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ABSTRACT
In this video we present an algorithm for computing the
straight skeleton of a polyhedron in three dimensions.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Geometric algorithms, languages, and sys-
tems

General Terms
Algorithms, Theory

Keywords
Straight skeleton, medial axis

1. INTRODUCTION
The notion of the straight skeleton of a two-dimensional

polygon was introduced by Aichholzer et al. [1]. This geo-
metric construction reduces the polygon into a 1-dimensional
set of segments that approximates the shape of the original
polygon. It is defined, and usually computed, in terms of an
offset process in which edges of the polygon move inward,
remaining straight and meeting at vertices. When a vertex
collides with an opposite edge, the polygon is split into two
polygons, and the process continues within each piece inde-
pendently. The skeleton consists of the straight segments
traced out by the vertices during this process.

The straight skeleton is more complex to compute than
other types of skeleton [6, 9], but its piecewise-linear form
offers many advantages. The most popular alternative, the
medial axis [5], consists of both linear and quadratic curve
segments. Thus, the straight skeleton has several applica-
tions, such as interpolation of surfaces in three dimensions
from cross-sections of an unknown object [3], polygon de-
composition [12], construction of offset curves [9], surface
folding [8], etc.

The 3D medial axis of a polyhedron found applications,
e.g., in surface reconstruction [4] and mesh generation [11].
However, unlike the 2D case, the 3D medial axis can be quite
complex, both combinatorially and geometrically. Thus, one
would like to generalize the notion of straight skeleton for
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Object Vertices Edges Facets
(a) 12 20 10
(b) 20 30 12
(c) 28 42 16
(d) 20 30 12
(e) 20 18 9 (+1 hole)
(f) 12 18 10
(g) 16 24 11
(h) 16 24 11
(i) 16 24 10

Skeleton Time
Object Vertices Edges Faces Cells (Sec.)

(a) 8 24 25 10 0.312
(b) 25 60 46 12 0.719
(c) 45 104 74 16 0.567
(d) 16 42 37 12 0.188
(e) 15 45 56 9 0.250
(f) 21 48 37 10 0.484
(g) 6 21 25 11 0.177
(h) 12 36 33 11 0.146
(i) 12 32 29 10 0.172

Table 1: Statistics

polyhedra, analyze its shape and complexity, and develop
efficient algorithms for computing it.

2. 3-D STRAIGHT SKELETON
For a convex polyhedron, the straight skeleton and the me-

dial axis are identical. Held [10] showed that their complex-
ity (for a convex polyhedron of complexity n) is Ω(n2) in the
worst case. In the nonconvex case, the only known bound
on the complexity of the straight skeleton is Ω(n2α2(n)) [2].

Demaine et al. [7] provide the basic properties of three-
dimensional straight skeletons. The only work, that we are
aware of, which studies this skeleton in detail, is [2]. It
begins with analyzing the structure of straight skeletons of
orthogonal polyhedra and giving two algorithms for comput-
ing it, with running time proportional to either the volume
of the polyhedron or the surface area of the skeleton. It
then discusses the inherent ambiguity in defining the straight
skeleton for a general polyhedron and suggests a consistent
method for resolving it. Finally, it describes an algorithm
for computing the skeleton in the general case. Figure 1
shows the straight skeletons of a few simple objects. Table 1
provides a brief statistics of these objects.
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Figure 1: Sample objects

3. THE VIDEO
The video shows our implementation of the algorithm for

computing the three-dimensional straight skeleton of a poly-
hedron, which was done in Visual C++ .NET2005 and ex-
perimented with on a 3GHz Athlon 64 processor PC with
1GB of RAM. We used the CGAL library to perform basic
geometric operations. The source code consists of about 6,500
lines of code. The output was captured in real time and
edited with the Camtasia(c) software.

In the video, we illustrate the construction of the three-
dimensional straight skeleton of a few general polyhedra.
We show the definition of the skeleton through the process
of offsetting the boundary of the polyhedron. We demon-
strate the inherent ambiguity of the skeleton, which arises
in the propagation of vertices of initial degree greater than
three, and show how our solution to this ambiguity allows a
consistent propagation of the boundary of any polyhedron.
We depict the events which occur in the process of creat-
ing the skeleton, and the resulting changes in the topology
of the propagating boundary. Finally, we show examples of
the straight skeletons of several polyhedra.
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