On the Analytical Structure of a Vector Sequence Generated via a Linear Recursion

Avram Sidi
Computer Science Department
Technion - Israel Institute of Technology
Haifa 32000, Israel
e-mail: asidi@cs.technion.ac.il
URL: http://www.cs.technion.ac.il/~asidi

July 2018
Abstract

In this note, we discuss the nature of a vector sequence \(\{ f_n \}_{n=0}^{\infty} \in \mathbb{C}^N \) generated by a linear recursion of the form

\[
\sum_{j=0}^{m} A_j f_{k+j} = 0, \quad k = 0, 1, \ldots,
\]

where \(A_j \in \mathbb{C}^{N \times N}, \; j = 0, 1, \ldots, m, \; A_m \) is nonsingular, and \(A_0 \neq 0 \). We also discuss the nature of the function \(f(z) \) that is defined by the infinite series \(\sum_{n=0}^{\infty} f_n z^n \).
1 Introduction

In this note, we explore the analytical structure of a sequence of vectors \(\{f_n\}_{n=0}^{\infty} \in \mathbb{C}^N \) generated recursively via

\[
\sum_{j=0}^{m} A_j f_{k+j} = 0, \quad k = 0, 1, \ldots, \quad (1.1)
\]

where

\[
A_j \in \mathbb{C}^{N \times N}, \quad j = 0, 1, \ldots, m; \quad A_m \text{ nonsingular, } A_0 \neq O. \quad (1.2)
\]

Clearly, when \(A_m \) is nonsingular, (1.1) is a true forward recursion, since now

\[
f_{k+m} = -A_m^{-1} \left(\sum_{j=0}^{m-1} A_j f_{k+j} \right), \quad k = 0, 1, \ldots.
\]

Of course, \(f_0, f_1, \ldots, f_{m-1} \) must be given as initial conditions. As will become clear soon, the solution is obtained by reducing this problem to a nonlinear (or polynomial) eigenvalue problem.

In the sequel, we use uppercase italic letters to denote matrices. We denote by \(O \) the zero matrix. We also use lowercase italic letters to denote vectors. We denote by \(0 \) the zero vector.

2 A related nonlinear eigenvalue problem

We start with the ansatz \(f_n = u \mu^n \), where \(u \in \mathbb{C}^N \) (\(u \neq 0 \) naturally) and \(\mu \in \mathbb{C} \), both to be determined. Then (1.1) becomes

\[
\sum_{j=0}^{m} \mu^{k+j} A_j u = 0, \quad k = 0, 1, \ldots \quad (2.1)
\]

Multiplying both sides by \(\mu^{-k} \), we obtain the nonlinear (or polynomial) eigenvalue problem\(^1\)

\[
\left(\sum_{j=0}^{m} \mu^j A_j \right) u = 0. \quad (2.2)
\]

Thus, \(\mu \) must be a root of the equation \(\det \left(\sum_{j=0}^{m} \mu^j A_j \right) = 0 \) since \(u \neq 0 \).

Let us look at some simple cases first.

- **The case** \(m = 1 \): We have the generalized eigenvalue problem

\[
A_0 u = -\mu A_1 u,
\]

which becomes the regular eigenvalue problem \(A_1^{-1} A_0 u = \mu u \), when \(A_1 \) is nonsingular.

\(^1\)For nonlinear (or polynomial) eigenvalue problems, see Björck [1, pp. 561–563], for example.
The case $m = 2$: With $x = u$ and $y = \mu u = \mu x$, we have
\[
\begin{bmatrix}
-A_0 & O & \cdots & O \\
O & I & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & I
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
= \mu
\begin{bmatrix}
A_1 & A_2 & \cdots & A_{m-1} & A_m \\
I & O & \cdots & O & O \\
O & I & \cdots & O & O \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
O & O & \cdots & I & O
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}.
\]

The case $m = 3$: With $x = u$, $y = \mu u = \mu x$, $z = \mu^2 u = \mu y$, we have
\[
\begin{bmatrix}
-A_0 & O & O \\
O & I & O \\
O & O & I
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
= \mu
\begin{bmatrix}
A_1 & A_2 & A_3 \\
I & O & O \\
O & I & O \\
\vdots & \vdots & \vdots \\
O & O & I
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}.
\]

For arbitrary m, this can be generalized in a straightforward manner. Letting
\[x^{(j)} = \mu^{j-1} u, \quad j = 1, \ldots, m \Rightarrow x^{(1)} = u, \ x^{(2)} = \mu x^{(1)}, \ldots, x^{(m)} = \mu x^{(m-1)}, \quad (2.3)\]
we have the generalized eigenvalue problem
\[Vx = \mu Wx, \quad (2.4)\]
where $V, W \in \mathbb{C}^{mN \times mN}$ and $x \in \mathbb{C}^{mN}$ are given as
\[
V = \begin{bmatrix}
-A_0 & O & \cdots & O \\
O & I & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & I
\end{bmatrix}, \quad W = \begin{bmatrix}
A_1 & A_2 & \cdots & A_{m-1} & A_m \\
I & O & \cdots & O & O \\
O & I & \cdots & O & O \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
O & O & \cdots & I & O
\end{bmatrix}, \quad x = \begin{bmatrix}
x^{(1)} \\
x^{(2)} \\
\vdots \\
x^{(m)}
\end{bmatrix}.
\]

The generalized eigenvalue problem in (2.4) has exactly mN eigenvalues, counted according to their multiplicities, provided the matrix W is nonsingular, since $Vx = \mu Wx$ can be expressed as the regular eigenvalue problem $W^{-1}Vx = \mu x$ in this case. Now, W is nonsingular if and only if A_m is nonsingular. This can be shown as follows: When W is nonsingular, the homogeneous linear system $Wx = 0$ has $x = 0$, namely, $x^{(j)} = 0, \quad j = 1, \ldots, m$, as its only solution. Now, by (2.5), we have
\[Wx = 0 \Rightarrow \sum_{j=1}^{m} A_j x^{(j)} = 0 \quad \text{and} \quad x^{(j)} = 0, \quad j = 1, \ldots, m - 1, \]
from which,
\[x^{(1)} = \cdots = x^{(m-1)} = 0 \quad \text{and} \quad A_m x^{(m)} = 0.\]

Since $x^{(1)} = \cdots = x^{(m-1)} = 0$ are also unique solutions, we need to deal with $x^{(m)}$ only. Now, $x^{(m)} = 0$ is the only solution to the homogeneous system $A_m x^{(m)} = 0$ if and only if A_m is nonsingular, which we have assumed from the start.

Note that the problem $Vx = \mu Wx$ has $\mu = 0$ as an eigenvalue only when V is singular, and this happens only when A_0 is singular, which we have allowed. (It has $\mu = \infty$ as an eigenvalue when A_m is singular, which is not our case.)
3 Structure of f_n

Let us assume for simplicity that $W^{-1}V$ is diagonalizable. Then it has mN eigenpairs (μ_i, x_i), $i = 1, \ldots, mN$. By (2.3), the vector x_i has the partitioning

$$x_i = \begin{bmatrix} x_i^{(1)} \\ x_i^{(2)} \\ \vdots \\ x_i^{(m)} \end{bmatrix} = \begin{bmatrix} u_i \\ \mu_i u_i \\ \vdots \\ \mu_i^{m-1} u_i \end{bmatrix}.$$ \hspace{1cm} (3.1)

Consequently, f_n can be expressed as

$$f_n = \sum_{i=1}^{mN} c_i x_i^{(1)} \mu_i^n = \sum_{i=1}^{mN} c_i u_i \mu_i^n, \quad n = 0, 1, \ldots.$$ \hspace{1cm} (3.2)

This can be verified by simply substituting (3.2) into (1.1) and invoking (2.3).

To complete our analysis, we need to show that the mN unknowns c_i can be determined uniquely from the m initial vectors $f_0, f_1, \ldots, f_{m-1}$. Setting $n = 0, 1, \ldots, m-1$ only in (3.2), we realize that the c_i satisfy the (mN)-dimensional linear system

$$\sum_{i=1}^{mN} c_i u_i \mu_i^n = f_n, \quad n = 0, 1, \ldots, m - 1,$$ \hspace{1cm} (3.3)

which can be expressed in matrix notation as

$$Uc = \phi,$$

where

$$U = \begin{bmatrix} u_1 & u_2 & \cdots & u_p \\ \mu_1 u_1 & \mu_2 u_2 & \cdots & \mu_p u_p \\ \vdots & \vdots & \ddots & \vdots \\ \mu_1^{m-1} u_1 & \mu_2^{m-1} u_2 & \cdots & \mu_p^{m-1} u_p \end{bmatrix}, \quad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix}, \quad \phi = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{m-1} \end{bmatrix}, \quad p = mN.$$

Comparing with (3.1), we realize that the r_ith column of U is nothing but the eigenvector x_i, $i = 1, \ldots, mN$. Because we have assumed that $W^{-1}V$ is diagonalizable, the x_i are linearly independent. Therefore, U is nonsingular, implying that $c = U^{-1} \phi$ exists and is unique.

We note that f_n in (3.2) can also be expressed as

$$f_n = \sum_{i=1}^{q} \hat{u}_i \hat{\mu}_i^n, \quad n = 0, 1, \ldots, \quad \text{for some } q \leq mN \text{ and distinct } \hat{\mu}_i,$$ \hspace{1cm} (3.4)

where $\hat{\mu}_i$ are some or all of the distinct μ_i and \hat{u}_i are linear combinations of the u_i that correspond to the eigenvalues μ_i that are equal to $\hat{\mu}_i$. In addition, since $mN > N$ when $m > 1$, the vectors u_i, and hence the vectors \hat{u}_i, may be linearly dependent in \mathbb{C}^N. This is worth noting because the eigenvectors x_i are linearly independent in \mathbb{C}^{mN} and u_i form the first N components of the respective x_i.

Finally, in case $W^{-1}V$ is nondiagonalizable and some or all of the distinct μ_j have multiplicities greater than unity, f_n is of the form

$$f_n = \sum_{i=1}^{q} p_i(n) \hat{\mu}_i^n, \quad n = 0, 1, \ldots.$$ \hspace{1cm} (3.5)

For each i, $p_i(n)$ is a vector-valued polynomial in n of degree $\leq r_i$, where r_i is the geometric multiplicity of $\hat{\mu}_i$. We leave out the details of this case.
4 Connection with vector-valued rational functions

Let us now consider the function \(f : \mathbb{C} \to \mathbb{C}^N \), defined as

\[
 f(z) = \sum_{n=0}^{\infty} f_n z^n, \quad z \in \mathbb{C},
\]

with the \(f_n \) as described in (1.1)–(1.2). Note that, due to the fact that \(f_n \) has the structure shown in (3.4) or (3.5), the series \(\sum_{n=0}^{\infty} f_n z^n \) converges absolutely and uniformly for all \(z \) sufficiently close to zero.

First, let us look at the special case in which the matrix \(W^{-1}V \) is diagonalizable. Then \(f_n \) is as in (3.2). Consequently, \(f(z) \) is a vector-valued rational function given as

\[
 f(z) = \sum_{i=1}^{mN} c_i u_i, \quad z
\]

Whether \(W^{-1}V \) is diagonalizable or not, \(f(z) \) has an interesting structure described in the next theorem:

Theorem 4.1 With \(f_n \) as in (1.1)–(1.2), define

\[
 s_{-1}(z) = 0; \quad s_k(z) = \sum_{n=0}^{k} f_n z^n, \quad k = 0, 1, \ldots ,
\]

Then

\[
 f(z) = \left(\sum_{j=0}^{m} A_j z^{m-j} \right)^{-1} \left(\sum_{j=0}^{m} A_j z^{m-j} s_{j-1}(z) \right), \quad \forall z \not\in \{ \mu_1^{-1}, \mu_2^{-1}, \ldots , \mu_{mN}^{-1} \}.
\]

Thus, \(f(z) \) is a vector-valued rational function with a vector-valued numerator polynomial of degree at most \(mN - 1 \) and a scalar-valued denominator polynomial of degree \(mN \).

Proof. Multiplying (1.1) by \(z^{k+m} \), and summing over \(k \), we first have

\[
 \sum_{k=0}^{\infty} z^{k+m} \sum_{j=0}^{m} A_j f_{k+j} = 0,
\]

which is valid for all \(z \) sufficiently close to zero. Upon rearranging, this becomes

\[
 \sum_{j=0}^{m} A_j z^{m-j} \sum_{k=0}^{\infty} f_{k+j} z^{k+j} = 0.
\]

By the fact that \(f(z) = s_{j-1}(z) + \sum_{k=0}^{\infty} f_{k+j} z^{k+j} \), it follows that

\[
 \sum_{j=0}^{m} A_j z^{m-j} [f(z) - s_{j-1}(z)] = 0,
\]

from which,

\[
 \left(\sum_{j=0}^{m} A_j z^{m-j} \right) f(z) = \sum_{j=0}^{m} A_j z^{m-j} s_{j-1}(z).
\]
Clearly, the matrix \(\sum_{j=0}^{m} A_j z^{m-j} \) is nonsingular if \(z \) is not one of the \(\mu_i^{-1} \), as we have already seen. The result in (4.3) follows.

Observe that the matrix \(\sum_{j=0}^{m} A_j z^{m-j} \) can be expressed as

\[
\sum_{j=0}^{m} A_j z^{m-j} = A_m \left(I + \sum_{j=1}^{m} B_j z^j \right); \quad B_j = A_m^{-1} A_{m-j}, \quad j = 1, \ldots, m.
\]

This implies

\[
\sum_{j=0}^{m} A_j z^{m-j} = A_m + O(z) \quad \text{as} \quad z \to 0,
\]

and hence

\[
\left(\sum_{j=0}^{m} A_j z^{m-j} \right)^{-1} = A_m^{-1} + O(z) \quad \text{as} \quad z \to 0,
\]

which, in turn, implies that \(\sum_{j=0}^{m} A_j z^{m-j} \) is invertible for all \(z \) sufficiently close to zero.

Now, the vector-valued polynomial \(\sum_{j=0}^{m} A_j z^{m-j} s_j(z) \) in (4.3) is of degree at most \(m - 1 \). The matrix \((\sum_{j=0}^{m} A_j z^{m-j})^{-1} \) is a matrix-valued rational function with degree of numerator at most \(m(N-1) \) and degree of denominator \(mN \), as can be seen from

\[
(\sum_{j=0}^{m} A_j z^{m-j})^{-1} = \frac{\left(\sum_{j=0}^{m} A_j z^{m-j} \right)^{\text{adj}}}{\det \left(\sum_{j=0}^{m} A_j z^{m-j} \right)}.
\]

With this, the proof can now be completed.

Acknowledgement

The author wishes to thank Professor David Levin of Tel Aviv University for suggesting the problem treated in this note.

References