Technical Report CS-2005-07

Title: An Automated Method for Analysis of Flow Characteristics of Circulating Particles from In-Vivo Video
Authors: Eran Eden, Dan Waisman, Michael Rudzsky, Haim Bitterman, Vera Brod, and Ehud Rivlin
Abstract: The behavior of white and red blood cells, platelets and circulating injected particles is one of the main focuses in physiological studies. Most methods used to analyze the circulatory patterns of cells are time consuming. We describe a system named CellTrack, designed for a fully automated tracking of circulating cells and micro-particles and retrieval of their behavioral characteristics. The task of automated blood cell tracking in vessels from in-vivo video is particularly challenging because of the blood cells’ non-rigid shapes, the instability inherent in in-vivo videos, the abundance of moving objects and their frequent superposition. To tackle this, the CellTrack system operates on two levels: first, a global processing module extracts vessel borders and center lines based on color and temporal patterns. This enables the computation of the approximate direction of the blood flow in each vessel. Second, a local processing module extracts the locations and velocities of circulating cells. This is performed by artificial neural network classifiers that are designed to detect specific types of blood cells and micro-particles. The motion correspondence problem is then resolved by a novel algorithm that incorporates both the local and the global information. The system has been tested on a series of in-vivo color video recordings of rat mesentery. Our results show that the synergy between the global and local information enables CellTrack to overcome many of the difficulties inherent in tracking methods that rely solely on local information. A comparison was made between manual measurements and the automatically extracted measurements of leukocytes and fluorescent microspheres circulatory velocities. This comparison revealed an accuracy of 97%. CellTrack also enabled a much larger volume of sampling in a fraction of time compared to the manual measurements. All these results suggest that our method can in fact constitute a reliable replacement for manual extraction of blood flow characteristics from in-vivo videos.
CopyrightThe above paper is copyright by the Technion, Author(s), or others. Please contact the author(s) for more information

Remark: Any link to this technical report should be to this page (, rather than to the URL of the PDF files directly. The latter URLs may change without notice.

To the list of the CS technical reports of 2005
To the main CS technical reports page

Computer science department, Technion