Technical Report MSC-2010-08

TR#:MSC-2010-08
Class:MSC
Title: On Exact Learning from Random Walk
Authors: Iddo Bentov
Supervisors: Nader Bshouty
PDFMSC-2010-08.pdf
Abstract: The well known learning models in Computational Learning Theory are either adversarial, meaning that the examples are arbitrarily selected by the teacher, or i.i.d., meaning that the teacher generates the examples independently and identically according to a certain distribution. However, it is also quite natural to study learning models in which the teacher generates the examples according to a stochastic process.

A particularly simple and natural time-driven process is the random walk stochastic process. We consider exact learning models based on random walk, and thus having in effect a more restricted teacher compared to both the adversarial and the uniform exact learning models. We investigate the learnability of common concept classes via random walk, and give positive and negative separation results as to whether exact learning in the random walk models is easier than in less restricted models.

CopyrightThe above paper is copyright by the Technion, Author(s), or others. Please contact the author(s) for more information

Remark: Any link to this technical report should be to this page (http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2010/MSC/MSC-2010-08), rather than to the URL of the PDF files directly. The latter URLs may change without notice.

To the list of the MSC technical reports of 2010
To the main CS technical reports page

Computer science department, Technion
admin