Technical Report CIS9606

TR#:CIS9606
Class:CIS
Title: Learning Models of Intelligent Agents
Authors: David Carmel and Shaul Markovitch
PDFCIS9606.pdf
Abstract: Agents that operate in a multi-agent system need an efficient strategy to handle their encounters with other agents involved. Searching for an optimal interactive strategy is a hard problem because it depends mostly on the behavior of the others. In this work, interaction among agents is represented as a repeated two-player game, where the agents' objective is to look for a strategy that maximizes their expected sum of rewards in the game. We assume that agents' strategies can be modeled as finite automata. A model-based approach is presented as a possible method for learning an effective interactive strategy. First, we describe how an agent should find an optimal strategy against a given model. Second, we present an unsupervised algorithm that infers a model of the opponent's automaton from its input/output behavior. A set of experiments that show the potential merit of the algorithm is reported as well.
CopyrightThe above paper is copyright by the Technion, Author(s), or others. Please contact the author(s) for more information

Remark: Any link to this technical report should be to this page (http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1996/CIS/CIS9606), rather than to the URL of the PDF files directly. The latter URLs may change without notice.

To the list of the CIS technical reports of 1996
To the main CS technical reports page

Computer science department, Technion
admin