TR#: | CS-2018-03 |
Class: | CS |
Title: | On the Analytical Structure of a Vector Sequence Generated via a Linear Recursion |
Authors: | Avram Sidi |
Currently accessibly only within the Technion network | |
Abstract: | In this note, we discuss the nature of a vector sequence $\{\ff_n\}^\infty_{n=0}\in \C^N$ generated by a linear recursion of the form $$\sum^m_{j=0}\AAA_j\ff_{k+j}=\00,\quad k=0,1,\ldots,$$ where $ \AAA_j\in\mathbb{C}^{N\times N},$ $j=0,1,\ldots,m,$ $\AAA_m$ is nonsingular, and $\AAA_0\neq \OO.$ We also discuss the nature of the function $\ff(z)$ that is defined by the infinite series $\sum^\infty_{n=0}\ff_nz^n$. |
Copyright | The above paper is copyright by the Technion, Author(s), or others. Please contact the author(s) for more information |
Remark: Any link to this technical report should be to this page (http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2018/CS/CS-2018-03), rather than to the URL of the PDF files directly. The latter URLs may change without notice.
To the list of the CS technical reports of 2018
To the main CS technical reports page