More Geometric Data Structures
Windowing

• Consider a mapping application (Waze for example)
• The entire map contains huge amount of objects.
• However, at any given time, we need to display a small amount, just the object in our screen.
Windowing

• We have seen how to find points in a region, but what about other objects?
• We will begin with a simpler case, only axis-aligned segments.
• We can handle segment with endpoints inside the window easily.
• How can we handle segments that cut the window with no end point inside it?
Interval Trees

• Lets simplify the problem:
• Given a set of horizontal intervals, find the set of intervals that contain the point x.
• Trivial solution: $O(n)$, surely we can do better.
• Can we use a tree? When does one interval is smaller than another?
Interval Trees

- Idea: the root will contain the intervals which are roughly in the middle.
- Formally, let x_{mid} be the median of all interval end points.
- In the root we will have all the intervals intersecting x_{mid}.
- To the left, a sub tree with all the intervals strictly to the left of x_{mid}.
- The same to the right.
Interval Trees

- Problem: how do we find which intervals in a node intersects x?
- Maybe all the intervals intersects x_{mid}, thus all are in the same node.
- Do we have the same problem again?
- No, we know all the intervals intersects x_{mid}.
- In the example we know that all the end points are to the right of x, since x is to the left of x_{mid}.
- Knowing this, we can solve the problem with two lists in the node, one for each direction.
Interval Trees

• What is the complexity of constructing an interval tree?
• We need to sort the intervals - $O(n \log n)$.
 • Once for all the tree.
• Finding the median takes - $O(n)$.
• Constructing the root node - $O(n)$.
• Constructing the left and right subtrees - $2T \left(\frac{n}{2} \right)$.
 • Since we split by the median there are at most $\frac{n}{2}$ intervals in each tree.
• $T(n) = 2T \left(\frac{n}{2} \right) + O(n) = O(n \log n)$.
Interval Trees

• Query – find the relevant nodes (as in a BST), and in each node report the intersecting intervals.
• Query time – $O(\log n + k)$.
 • Where k is the number of reported intervals.
• Space complexity – $O(n)$.

x_{mid}
x
Interval Trees

• Until now we asked for the intervals intersecting a line.
• But what if instead of a line we have a segment?
• We look for start **points** in the area \([-\infty, x] \times [y, y']\).
• We know how to handle points:
• In each node we will have \(2d\)-Range trees instead of lists.
• The query time in the Range trees is \(O(\log n + k)\), so \(O(\log^2 n + k)\) in total.
• Space complexity \(O(n \log n)\).
Priority Search Trees

- Recall our last problem:
- Given a set of points find those inside \([-\infty, x] \times [y, y']\).
- The area is not bounded, can we do better than 2d-Range tree?
- We have seen that without the y range we can simply use lists and report the points starting from the minimum one until reaching x.
- This means that we don’t need to be able to search on the x-axis.
- What data structure will allow us to have the y data searchable and the x data traverseable from the minimum value until x?
Priority Search Trees

• Reminder - Min-Heap:

 • Can we find all the elements smaller than some value x in $O(k)$ time?
 • Yes, start in the root, and traverse each sub tree with root smaller than x.
Priority Search Trees

• Our full data structure will be a hybrid between a search tree and a heap:

 - Heap according to the x axis, and all the elements in the left sub tree are smaller than the elements in the right sub tree (but not necessarily smaller than the root).
Priority Search Trees

• Using this data structure we can look for subtrees fully contained in \([y, y']\), and inside them look for all the elements inside \([-\infty, x]\) according to the heap.

• In order to search for \(y\) and \(y'\) store the min/max in each sub tree in each node.

• We also need to check all the nodes in the path.

• Query complexity – \(O(\log n + k)\).
 • Without fractional cascading.

• Space complexity – \(O(n)\).
 • Reducing the interval tree space complexity to \(O(n)\).
Non Axis-Aligned segments?

• What about general segments, that is, not axis-aligned?
• We’ll see next week.