Assignment no. 3

Given: December 31, 2015
Due: January 14, 2016
Submission in singletons

Question 1.
Let L be a set of n lines in the plane. Give an $O(n \log n)$-time algorithm to compute an axis-parallel rectangle that contains all the vertices of $A(L)$ in its interior.

Question 2.
1. The convex hull of a point set $S = \{p_i\}$, $\text{CH}(S)$, is defined as the intersection of all convex sets containing S. The convex hull can also be defined as the set of all convex combinations of S, i.e., $x \in \text{CH}(S)$ if $\exists a_i, 0 \leq a_i \leq 1$, such that $x = \sum_i a_ip_i$ and $\sum_i a_i = 1$. Prove that these definitions are equivalent.
2. Show that the convex-hull of a point set S is the convex set with the smallest perimeter (amongst all convex set which contain S). (The perimeter of a polygon is the length of its boundary.)

Question 3.
1. Let $S = \{p_1, \ldots, p_n\}$ (for $n \geq 3$) be the vertices of a regular convex polygon, and let C be its center. Let $P = S \cup C$. Prove that in the Voronoi diagram of P, the Voronoi cell of C contains n vertices. (A regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length).
2. Assuming general position, prove that for a Voronoi diagram of n points, where n is large enough, the average number of vertices of a cell is 6.

Question 4.
GG(S), the Gabriel Graph of a point set S in the plane, is defined as follows: Two points $p, q \in S$ are connected by an edge of the graph if the circle with diameter pq does not contain any other point of S in its interior.
1. Prove that DT(S) (Delaunay Triangulation of S) contains the Gabriel graph of S.
2. Prove that p and q are adjacent in GG(S) iff the Delaunay edge that connects between them intersects its dual Voronoi edge.
3. Give an $O(n \log n)$-time algorithm to compute the Gabriel graph of a set of n points.

Question 5.
Let S be a set of n points in the plane, and let t be the number of lines that pass through exactly \sqrt{n} points of S. Prove that $t = O(\sqrt{n})$.