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Low Bit-Rate Compression of Facial Images
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Abstract—An efficient approach for face compression is introduced. Re-
stricting a family of images to frontal facial mug shots enables us to first
geometrically deform a given face into a canonical form in which the same
facial features are mapped to the same spatial locations. Next, we break the
image into tiles and model each image tile in a compact manner. Modeling
the tile content relies on clustering the same tile location at many training
images. A tree of vector-quantization dictionaries is constructed per loca-
tion, and lossy compression is achieved using bit-allocation according to
the significance of a tile. Repeating this modeling/coding scheme over sev-
eral scales, the resulting multiscale algorithm is demonstrated to compress
facial images at very low bit rates while keeping high visual qualities, out-
performing JPEG-2000 performance significantly.

Index Terms—Facial images, geometric canonization, image compres-
sion, vector quantization.

I. INTRODUCTION

The problem of image compression has been thoroughly explored for
years and efficient general purpose compression algorithms are avail-
able today. Much less attention has been given to the problem of image
compression for the case in which a strong prior is available for the
class of images to be compressed. This happens, for example, when
the input belongs to a certain, a priori known and possibly very spe-
cific class of images. One expects that for such specific cases an even
more efficient compression should exist, outperforming general pur-
pose algorithms.

In this paper, we address the problem of compressing human frontal
facial images. The images we deal with are passport-type photos—full
face, frontal view, plain background, no dark glasses, without hats and
other nonstandard clothing; see, for example, Fig. 1.

Our goal is a compression method of a standard digital 441� 358
b/w passport photograph (154 KBytes at 8 bits per pixel) into less than
1 KByte representation (i.e., compression ratio of about 154:1 and be-
yond). The goal of this note is to introduce a method to compress and
decompress the facial image, so that it is visually appealing, at a quality
sufficient to un-mistakenly visually identify a given subject.

The approach we take is based on the following concepts.
• Geometrical Canonization: Restricted to frontal facial

mug-shots, the handled images are geometrically deformed
into a canonical form, in which facial features are located at the
same spatial locations. Using a plain feature detection procedure,
the image is divided to disjoint and covering set of triangles, each
deformed using a different affine warp.

• Clustering: The overall treatment of the images is local, by split-
ting the image into tiles. Every tile is coded using vector quan-
tization. A flexible bit allocation is permitted, by using tree VQ
[1]–[3].
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Fig. 1. Input examples—passport-type photos.

• Hierarchial Multiscale Treatment: The coding is performed on
a pyramidal representation of the image, processing the informa-
tion from coarse to fine, and at each stage operating on the image
residual.

The proposed compression algorithm is demonstrated and compared
to JPEG-2000 [20]. Compressed facial images at very low bit rates are
shown to keep high visual qualities (compression ratio of 154:1 with
an average PSNR of 30 dB), outperforming JPEG-2000 results.

In Section II, we review existing contributions in the literature re-
ferring to compression of facial images. Section III presents a detailed
description of the geometric canonization, which turns out to be crucial
for the compression performance. In Section IV, we discuss the core
coding part of the algorithm that is based on VQ, covering the training
and the testing phases, along with the extension to a multiscale scheme.
Experiments and results are shown in Section V, and conclusions are
drawn in Section VI.

II. RELATED WORK AND THE PROPOSED APPROACH

Face images are common, and as such are extensively studied in the
literature especially in the context of detection and recognition. Re-
markably, among the many thousands of papers that discuss ways to
compress still images in general, only few address the compression of
face images [5]–[19]. Assumptions on the images’ content, and tai-
loring compression algorithm that exploit these assumptions, lead these
contributions to a variety of solutions. In this section, we briefly de-
scribe such methods and their rationales.

The importance of geometric preanalysis of the image to the com-
pression performance has been recognized in several papers [5]–[11],
[15], [17]. Most of these methods use feature detection for locating
semantic landmarks, such as eyes, nose, mouth, etc. Once found, one
can either warp the image to a canonical configuration, as done in [5],
[7]–[9], [11], or operate on the original image, while adapting the treat-
ment spatially based on the content detected [6], [10], [15].

Here, we first deform the image into a canonical form. Alignment
in most papers has been implemented using a rigid transformation (ro-
tation, scale, shift) [5], [8], [9], [11], [15], thus limiting the accuracy
of the fit. In our method, we employ a more delicate canonization that
leads to a perfect alignment of thirteen points (see Section III for more
details), thereby boosting compression performance, as described in
Section III.

Coding of the image content can be done in various ways. An
early paper by Moghaddam and Pentland [5] applied a global prin-
cipal component analysis (PCA), training a transform that leads to
optimal compactization of the image energy in the leading transform
coefficients. Truncating and quantizing these coefficients leads to the
desired coding. PCA has been also practiced in [11]. However, rather
than considering global basis functions that span over the entire image
support, the PCA is done on small tiles of size 8� 8 pixels. For every
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image, all tiles are clustered into four groups based on their local
activity, and per each, a PCA is trained. As this training varies from
one image to another, the obtained transform matrices must be sent as
side information.

The papers by Ferreira and Figueiredo [13], [14], [19] also describe
a transform training and processing of small tiles. They propose the
use of independent component analysis (ICA) for the representation
of image tiles. However, their adaptation to the image content is less
strict, as the learned transform is assumed to be the same for all tiles,
regardless of their spatial location. In this context, their view matches
the JPEG approach that employs the same transform to all the blocks in
the image. As such, their scheme is more general than the one we con-
sider, and geometrical alignment is irrelevant. While the compression
performance reported in these papers is better than JPEG, and compa-
rable to JPEG-2000, it is clear that such semi-adaptation is destined to
be inferior to methods that also adapt the transform spatially.

Getting closer to the proposed approach, the reported compression
algorithm in [8] and [9] consists of an encoding stage that is based
on the wavelet transform, followed by vector quantization of different
bands. VQ is also used in [15], where it is directly applied on several
image features, instead of arbitrary slicing the image into tiles. As men-
tioned earlier, while our coding is also done using VQ, the adaptation
we propose is markedly different, as every tile location is trained sepa-
rately. This means that different pieces of the facial image are handled
by different dictionaries and, thus, coded more effectively. As an ex-
ample, tiles corresponding to the left eye are coded in all images by a
VQ adapted to represent the left eye only. The various obtained dictio-
naries are stored in the encoder and the decoder, and, thus, they are not
needed as side information. More information on this scheme is given
in Section IV.

A somewhat different representation that exploits both spatial and
interimage dependencies is considered in [12], [16], and [18]. Treating
the group of images as a 3-D tensor, its decomposition to three-way
rank-one approximation is proposed. Generalizing the singular value
decomposition (SVD) in several possible ways, these attempts are
claimed to lead to more efficient compression. Since these papers
consider only global decomposition, their results are inferior to a
tile-based treatment, as studied here.

Performance-wise, most of the above algorithms are shown to out-
perform the JPEG and become similar to, or just slightly better than the
JPEG-2000 standard. Among these papers, those published before the
year 2000 do not compare to JPEG-2000. It is hard to give conclusive
comparison to these methods as most of them consider small images
(less than 100� 100 pixels) and relatively high rate (above 0.1 bpp),
while we consider larger images and a much lower rate (0.05 bpp).

III. ALIGNMENT

As our solution exploits the similarity between corresponding re-
gions in facial images, the images need to be aligned first. The input
image is geometrically transformed into a canonical form, which brings
it as close as possible to a predefined “average” facial image. For this
goal, we apply a feature-based correspondence to map the input image
to its canonical form.

Before turning to describe the alignment procedure, we note that
while it is tempting to exploit the symmetry of faces, extensive study
that we performed shows that such symmetry cannot be trusted and
often leads to inferior results. Apparently, mirroring ones’ half-face
generates high frequency de-correlated errors due to the subtle asym-
metry of faces (and the fact that these images are not exactly frontal
ones). Thus, edges fall near (and not on-top of) edges, and the result
would be a waist of significant bits required to transmit large predic-
tion error.

Fig. 2. Facial feature points. There are two features in the eyes that cannot be
seen in these images.

Fig. 3. Facial features detection (bottom) with and (top) without hair correc-
tion.

Fig. 4. Correlation masks for facial features detection—(a) left eye, (b) right
eye, (c) nose tip, (d) left mouth corner, (e) right mouth corner, and (f) chin.

A. Facial Features Detection

We define a set of thirteen facial features. Six of them are anchored to
facial anatomical landmarks—eyes, nose, mouth and chin (see Fig. 2),
and the rest are along the face outline. This number of features was
chosen as a good compromise between three criteria: 1) the desire to
use reliable and detectable features; 2) the desire to use as many as
possible points so as to align the images better; and 3) the desire to use
only few features to reduce their side-information cost.

The outline of the face is detected by background subtraction. For
the plane background, as in our case, we take samples of the back-
ground color in several image locations and construct a linear back-
ground model for the whole image to compensate for nonuniform il-
lumination. The foreground is then detected by thresholding, followed
by morphological filtering.

One issue that requires special attention is the hair around the face,
which can significantly alter the form of the facial outline. In order
to cope with this problem we estimate the facial skin tone color and
correct the outline contour location around the face inwards, thereby
avoiding the hair region. In Fig. 3, one can see how the hairline af-
fects the location of facial outline markers at the mouth level (top).
The markers are brought back to the face line by the hair correction
procedure (bottom).

The internal facial features are detected using correlation based
matching. The correlation kernels are built by averaging relatively
small image window around the feature point over the training set.
See Fig. 4.

B. Image Warping

At the training phase we scan a large set of images, detect facial fea-
tures as described above, and find the average feature locations. Given
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Fig. 5. Affine warping triangulation.

Fig. 6. (Top) Input images and their (canonical) aligned (bottom) versions.

a set of corresponding feature points in the input image and the refer-
ence “average” facial image, we need to warp the former onto the latter.
This is done using a piecewise affine transform.

The set of thirteen feature points together with six points at the image
corners and boundaries define a triangulation in the image domain (see
Fig. 5). Every triangle 4AiBiCi in the input image and the corre-
sponding triangle 4ABC in the “average” image uniquely define an
affine transform T such that

T [AiBiCi]
T = [ABC]T : (1)

Then, for every x 2 4AiBiCi

Iwarped(x) = I(Tx) (2)

where I and Iwarped are the input and the aligned images respectively.
Fig. 6 shows several examples of aligned images.

C. Implementation Considerations

The proposed feature detection process as described in Section III-A
may fail to find the proper locations, thus jeopardizing the overall
coding process. In our experiments we found that more than 99%
of the images were treated properly by the automatic detection
procedure. Identification of the errors for the training images (6000
images altogether) was done manually, and their features were marked
semi-manually (getting a proposed location from the system and
updating it if needed).

In the coding of new test images, failure to detect the features leads
to extreme low PSNR, and, thus, it is easily detected automatically.
For such images, features are required to be marked by the user. Alter-
natively, such images can be coded using regular JPEG-2000 (or any
other competing scheme).

As to the geometrical canonization as described in Section III-B,
it is done on all the training images, before proceeding to the coding
stage. This canonization is also done when encoding a test image. Since
the decoder should apply the inverse transform, side information con-
taining the thirteen feature coordinates is required. This requires less
than 20 Bytes, using a prior knowledge on the coordinates’ distribution.

Fig. 7. (a) RMSE threshold map (intensity levels); (b) bit allocation map (bits
per block).

IV. CODING STRATEGY

A. Choice of VQ

Once the images are aligned, one would expect a certain similarity
between the corresponding regions, allowing for compact representa-
tion. Here, we can explore one of several principal approaches to ex-
ploit this similarity for compression. The use of PCA, as described in
Section II, can lead to such modeling and coding. However, as we limit
our discussion to extremely low bit-rates, keeping a number of reason-
ably quantized coefficients even for a relatively small basis may become
prohibitivelyexpensive.Therefore,weimplementedlocalclusteringand
vector quantization (VQ), which fits well our low-bit-rates [1]–[3].

B. Training the Coder

The images are divided into small blocks of size 8� 8 (a param-
eter of the algorithm). For each block location, we have 6000 examples
taken from training images. The K-means algorithm is applied to find
the best 2k representation vectors, where k is the number of bits allo-
cated for this block. The value of k is chosen as the minimal number
of bits yielding a mean-square-error (MSE) over the training set lower
than a predefined threshold. Actual values of k in our tests are in the
range [0; 10].

In order to save even more bits, the MSE thresholds for each block
are chosen to provide lower error in recognition-critical portrait areas
(eyes, nose, etc.), at the expense of discriminating less visually impor-
tant regions (background, clothing, etc.). This idea has also appeared
in [17], where the coding was done using JPEG-2000, but in a spatial
selective way. Fig. 7(a) shows the root mean-squared-error (RMSE)
threshold allocation map used for training, with the requested maximal
allowed error varying from six to 15 intensity levels. The actual bit
allocation per block established by the training process does not nec-
essarily correlate with the RMSE threshold map, as seen in Fig. 7(b).
This is because the system is able to represent regions with low vari-
ability, e.g., forehead or cheeks, with a small amount of bits even when
the allowed error for this region is low.

We use 8� 8 blocks with an overlap of one pixel to minimize blocki-
ness effects. When reconstructed, the pixels at the overlapping regions
are taken as average between the overlapping blocks. An alternative
approach that removes this overlapping and applies deblocking as a
postprocessing in the decoder is possible, but was not pursued.

Handling of colorRGB images is simple. Such images are first con-
verted into Y CbCr format and the training is performed independently
for each one of the three channels, while the chroma components are
taken at half of the original resolution along each axis, and the MSE
thresholds are chosen to be less restrictive. The computed quantization
vectors are then stored for each block and each channel and used both
for encoding and decoding.

C. Encoding and Decoding

The encoding process starts with alignment—facial features are de-
tected as described above and the image is warped to its “canonical”
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form. Then, each tile is quantized using VQ, finding the closest repre-
sentation vector (in the MSE sense) among the VQ vectors stored for
this tile. The chosen VQ vector’s index serves as a representation for
the block. The process should be repeated for all three image channels
in case of color images.

The bit stream that represents the compressed image contains data
on facial features coordinates and the VQ vectors indices. We did not
implement an entropy coding stage for further compression. There are
several reasons for this choice. 1) we found experimentally that rela-
tively simple entropy coding schemes (e.g., Huffman) hardly provide
any further compression; 2) we wanted to keep the algorithm simple
and avoid complex entropy coding schemes, even if these may pro-
vide further compression; and 3) the performance even without such
schemes was found to be sufficient.

For decoding, the steps described above are performed in a reversed
order, namely, the bit stream is parsed into the feature points coordi-
nates and the VQ vector indices. As the bit allocation and the order
of fields in the bit stream is known and fixed, no additional formatting
symbols are required for parsing.

For a given tile, the image is retrieved by the index from the VQ
vectors set stored for this location. Overlapping block pixels are aver-
aged, and the process is repeated for all three image channels. Finally,
the image is warped using an inverse alignment stage. The locations
of the feature points in the input image retrieved from the bit stream
along with the known feature points coordinates in the canonical image,
uniquely define the inverse piecewise affine transform to be applied to
the restored image.

D. Multiscale Approach

A multiscale approach can easily be incorporated into the proposed
scheme. The idea is to use larger size tiles/blocks for correlated image
regions. That is, instead of coding several neighboring correlated small
blocks separately, one can apply the VQ analysis for the whole corre-
lated area and use only one vector index to represent it.

This gain can be practically achieved by operating using a constant
block size (8� 8 as described above) over all the layers of a Gaussian
pyramid of the input image [4]. Such a pyramid leads to a set of s
resolution layers, denoted as Is�1; Is�2; . . . ; I0. The image Is�1 is
the coarsest layer, smaller by factor 2s�1 in each axis compared to
the original, and containing a reduced (smoothed and down-sampled)
version of the original. The rest of the layers are similar, growing bigger
by a factor of 2 along each axis, and I0 is the finest layer, being the
original image.

The proposed multiscale framework starts with Is�1, applying the
training and the coding as described above, on patches of size 8� 8
pixels. The decompressed image is interpolated, and subtracted from
Is�2. The residual is passed through the same training/coding stages.
This repeats until the finest resolution layer is reached.

In coding and decoding across scales, care must be given to the bits-
allocation in each layer. We use the MSE threshold map as described
above, choosing K per each tile and each resolution layer to conform
with the target error.

V. EXPERIMENTS

In our experiments, we used a two level multiscale approach. The
system was trained on 6000 images. By tuning the MSE thresholds we
control the rate—i.e., vary the required number of bytes to represent
the encoded image.

The trained VQ dictionaries are stored at both the encoder and the
decoder. For the rates tested in the following experiments, we found
that � 40 MBytes are required. Recall that each 8� 8 block is coded

Fig. 8. Left: Our results. Right: JPEG-2000. From top to bottom: 270 Bytes
(compression ratio 585:1); 392 Bytes (403:1); 522 Bytes (302:1), 644 Bytes
(245:1); and 865 Bytes (183:1).

separately with up to 10 bits. Thus, each 64 pixels require a dictio-
nary of size 64� 2048 cells.1 Thus, at the extreme we shall need 2048
times the memory of the input image to store these complete dictio-
naries. Looking at Fig. 7, we see that different blocks are assigned with
different bit-allocation, thus implying that not all complete dictionaries
are necessary. In practice, it was found that roughly 250 times the image
size is required for all the dictionaries. We should note that this size can
be reduced dramatically by introducing quantization of the dictionary
entries. Our coding scheme was simulated using nonoptimized Matlab
software, and ran on a PC (Pentium 2, 1.5-GHz, 1-GByte RAM). En-
coding of an image takes 2.7 s, and its decoding requires 0.8 s.

Fig. 8 shows several examples of image compression using our
method. This image was taken from the test set. For comparison, the
results are presented along with the images compressed using the
standard JPEG-2000 image compression algorithm. As claimed, the
results using our method show better visual quality.

We conducted an experiment where ten unprepared subjects where
presented with 20 images compressed using our method and JPEG-
2000 using 1–3 KBytes images. The respondents were asked to grade

1We store a tree of all the dictionaries for bit-allocation in the range [0; 10]
bits per block.
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Fig. 9. (Bottom) Our result and JPEG-2000 results with higher bit-rates for
comparison.

Fig. 10. Rate-distortion curves for JPEG-2000 and our results.

the proposed compression results relative to the JPEG-2000. The av-
erage grade indicated that our compression result with 1 KByte falls
somewhere between JPEG-2000 2 KBytes and 3 KBytes in terms of
subjective visual appeal. Fig. 9 presents the JPEG-2000 images ob-
tained with 1 KByte, 2 KBytes, and 3 KBytes for the example shown
in Fig. 8, to illustrate this comparison.

In order to get a more objective measure of performance, we coded
1000 test images in varying rates, using both JPEG-2000 and our al-
gorithm. Fig. 10 shows the rate-distortion curves obtained with both
methods. As can be clearly seen, while the developed algorithm gen-
erally shows better compression performance for the range of rates ex-
plored, its gain is pronounced as the rate decreases.

VI. CONCLUSION

A frontal facial compression method was presented and its advan-
tages were explored. It was shown that a geometric warping into a
canonical form, followed by an efficient coding for each block, al-
lows compression performance that are much better compared to the
JPEG-2000 for very low bit rates (in the range 0.01–0.03 bpp). The

VQ dictionaries are needed to be stored both at the encoder and the de-
coder, requiring roughly 250 times the input image memory size.

This is not the end of the road, and VQ may well be found to be in-
ferior to alternative ways of representing the block patches. In a sequel
paper, we intend to explore the role of sparse representation in tailored
dictionaries in representing image tiles.
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