where \(C(x) = 1 - 3x + x^2/2 + x^3/30 \). Note that \(C'(x) \) is positive for \(x > 3 \) and \(C(9/2) = 53/80 \). Hence \(C(x) \) is positive for \(x > 9/2 \) and the bounds are established. We can now write

\[
F(z) > z \int_0^2 e^{-zt} dt + z \int_2^\infty 2te^{-(z+1)t} dt,
\]

and thus

\[
F(z) > 1 + e^{-2z-2}(w(z) - e^2),
\]

where

\[
w(z) = 8 - \frac{4}{(z+1)^2} - \frac{4}{(z+1)^3}.
\]

Note that \(w(z) \) increases from \(200/27 \) at \(z = 2 \) to 8 at \(z = \infty \). Since \(200/27 > e^2 \), we are done.

REFERENCES

A Family of Matrix Problems

Problem 97-11, by Dan Givoli (Technion, Haifa, Israel).

The following family of matrix problems arises in the design of some high-order local non-reflecting boundary conditions [1,2,3]:

\[
\begin{pmatrix}
1 & 1^2 & 1^4 & \ldots & 1^{2(N-1)} \\
2^0 & 2^2 & 2^4 & \ldots & 2^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
N^0 & N^2 & N^4 & \ldots & N^{2(N-1)}
\end{pmatrix}
\begin{bmatrix}
\alpha_{1}^{(N)} \\
\alpha_{2}^{(N)} \\
\vdots \\
\alpha_{N}^{(N)}
\end{bmatrix}
=
\begin{bmatrix}
1 \\
2 \\
\vdots \\
N
\end{bmatrix}.
\]

For example, the solutions of this system for \(N = 1, 2, 3 \) are:

\[
\begin{align*}
N = 1 : & \quad \alpha_{1}^{(1)} = 1 \\
N = 2 : & \quad \alpha_{1}^{(2)} = 2/3, \quad \alpha_{2}^{(2)} = 1/3, \\
N = 3 : & \quad \alpha_{1}^{(3)} = 3/5, \quad \alpha_{2}^{(3)} = 5/12, \quad \alpha_{3}^{(3)} = -1/60.
\end{align*}
\]

1. Numerical solution for various values of \(N \) shows that \(\alpha_{m}^{(N)} \) is positive for even \(m \) and for \(m = 1 \), and is negative for odd \(m \neq 1 \). Thus, the pattern of the signs of the solutions \(\alpha_{m}^{(N)} \) is \(+, +, -, +, +, -\), and so on. (This has a bearing on the stability of the non-reflecting boundary condition.) Prove that this is indeed the case for all \(N \).

2. Estimate the condition number of the matrix as a function of \(N \).
3. Give an asymptotic approximation for the solution of the system for large N.

REFERENCES

Solution by A. Sidi (Technion, Haifa, Israel).

Part 1. We prove part 1 for the more general problem

\[
\begin{pmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{N-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_N & x_N^2 & \cdots & x_N^{N-1}
\end{pmatrix}
\begin{pmatrix}
\alpha_1^{(N)} \\
\alpha_2^{(N)} \\
\vdots \\
\alpha_N^{(N)}
\end{pmatrix} = \begin{pmatrix}
f(x_1) \\
f(x_2) \\
\vdots \\
f(x_N)
\end{pmatrix},
\]

where $0 < x_1 < x_2 < \cdots < x_N < X$ for some $X > 0$ and

(i) $f \in C[0, X]$ and $f(0) \geq 0$, and

(ii) $f \in C^N(0, X)$ and $(-1)^{j-1}f^{(j)}(0) > 0$ for $x \in (0, X), j = 1, 2, \ldots, N$.

Thus, the original problem is a special case of this one, with $f(x) = \sqrt{x}$ and $x_k = k^2$, $k = 1, \ldots, N$. Obviously, $Q_N(x) = \sum_{i=1}^{N} \alpha_i^{(N)}x^{i-1}$ is the polynomial of interpolation to $f(x)$ at the points x_1, x_2, \ldots, x_N.

Substituting $x = 0$ in the well-known error formula

\[
f(x) - Q_N(x) = \frac{f^{(N)}(\xi(x))}{N!} \prod_{i=1}^{N} (x - x_i), \quad \text{for some } \xi(x) \in (\min\{x, x_1\}, \max\{x, x_N\}),
\]

that is valid also for $x = 0$ even though $f(x)$ is not necessarily differentiable there, we obtain

\[
\alpha_1^{(N)} = Q_N(0) = f(0) + (-1)^{N+1} \frac{f^{(N)}(\xi(0))}{N!} \prod_{i=1}^{N} x_i, \quad \text{with } \xi(0) \in (0, x_N).
\]

By the assumptions that $f(0) \geq 0$ and $(-1)^{N-1}f^{(N)}(x) > 0$ for $x \in (0, X)$, (3) gives $\alpha_1^{(N)} > 0$.

Next, let us look at the Newton form of $Q_N(x)$, namely,

\[
Q_N(x) = f(x_1) + \sum_{k=2}^{N} f[x_1, \ldots, x_k](x - x_1) \cdots (x - x_{k-1}).
\]

Here $f[x_1, \ldots, x_k]$ are the divided differences of $f(x)$, and we know that they satisfy

\[
f[x_1, \ldots, x_k] = \frac{f^{(k-1)}(\xi_k)}{(k-1)!}, \quad \text{for some } \xi_k \in (x_1, x_k), \ k = 2, \ldots, N.
\]
We also observe that \(x_i > 0 \) for all \(i \) implies that

\[
(x - x_1) \cdots (x - x_{k-1}) = \sum_{i=1}^{k} (-1)^{k-i} C_{ki} x^{i-1}, \quad k = 2, 3, \ldots ,
\]

for some positive constants \(C_{ki} \). From

\[
\alpha_i^{(N)} = \sum_{k=1}^{N} f[x_1, \ldots , x_k] (-1)^{k-i} C_{ki}, \quad i = 2, \ldots , N,
\]

that follows from (4) and (6), from (5), and from the assumption that \((-1)^{j-1} f^{(j)}(x) > 0 \) for \(x \in (0, X) \), \(j = 1, 2, \ldots , N \), we obtain \((-1)^{i} \alpha_i^{(N)} > 0 \), \(i = 2, \ldots , N \). (Note that even though (7) holds also for \(i = 1 \), it can not be used to show that \(\alpha_1^{(N)} > 0 \). This is the reason we have treated \(\alpha_1^{(N)} \) separately.)

Now apply the above to \(f(x) = \sqrt{x} \) with \(x_k = k^2 \), \(k = 1, 2, \ldots , \) and with arbitrary \(N \).

(It is interesting to note that if \((-1)^{j} f^{(j)}(x) > 0 \) for \(x \in (0, X) \), \(j = 0, 1, \ldots , N \), then with the help of (4)–(7) we can show that \((-1)^{i-1} \alpha_i^{(N)} > 0 \), \(i = 1, 2, \ldots , N \). This is the case for \(f(x) = x^a \) with \(a < 0 \), for example.)

Part 2. Let us denote the matrix of the linear system in (1) by \(A_N \). Then the \(l_1 \) condition number \(\kappa_1(A_N) \) of \(A_N \) is \(\kappa_1(A_N) = \|A_N\|_1 \|A_N^{-1}\|_1 \), where

\[
\|A_N\|_1 = \max_{1 \leq j \leq N} \left(\sum_{i=1}^{N} x_i^{j-1} \right) \quad \text{and} \quad \|A_N^{-1}\|_1 = \max_{1 \leq k \leq N} \left(\prod_{1 \leq i \leq k} \frac{1 + x_i}{|x_k - x_i|} \right).
\]

(for \(\|A_N^{-1}\|_1 \), see Gautschi [1]).

For the problem at hand, we have \(x_k = k^2 \), \(k = 1, 2, \ldots \). Thus

\[
\|A_N\|_1 = \sum_{i=1}^{N} i^{2(N-1)} \in (N^{2N-2} , N^{2N-1})
\]

and

\[
\|A_N^{-1}\|_1 = \frac{\Pi_N}{(N^N)^{2N-2}} \max_{1 \leq k \leq N} \left[\frac{2k^2}{1 + k^2} \left(\frac{2N}{N + k} \right) \right] \in \left(\frac{\Pi_N}{(N + 1)(N + 1)(N^2 + 1)} , \frac{2N^3 \Pi_N}{(N + 1)(N + 1)(N^2 + 1)} \right)
\]

where \(\Pi_N \equiv \prod_{i=1}^{N} (1 + i^{-2}) \). Consequently,

\[
\frac{N}{N + 1} \Pi_N N^{2N-2} < \kappa_1(A_N) < \frac{2N^3 \Pi_N}{(N + 1)(N^2 + 1)} \Pi_N N^{2N-1}.
\]

In other words, \(\kappa_1(A_N) \) is at best \(O(N^{2N-2}) \) and at worst \(O(N^{2N-1}) \), as \(N \to \infty \). (Here we have used the fact that \(\lim_{N \to \infty} \Pi_N \) exists and is finite.)

Part 3. Using the well-known recursion relation that is used in defining the divided differences, we can show by induction that when \(f(x) = \sqrt{x} \) and \(x_k = k^2 \), \(k = 0, 1, 2, \ldots \),

\[
f[x_i, x_{i+1}, \ldots , x_{i+k}] = (-4)^{k-1} \frac{(\frac{1}{2})^{k-1} (2i)!}{k! (2i + 2k - 1)!}, \quad i = 0, 1, \ldots , \ k = 1, 2, \ldots \]

We thus have
\[\alpha_N(x) = f[x, x_1, x_2, \ldots, x_N] = \frac{(-1)^N}{\sqrt{\pi}N(2N)!} \sim \frac{1}{2} \text{ as } N \to \infty. \]

Also, substituting \(x = x_0 = 0 \) in the divided difference form of the error
\[f(x) - Q_N(x) = f[x, x_1, x_2, \ldots, x_N] \prod_{i=1}^{N} (x - x_i), \]
we obtain
\[\alpha_1 = Q_N(0) = f(0) - f[x_0, x_1, x_2, \ldots, x_N](-1)^N \prod_{i=1}^{N} x_i, \]
which, by (12), becomes
\[\alpha_1 = \frac{4^{N-1}N^{-1}(N)!}{(2N)!} \sim \frac{1}{2} \text{ as } N \to \infty. \]

In obtaining the asymptotic behaviors of \(\alpha_N \) and \(\alpha_1 \) for \(N \to \infty \) in (13) and (16) we have made use of the Stirling formula for the gamma function.

We next discuss the asymptotic behaviors of the \(C_{Ni} \) as these are important in determining the asymptotic behaviors of the \(\alpha_i(N) \). We first note that
\[C_{ki} = C_{k-1,i-1} + x_{k-1}C_{k-1,i}, \quad i = 1, 2, \ldots, k, \]
with \(C_{kk} = 1 \) and \(C_{k0} = C_{k,k+1} = 0 \) for all \(k \). (From this we obtain \(C_{k1} = \prod_{i=1}^{k-1} x_i \) and \(C_{k,k-1} = \sum_{i=1}^{k-1} x_i \) for all \(k \), which are, of course, true.) We look at two different cases.

(i) Letting \(C_{ki} = C_{k1}D_{ki}, \quad i = 1, 2, \ldots, \) with \(D_{k1} = 1 \), we rewrite (17) in the form of a difference equation as in
\[D_{ki} - D_{k-1,i} = \frac{1}{x_{k-1}}D_{k-1,i-1}, \quad i = 2, 3, \ldots. \]

We can now show that \(D_{k2} = \sum_{i=1}^{k-1} 1/x_i = \sum_{i=1}^{k-1} i^{-2} \sim \zeta(2) \) as \(k \to \infty \). With this knowledge, we can next show that
\[D_{k3} = \sum_{1 \leq i < j \leq k-1} \frac{1}{xixj} = \frac{1}{2} \left(\sum_{i=1}^{k-1} \frac{1}{x_i} \right)^2 - \sum_{i=1}^{k-1} \frac{1}{x_i^2} \sim \frac{1}{2} [\zeta(2)^2 - \zeta(4)] \text{ as } k \to \infty. \]

(Here \(\zeta(z) \) is the Riemann zeta function.) In general, by induction, we obtain from (18) that
\[D_{ki} \sim \hat{D}_i \quad \text{as } k \to \infty, \quad i = 1, 2, \ldots, \quad i \text{ fixed}, \]
for some constants \(\hat{D}_i \) that are independent of \(k \). As a result,
\[C_{ki} \sim \hat{D}_i [(k-1)!]^2 \text{ as } k \to \infty, \quad i = 1, 2, \ldots, \quad i \text{ fixed}. \]
(ii) Replacing i in (17) by $k - s$, we obtain the difference equation

\[C_{k,k-s} - C_{k-1,(k-1)-s} = x_{k-1}C_{k-1,(k-1)-(s-1)}, \quad s = 0, 1, \ldots, k - 1. \]

For $s = 1$ we obtain from (21) that $C_{k,k-1} = \sum_{i=1}^{k-1} x_i = \sum_{i=1}^{k-1} i^2 = (k - 1)k(2k - 1)/6 \sim k^3/3$ as $k \to \infty$. Continuing with $s = 2, 3, \ldots$, and realizing that $C_{k,k-s}$ are polynomials in k whose degrees depend on s, we obtain

\[C_{k,k-s} \sim \frac{k^{3s}}{3!(s!)} \quad \text{as} \quad k \to \infty, \quad s = 0, 1, 2, \ldots, \text{fixed}. \]

We now proceed to the asymptotic behavior of the $\alpha_{i}^{(N)}$. Again, we look at two different cases.

(i) From (7) and from the fact that for fixed i

\[(-1)^{k-i} f[x_1, \ldots, x_k]C_{ki} \sim (-1)^i \frac{D_i}{4k^2} \quad \text{as} \quad k \to \infty, \]

that follows from (13) and (19), we see that, for $i = 1, 2, \ldots$, and i fixed,

\[\lim_{N \to \infty} \alpha_{i}^{(N)} = \hat{\alpha}_i \quad \text{for some constant} \quad \hat{\alpha}_i. \]

(ii) Let us replace i in (7) by $N - s$. Then the summation there has only $s + 1$ terms independently of N. The asymptotic behavior for $N \to \infty$ of this summation is determined solely by its last term, namely, by $(-1)^{s} f[x_1, \ldots, x_N]C_{N,N-s}$, since

\[\frac{f[x_1, \ldots, x_N]C_{N,N-s}}{f[x_1, \ldots, x_{N-1}]C_{N-1,N-s}} \sim -\frac{1}{3s} N \quad \text{as} \quad N \to \infty. \]

Thus, for $s = 0, 1, \ldots$, and s fixed,

\[\alpha_{N-s}^{(N)} \sim (-1)^{s} \frac{f[x_1, \ldots, x_{N-s}]C_{N,N-s}}{\sqrt{\pi N(2N)!}} \frac{N^{3s}}{3!(s!)} \quad \text{as} \quad N \to \infty. \]

That is to say, $\alpha_{N-s}^{(N)}$ tends to 0 as $N \to \infty$ like $N^{N^{3s-\frac{1}{2}}}/(2N)!$.

Note that the result in (24) is not contained in that given in (26) and vice versa. Note also that neither (24) nor (26) covers $\alpha_{i}^{(N)}$, $i = 1, \ldots, N$, uniformly in i. It is, however, possible to show that $\alpha_{i}^{(N)}$ are uniformly bounded both in N and in i. To do this we first show that $C_{ki} \leq \Pi_{k-1}[(k-1)!]^2$ for all k and i, with $\Pi_m = \prod_{i=1}^{m} (1+i^{-2})$ as before. This is achieved by using induction in (17). Consequently, $C_{ki} < \Pi_{\infty} [(k-1)!]^2$ for all k and i, since $\Pi_{\infty} = \lim_{m \to \infty} \Pi_m$ exists. Next, we substitute this upper bound on C_{ki} in (7) to obtain

\[\left| \alpha_{i}^{(N)} \right| \leq \Pi_{\infty} \sum_{k=1}^{N} \left| f[x_1, \ldots, x_k] \right| [(k-1)!]^2, \quad i = 1, 2, \ldots, N. \]

Invoking (12) in (27) and using Stirling’s formula, we can show that $|f[x_1, \ldots, x_k]|[(k-1)!]^2 = O(k^{-2})$ as $k \to \infty$. The result now follows.
A Laplace Transform from a Diffusion Problem

Problem 97-12*, by M. L. Glasser (Clarkson University).

In an investigation [1] of the scaling properties of diffusion in a space of dimensionality d, the authors require knowledge of the Laplace transform

$$
\phi(s) = \int_0^\infty e^{-st} \sin^{-1} \left(\text{sech}^{d/2}(t/2) \right) dt.
$$

1. Show that for $d = 1, 2$ it is possible to express $\phi(s)$ in closed form in terms of the digamma function.
2. Can this be done for $d = 3, 4$?

REFERENCE

Solution by Carl C. Grosjean (University of Ghent, Ghent, Belgium).

The given integral is convergent for $\text{Re}(s) > -d/4$ since the integrand approximately behaves like $2^{d/2}e^{-(s+d/4)t}$ as $t \to +\infty$. For $s \neq 0$, integration by parts can be carried out as follows:

$$
\phi(s) = -\frac{1}{s} \int_0^\infty \sin^{-1} \left(\text{sech}^{d/2}(t/2) \right) de^{-st}
$$

$$
= \frac{\pi}{2s} - \frac{d}{4s} \int_0^\infty e^{-st} \frac{\sinh(t/2)}{\cosh(t/2)|\cosh^{d}(t/2) - 1|^{1/2}} dt.
$$

For $s \to 0$, this right-hand side tends to

$$
\frac{d}{4} \int_0^\infty \frac{t \sinh(t/2)}{\cosh(t/2)|\cosh^{d}(t/2) - 1|^{1/2}} dt
$$

representing $\phi(0)$. Note that, with the substitution of a new integration variable, $x^2 = \cosh^{d}(t/2) - 1$,

$$
\frac{d}{4} \int_0^\infty \frac{\sinh(t/2)}{\cosh(t/2)|\cosh^{d}(t/2) - 1|^{1/2}} dt = \frac{\pi}{2},
$$

as required.

The simplest case is that of $d = 2$. For $s \neq 0$, we have

(1) \hspace{1cm}

$$
\phi_2(s) = \frac{\pi}{2s} - \frac{1}{2s} \int_0^\infty \frac{e^{-st}}{\cosh(t/2)} dt
$$

$$
= \frac{\pi}{2s} - \frac{1}{s} \int_0^\infty \frac{e^{-(s+1/2)t}}{1 + e^{-t}} dt
$$

$$
= \frac{\pi}{2s} - \frac{1}{s} \left[\frac{1}{s + 1/2} - \frac{1}{s + 3/2} + \frac{1}{s + 5/2} - \frac{1}{s + 7/2} + \cdots \right].
$$