
 - (count) The cardinality of Q.

- **Rules of the game:**
 - One point set, multiple queries.

- **Application:** Urban planning
Visibility

- Problem definition:
 - Input: A polygon P in the plane and a query point p.
 - Output: The polygon $Q \subseteq P$ containing all points in P visible to p.

- Rules of the game:
 - One polygon, multiple queries

- Applications: Security
Questions?
Basic Concepts
Representing Geometric Elements

- Representation of a line segment by four real numbers:
 - Two endpoints (p_1 and p_2)
 - One endpoint (p_1), vector direction (v) and parameter interval length (d)
 (Question: where did the extra parameter come from?)
 - One endpoint (p_1), a slope (α), and length (d)
 - Other options…
 - Unique representation?

- Different representations may affect the running times of algorithms!
Orientation

\[
\text{Area} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}
\]

- The sign of the area indicates the orientation of the points.
- Positive area \(\equiv\) counterclockwise orientation \(\equiv\) left turn.
- Negative area \(\equiv\) clockwise orientation \(\equiv\) right turn.

Question: How can this be used to determine whether a given point is “above” or “below” a given line? (Hint: or a line segment?) (Degenerate instances?)
Complexity (reminder)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>“Nickname”</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n) = \mathcal{O}(g(n)))</td>
<td>(\exists N, C \forall n > N \frac{f(n)}{g(n)} \leq C)</td>
<td>“(\leq)”</td>
</tr>
<tr>
<td>(f(n) = \omega(g(n)))</td>
<td>(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0)</td>
<td>“(<)”</td>
</tr>
<tr>
<td>(f(n) = \Theta(g(n)))</td>
<td>(f(n) = \mathcal{O}(g(n))) and (g(n) = \mathcal{O}(f(n)))</td>
<td>“(=)”</td>
</tr>
<tr>
<td>(f(n) = \Omega(g(n)))</td>
<td>(g(n) = \mathcal{O}(f(n)))</td>
<td>“(\geq)”</td>
</tr>
<tr>
<td>(f(n) = \omega(g(n)))</td>
<td>(g(n) = o(f(n)))</td>
<td>“(>)”</td>
</tr>
</tbody>
</table>
Convex Hull Algorithms
Convexity and Convex Hull

- Definition: A set S is convex if for any pair of points $p, q \in S$, the entire line segment $pq \subseteq S$.

- The convex hull (רומ phận) of a set S is the minimal convex set that contains S.

- Another (equivalent) definition: The intersection of all convex sets that contain S.

- Question: Why should the boundary of the convex hull of a point set be a polygon whose vertices are a subset of the points?
Convex Hull: Naive Algorithm

- **Description:**
 - For each pair of points construct its connecting segment and *supporting line*.
 - Find all the segments whose supporting lines divide the plane into two halves, such that one half plane contains *all* the other points.
 - Construct the convex hull out of these segments.

- **Time complexity (for n points):**
 - Number of point pairs: $\binom{n}{2} = \Theta(n^2)$
 - Check all points for each pair: $\Theta(n)$
 - Total: $\Theta(n^3)$

- **Space complexity:** $\Theta(n)$
Possible Pitfalls

- Degenerate cases, e.g., 3 collinear points, may harm the correctness of the algorithm. All, or none, of the segments AB, BC and AC will be included in the convex hull.

 Question: How can we solve the problem?

- Numerical problems: We might conclude that *none* of the three segments (or a wrong pair of them) belongs to the convex hull.

 Question: How is collinearity detected?
Convex Hull: Graham’s Scan

- **Algorithm:**
 - Sort the points according to their x coordinates.
 - Construct the upper boundary by scanning the points in the sorted order and performing only “right turns” (trim off “left turns”).
 - Construct the lower boundary in the same manner.
 - Concatenate the two boundaries.
- **Time Complexity:** $O(n \log n)$ (only!)
- May be implemented using a stack

- **Question:** How do we check for a “right turn”?
The Algorithm

- **Input:** Point set \(\{p_i\} \).
- Sort the points in increasing order of \(x \) coordinates:
 \[p_1, \ldots, p_n. \]
- Push(\(S, p_1 \)); Push(\(S, p_2 \));
- For \(i = 3 \) to \(n \) do
 - While \(\text{Size}(S) \geq 2 \) and \(\text{Orient}(p_i, \text{top}(S), \text{second}(S)) \leq 0 \) do
 - Pop(\(S \));
 - Push(\(S, p_i \));
- **Output** \(S \).
Graham’s Scan: Time Complexity

- Sorting: $O(n \log n)$
- If D_i is the number of points popped on processing p_i,

$$\text{time} = \sum_{i=1}^{n} (D_i + 1) = n + \sum_{i=1}^{n} D_i$$

- Naively, the last term can be quadratic in n; But...
- Each point is pushed on the stack only once.
- Once a point is popped, it cannot be popped again.

- Hence, $\sum_{i=1}^{n} D_i \leq n$.
Graham’s Scan: Rotational Variant

- **Algorithm:**
 - Find a point, p_0, which **must** be on the convex hull (e.g., the leftmost point).
 - Sort the other points by the *angle* of the rays shot to them from p_0.
 - **Question:** Is it necessary to compute the actual angles? If not, how can we sort?
 - Construct the convex hull using one traversal of the points.

- **Time Complexity:** $O(n \log n)$

- **Question:** What are the pros and cons of this algorithm relative to the previous one?
Convex Hull: Divide and Conquer

Algorithm:
- Find a point with a median x coordinate (time: $O(n)$)
- Compute the convex hull of each half (recursive execution)
- Combine the two convex hulls by finding common tangents.

Question: How can this be done in $O(n)$ time?

Time Complexity:
$O(n \log n)$
Convex Hull: Gift Wrapping

- **Algorithm:**
 - Find a point p_1 on the convex hull (e.g., the lowest point).
 - Rotate counterclockwise a line through p_1 until it touches one of the other points (start from a horizontal orientation).
 - **Question:** How is this done?
 - Repeat the last step for the new point.
 - Stop when p_1 is reached again.

- **Time Complexity:** $O(nh)$, where n is the input size and h is the output (hull) size.
- Since $3 \leq h \leq n$, time is $\Omega(n)$ and $O(n^2)$.
General Position

- When designing a geometric algorithm, we first make some simplifying assumptions (that depend on the problem and on the algorithm!), e.g.:
 - No 3 collinear points;
 - No two points with the same x coordinate.

- Later, we consider the general case:
 - How should the algorithm react to degenerate cases?
 - Will the correctness be preserved?
 - Will the running time remain the same?
Lower Bound for Convex Hull

A reduction from Sorting to convex hull:
- Given n real values x_i, generate n points on the graph of a convex function, e.g., a parabola, (x_i, x_i^2).
- Compute the (ordered) convex hull of the points.
- The order of the points on the convex hull the same order of the x_i.

So $\text{Complexity}(\text{CH}) = \Omega(n \log n)$

Due to the existence of $O(n \log n)$-time algorithms, $\text{Complexity}(\text{CH}) = \Theta(n \log n)$