A Scalable Linearizable Multi-Index Table

Gal Sheffi
A Scalable Linearizable Multi-Index Table

Research Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

Gal Sheffi

Submitted to the Senate of the Technion — Israel Institute of Technology
Nisan 5777 Haifa April 2017
This research was carried out under the supervision of Prof. Erez Petrank, in the Faculty of Computer Science.

The Technion’s funding of this research is hereby acknowledged.
Contents

List of Figures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2 Preliminaries</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Table Terminology</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Table Operations</td>
<td>5</td>
</tr>
<tr>
<td>3 The Algorithm</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Internal Data Structure</td>
<td>8</td>
</tr>
<tr>
<td>3.2 The Lock-Free Table</td>
<td>10</td>
</tr>
<tr>
<td>3.2.1 The Lock-Free find Method</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2 The Lock-Free add Operation</td>
<td>11</td>
</tr>
<tr>
<td>3.2.3 The Lock-Free remove Operation</td>
<td>13</td>
</tr>
<tr>
<td>3.2.4 The Lock-Free retrieve Operation</td>
<td>14</td>
</tr>
<tr>
<td>3.3 The Lock-Based Table</td>
<td>17</td>
</tr>
<tr>
<td>3.3.1 The Lock-Based find Method</td>
<td>18</td>
</tr>
<tr>
<td>3.3.2 The Lock-Based add Operation</td>
<td>18</td>
</tr>
<tr>
<td>3.3.3 The Lock-Based remove Operation</td>
<td>20</td>
</tr>
<tr>
<td>3.3.4 The Lock-Based retrieve Operation</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Adding a Fast Skip-List Indexing</td>
<td>24</td>
</tr>
<tr>
<td>4 Correctness</td>
<td>25</td>
</tr>
<tr>
<td>4.1 The Lock-Free Table</td>
<td>26</td>
</tr>
<tr>
<td>4.1.1 Table Invariants</td>
<td>26</td>
</tr>
<tr>
<td>4.1.2 Linearizability proof</td>
<td>44</td>
</tr>
<tr>
<td>4.1.3 Progress</td>
<td>53</td>
</tr>
<tr>
<td>4.2 The Lock-Based Table</td>
<td>64</td>
</tr>
<tr>
<td>4.2.1 Table Invariants</td>
<td>64</td>
</tr>
<tr>
<td>4.2.2 Linearizability proof</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3 Deadlock Freedom</td>
<td>80</td>
</tr>
</tbody>
</table>
List of Figures

3.1 A Table Example .. 7
3.2 The Lock-Free find Method 10
3.3 The Lock-Free add Operation 12
3.4 The Lock-Free remove Operation 14
3.5 The Lock-Free retrieve Operation 15
3.6 The Lock-Based find Method 18
3.7 The Lock-Based add Operation 19
3.8 The Lock-Based remove Operation 20
3.9 The Lock-Based retrieve Operation 22

5.1 Throughput Graphs .. 83
Abstract

Concurrent data structures typically index data using a single primary key and provide fast access to data associated with a given key value. However, it is often required to access information via multiple primary and secondary keys, and even through additional properties that do not represent keys for the given data. One way to implement a data structure that allows access via multiple indexing is to use an existing data structure that allows access via a single index, and traverse the items exhaustively to find items by a secondary key. However, using this method, it is difficult to achieve either correctness (linearizability) or good performance. In this thesis, we propose to obtain multi-indexing access by using an efficient concurrent data structure for each of the indexed fields. We then coordinate these structures to obtain correctness and good performance. We propose lock-free and lock-based designs of a table with multiple indexing, supporting linearizable inserts, deletes, and retrieve operations. We have implemented the proposed designs and ran measurements on a 64-core AMD platform. The obtained performance demonstrates efficiency and high scalability. In particular, measurements show that lock-free solutions perform better than lock-based ones when contention is high, as well as in most practical scenarios.
Chapter 1

Introduction

The rapid deployment of highly concurrent machines has resulted in the acute need for concurrent algorithms and their supporting concurrent data structures. Concurrent data structures are designed to utilize all available cores in order to achieve faster performance. The literature contains plenty of designs for concurrent data structures that implement sets (or maps). Typically, these data structures consider a key and data associated with it as an item. Such an item can be inserted into the data structure, deleted from it, and the item can be quickly retrieved using its key. However, in practice, data sometimes contains various different keys [RG03, TWF16]. For example, a student may have an identity number (such as an S.S.N.), a driving license number, a name, a phone, an address, etc. And it is often useful to be able to access the student’s record using any of his properties. If a student record is kept in a data structure using the identity number as the key, then it would be costly (if at all possible) to locate a student record according to his phone number.

We present constructions of a concurrent table. The table has entries that can be quickly accessed via their primary key but also via secondary keys and properties that would not normally be considered as keys. For example, we may ask if there is a student in the class who lives on 5th Ave. Our constructions are linearizable, meaning that an item is inserted to (or removed from) the table simultaneously through all its indices. We propose lock-free and lock-based constructions and compare them against each other, against a simple construction that employs coarse-grained locking, and against a construction that uses a transactional type of concurrency (see [CBM08, DSS06, SK16]).

In a sequential setting, the solution to this problem is simple: employ several data structures, one to index each relevant property. This way, an item can be quickly found using any of the indexed fields. While such a solution is easy to implement in a sequential environment, it is not simple to make it correct, i.e., linearizable [HW90], when operations are executed on the table concurrently. Linearizability means, for example, that the existence of an item in the table does not depend on which index is used to search for it. The operation of inserting (or removing) elements simultaneously and instantly into (or from) several concurrent data structures brings up interesting
algorithmic challenges.

In the context of a table, it is useful to deal with standard unique keys but also with non-unique properties of the item. For example, if we try to insert an item to the table with an identity number that already exists in the table, then the insertion should fail. The item already exists in the table. But inserting an item with an address that already exists in the table is fine. There could be two items in the table that represent two students who live in the same building. Interestingly, we found out that even the `contains` operation is not trivial to implement for a property that is non-unique.

On the practical level, while using several indices to organize data is often needed, existing solutions are either very heavy (in the sense that they provide much additional functionality at a cost) or very slow (because they do not support secondary keys). Databases often allow multiple indexing into the data, but a full-fledged database typically supports many more types of queries and a transactional type of concurrency. They also often employ large structures and involved algorithms to allow spilling data to hard disks. The concurrent table proposed in this paper is a simple concurrent structure that supports multiple indices, but is meant to hold a fast and scalable in-memory table, which quickly locates an item given any of its keys or properties.

A different practical alternative is to use a concurrent table that is indexed only by a single primary key. Many concurrent data structures that implement a key-value store can be used to implement such a table (e.g. [JCSL]). However, this solution creates severe problems for efficiency and linearizability. From performance standpoint, finding an item given a secondary key requires traversing the table, which is costly. But more importantly, it is difficult to design a linearized solution without holding a coarse-grained lock on the table during the entire operation. For example, the `add` operation must be able to check whether any of the unique keys exist in the table, the `retrieve` operation must be able to obtain a linearizable view of all elements in order to determine whether an element is currently in the list, etc. One possibility for obtaining linearizability is to employ a snapshot mechanism for all the operations (using, e.g., [GBH15, PT13]). But that would still require a costly traversal of the table.

We begin in Chapter 2 with some basic notations and definitions and continue in Chapter 3 with a detailed description of the lock-free and lock-based table variants (an optimization for both variants appears in Section 3.4). The correctness proof of both table variants appears in Chapter 4, and the linearization points of the algorithm are specified in Sections 4.1.2 and 4.2.2. Chapter 5 presents the performance measurements, Chapter 6 presents some related work and we conclude in Chapter 7.
Chapter 2

Preliminaries

Our model for concurrent multi-threaded computation follows the linearizability model of [HW90]. In particular, we assume an asynchronous shared memory system where a finite set of deterministic threads communicate by executing atomic operations on some finite number of shared variables. In addition, we assume an automatic memory management.

2.1 Table Terminology

A table is a set of \(n \)-tuples \(\langle e_1, \ldots, e_n \rangle \) where all tuples have the same number of elements. A table \(T \) has \(n = N_T \) fields (given \(T \), \(N_T \) is a constant), denoted by \(f_1, \ldots, f_{N_T} \), where each field represents a different element of the tuples. Each field \(f_i \) can be either unique or non-unique. If \(f_i \) is unique, then any two different tuples \(\langle e_1, \ldots, e_n \rangle \) and \(\langle e'_1, \ldots, e'_n \rangle \) in \(T \) satisfy \(e_i \neq e'_i \). Otherwise (i.e., \(f_i \) is non-unique), \(T \) may contain two different tuples \(\langle e_1, \ldots, e_n \rangle \) and \(\langle e'_1, \ldots, e'_n \rangle \) such that \(e_i = e'_i \).

An interesting special case of the table data structure is the map data structure. A map is essentially a data structure that represents a function from keys to values. A map can be defined as a table \(M \) with two fields: a unique field \(f_1 \) that holds the key and a non-unique field \(f_2 \) that holds the data.

Each table field may be of a specific type (such as Integer, Float or String). We assume that there exists a total order \(< \) of all possible elements such that for any two elements \(e_i \neq e'_i \) either \(e_i < e'_i \) or \(e'_i < e_i \). We also assume that there exist two special elements \(-\infty \) and \(\infty \). The elements \(-\infty \) and \(\infty \) represent the minimal and the maximal possible element that can be stored in a tuple.

2.2 Table Operations

The proposed table supports the \textit{add}, \textit{remove} and \textit{retrieve} operations. The \textit{add} operation receives a tuple \(\langle e_1, \ldots, e_n \rangle \) and adds it to the table if and only if for every unique field number \(i \) the table does not contain a tuple \(\langle e'_1, \ldots, e'_n \rangle \) such that \(e_i = e'_i \). The
remove operation receives a value \(val \) and a unique field number \(i \), and tries to remove a tuple \(\langle e_1, \ldots, e_n \rangle \) such that \(e_i = val \) from the table. It will fail if no such tuple exists in the table. The retrieve operation receives a value \(val \) and a field number \(i \) and returns all tuples \(\langle e_1, \ldots, e_n \rangle \) that satisfy \(e_i = val \). A simpler contains operation can be implemented by calling the retrieve operation, and returning \(true \) if retrieve returns at least one tuple, and \(false \) otherwise.
Chapter 3

The Algorithm

We chose to implement multiple indexing of a concurrent table by maintaining multiple data structures, each indexing a different key (or property) of an item. In order to simplify the design, we chose simple concurrent (ordered) linked-lists to maintain the indexed set (or multi-set). Next, in order to speed up the access time, we built skip-lists on top of the linked-lists. The linked-lists are carefully designed to maintain correctness and linearizability and make sure that items appear to be inserted to or removed from all indices at once. Being a member of the table means being a member of all linked-lists. Thus, an item can either be in all linked-lists, or in none. The skip-lists are implemented in a more relaxed manner and are only used to provide fast indexing. They do not need to always properly hold an updated view of all items in the table.

![Table Example](image)

Figure 3.1: A table example, with three fields ($N_T = 3$). The first and second fields are non-unique and the third field is unique. Besides the head and tail sentinels, there are four records with an InTable status (i.e. the table contains four tuples)
In this chapter we describe the algorithm. We start by presenting the data structure we use (in Section 3.1). We then continue with a detailed description of the lock-free table algorithm (Section 3.2) and of the lock-based variant (Section 3.3). Finally, we explain the additional fast skip-list indexing (Section 3.4).

3.1 Internal Data Structure

Our table organizes the stored tuples as a collection of sorted linked-lists. For each field \(f_i \), the table maintains a linked-list \(L_i \) such that if tuple \(\langle \ldots, e_i, \ldots \rangle \) precedes tuple \(\langle \ldots, e'_i, \ldots \rangle \) in \(L_i \) then \(e_i \leq e'_i \). In other words, In each list \(L_i \) the tuples are sorted according to the \(i \)-th field.

We call the object that represents a tuple a record. Each record consists of (1) an array \(\text{data} \) with \(N_T \) entries, (2) an array \(\text{next} \) with \(N_T \) entries, and (3) a status flag. The \(\text{data} \) array stores the represented tuple. Specifically, if record \(R \) represents the tuple \(\langle e_1, \ldots, e_n \rangle \) then \(R.data[i] = e_i \) for any \(1 \leq i \leq n \). The \(\text{next} \) array contains pointers that maintain the internal lists of the table. If \(L_i = R_1 \rightarrow R_2 \rightarrow \ldots \rightarrow R_{k+1} \) then \(R_j.next[i] \) points to \(R_{j+1} \) for every \(1 \leq j \leq k \). In addition to the pointer, each \(\text{next}[i] \) field contains a marked boolean flag. The pointer and boolean flag can be updated simultaneously and atomically, using a single cas execution (as in Line 8 of Figure 3.2). For example, this can be realized in Java using an atomic object that represents a pointer and a boolean flag.

In order to implement a simultaneous insertion (or deletion) of a record into all the linked-lists at once, we use the status field. The status of a record is set to Pending while it is being inserted into all the lists. While the status is Pending, the algorithm does not consider this record as part of the table, even if it has already been inserted into some of the lists. Upon completion of insertions to all linked-lists, the record’s status is modified to InTable, and it is exactly at this point that the record becomes a member of the table (this is considered as the logical insertion of the record into the table). To remove a record from all lists simultaneously, it is enough to mark the status field as Removed and from that point and on the algorithm considers it deleted. Deletion proceeds by unlinking the record from all the linked-lists.

If the table has a unique field, then a thread may fail to insert a record because its relevant property already appears in the list of that unique field. This happens also in the standard case of a single-key list, and the failed attempt is not even visible to the other threads. But in the case of a table we need to handle the case of a successful insertion into one list and then a failed insertion to a second list. For example, a student may have changed a driving license (e.g., due to moving to a different state), but still have the same identity number. In this case, it may happen that we attempt to insert a record for this student while an old record representing him is present in the table. Our algorithm will succeed to insert the record using the first index (the driving license number) because the old record of this student has a different driving license number.
But when it attempts to insert this record into the second index (the identity number),
it will discover that the student already appears in the table and then the insertion
would return failure. When this happens, we mark the status of the inserted record as
Failed and execute a protocol that eventually removes this record from the list.

We use two special records, head and tail, which represent the tuples \((-\infty, \ldots, -\infty)\)
and \((\infty, \ldots, \infty)\), respectively. Each list \(L_i\) starts with the head record and ends with
the tail record. The records head and tail are not considered table items, and therefore
they are never added to or removed from the table. Both head and tail’s statuses are
always set to InTable.

In Figure 3.1 we present an example of a table. The arrows represent the next[]
references, and in the \(i\)-th list, records are sorted according to their \(i\)-th field. Notice
that the table does not contain two tuples with the same unique field, and that if a
record’s status is not InTable, it is not necessarily fully linked.
3.2 The Lock-Free Table

In this section we describe the lock-free table design. Lock-freedom means that when the program threads (executing the table operations) are run for a sufficiently long time, at least one of the threads makes progress (the operation it executes eventually terminates).

We say that a record is logically in the table if it is physically in all internal linked-lists and its status is \textit{InTable}. This means that the successful insertion of a new record into the table includes adding it to all lists and then changing its status from \textit{Pending} to \textit{InTable}. The removal of a record includes changing its status (does not necessarily include its physical removal from the lists) from \textit{InTable} to \textit{Removed}.

Although parts of the \textit{add} and \textit{remove} operations may include collaborations of several threads (as explained later), those collaborations do not affect the identity of the thread executing a successful \textit{add} or \textit{remove} of a record. The thread executing a successful insertion of a record is the thread that created it (even if other threads have physically inserted it into some of the lists, or changed its status from \textit{Pending} to \textit{InTable}), and the thread executing a successful removal of a record is the one that changed its status (from \textit{InTable} to \textit{Removed}).

1: \textit{find}(val, i)
2: \texttt{retry:} \quad \triangleright \text{Starting a new search}
3: \quad \textit{pred} \leftarrow \textit{head}
4: \quad \textit{curr} \leftarrow \textit{pred.next}[i]
5: \quad \textbf{while} \text{ true} \textbf{ do} \quad \triangleright \text{While desired records not yet found}
6: \quad \quad \textit{succ, marked} \leftarrow \textit{curr.next}[i]
7: \quad \quad \textbf{while} \text{ marked} \textbf{ do} \quad \triangleright \text{While curr is logically removed}
8: \quad \quad \quad \textit{snip} \leftarrow \textit{pred.next}[i].\text{cas(curr, succ, false, false)}
9: \quad \quad \quad \textbf{if} \text{ !snip} \quad \triangleright \text{If the physical removal failed}
10: \quad \quad \quad \quad \texttt{goto retry}
11: \quad \quad \quad \textit{curr} \leftarrow \textit{pred.next}[i]
12: \quad \quad \quad \textit{succ, marked} \leftarrow \textit{curr.next}[i]
13: \quad \quad \quad \textbf{if} \text{ curr.data}[i] \geq \text{ val}
14: \quad \quad \quad \quad \texttt{return} \quad \triangleright \text{Return the current records}
15: \quad \quad \quad \quad \textit{pred} \leftarrow \textit{curr}
16: \quad \quad \quad \textit{curr} \leftarrow \textit{succ}

Figure 3.2: The Lock-Free \textit{find} Method

3.2.1 The Lock-Free \textit{find} Method

Before describing the \textit{add}, \textit{remove} and \textit{retrieve} operations, we are going to describe the \textit{find} auxiliary method to be used by \textit{add} and \textit{remove} (shown in Figure 3.2). The \textit{find} method receives a value \textit{val} and a field number \textit{i} and returns two records, \textit{pred} and \textit{curr}, such that (1) \textit{pred.data}[i] < \textit{val}, (2) \textit{curr.data}[i] \geq \textit{val} and (3) \textit{curr} is \textit{pred}'s successor in \textit{L}_i.

When adding a new record \textit{R} such that \textit{R.data}[i] = \textit{val}, \textit{pred} serves as the prede-
cessor, and \textit{curr} serves as the successor in \textit{L\textsubscript{i}}. Notice that since threads can operate concurrently, there is no guarantee that the returned records will continue to satisfy property (3). Therefore, the calling operation always checks the relevance of the returned values (as will later be explained) and if needed, calls the \textit{find} method again.

The method starts its traversal from \textit{head} (which is the first record in all internal linked-lists, and in particular in \textit{L\textsubscript{i}}). Assuming \textit{val} is always bigger than \(-\infty\) (no operation requires searching for such value), the initial record referenced by \textit{curr} is \textit{head}'s successor in \textit{L\textsubscript{i}} (line 4). The \textit{pred} and \textit{curr} references are advanced throughout \textit{L\textsubscript{i}}, until the relevant two records are found and returned (line 14). Eventually, \textit{curr} points to the first record \textit{R} in \textit{L\textsubscript{i}} whose \textit{next[i]} pointer is not marked and satisfies \(R.data[i] \geq val\), and \textit{pred} is its predecessor in \textit{L\textsubscript{i}}. Assuming \textit{val} is always smaller than \(\infty\), a potential \textit{curr} can always be found.

In addition to finding the described records, the \textit{find} method also helps physically removing records that have been logically removed (see [H01]). Records are removed from the table during unsuccessful \textit{add} and successful \textit{remove} executions.

A record \textit{R} is physically removed from \textit{L\textsubscript{i}} only after its \textit{next[i]} pointer is marked. The \textit{find} method is the only one in charge of physical removals, and it executes them in the following way: Each time \textit{curr} is advanced, the method checks if \textit{curr}'s \textit{next[i]} pointer is marked. If \textit{curr}'s \textit{next[i]} pointer is not marked, the traversal continues. Otherwise, the method attempts to physically remove \textit{curr} from \textit{L\textsubscript{i}} using a \textit{cas} operation (line 8). It does it by setting \textit{pred}'s successor in \textit{L\textsubscript{i}} to \textit{succ}. If the execution is successful, then \textit{pred}'s successor in \textit{L\textsubscript{i}} becomes \textit{succ}, meaning \textit{curr} is no longer in \textit{L\textsubscript{i}}. Otherwise, the traversal starts again from \textit{head}.

The \textit{cas} execution may fail for two reasons. The first one is that \textit{curr} is no longer \textit{pred}'s successor in \textit{L\textsubscript{i}} (either \textit{curr} has been physically removed or a new record has been added between them) and the second possible reason for a \textit{cas} failure is that \textit{pred}'s \textit{i}-th \textit{next} pointer has meanwhile become marked. In these cases, when a \textit{cas} execution in line 8 fails, the method can't make sure that the traversal can continue from the same point, and the traversal starts all over again (line 10).

3.2.2 The Lock-Free \textit{add} Operation

The \textit{add} operation (shown in Figure 3.3) receives a tuple \textit{tup}, creates a new corresponding record \textit{R} with the data of \textit{tup} and a \textit{Pending} status and tries to add \textit{R} to the table. In order to enable lock-freedom, the adding procedure is divided into smaller steps, allowing other executing threads to help the insertion (if it prevents them from finishing their own insertions). After creating \textit{R}, it is added to each list (according to their order) using the \textit{helpAdding} method. When returning from the \textit{helpAdding} method, if the insertion was successful, \textit{R}'s status is either \textit{InTable} or \textit{Removed} (the latter is possible if another thread has removed it after its insertion and before this check of its status). In this case, the whole operation is considered successful and it returns \textit{true} (line 27).
If the insertion was unsuccessful, R’s status is set to Failed, and all of R’s next pointers are marked (lines 21-25), for a physical removal during a later find execution.

```
17: add(tup)
18: newRecord ← makerecord(tup)  ▷ Creating the new record
19: helpAdding(newRecord, 1)  ▷ 1 stands for the first list
20: if newRecord.status == Failed  ▷ Insertion was unsuccessful
21: for i = 1 to NT do
22:   succ, marked ← newRecord.next[i]
23:   while !marked do
24:     newRecord.next[i].cas(succ, succ, false, true)
25:     succ, marked ← newRecord.next[i]
26: return false
27: else return true  ▷ Insertion was successful
28: helpAdding(newRecord, m)
29: for i = m to NT do
30:   helpAddingField(newRecord, i)
31: newRecord.status.cas(Pending, InTable)  ▷ Logical insertion
32: helpAddingField(newRecord, i)
33: while newRecord.status == Pending do
34:   succ ← newRecord.next[i]  ▷ For a later cas
35:   pred, curr ← find(newRecord.data[i], i)
36:   tmp ← curr
37:   while tmp.data[i] == newRecord.data[i] do
38:     if tmp == newRecord
39:       return
40:     tmp ← tmp.next[i]
41: if Unique(i)
42:   if curr.data[i] == newRecord.data[i]
43:     if curr.status == Pending
44:       helpAdding(curr, i + 1)  ▷ Help adding curr
45:     if curr.status == InTable
46:       newRecord.status.cas(Pending, Failed)
47:     break
48: if newRecord.next[i].cas(succ, curr, false, false)
49: if pred.next[i].cas(curr, newRecord, false, false)
50: return  ▷ The record was added to the list
```

Figure 3.3: The Lock-Free add Operation

Notice that at this point, R’s status cannot be Pending anymore. It either has been changed to Failed during an unsuccessful insertion (due to a violation of the uniqueness property of a certain list), or to InTable before the helpAdding method returned.

The helpAdding method (line 28) receives a record R and a field number $1 \leq m \leq NT$, and it tries to insert R into $L_m, L_{m+1}, \ldots, L_{NT}$, according to their order. This allows helping to insert a record given that it already has been inserted into the first $m-1$ lists. After finishing the physical adding procedure (the loop in lines 29-30), the executing thread tries to change R’s status from Pending to InTable using a cas operation (line 31). Notice that the executing thread does not check whether the cas operation is unnecessary. If the insertion was unsuccessful, then R’s status is already Failed. If
the insertion was successful, then the cas operation either updates \(R \)'s status, or fails because another thread has already updated it.

The helpAddingField method is in charge of the insertion of the new record \(R \) into a list \(L_i \), where \(i \) and \(R \) are provided as parameters. The method returns immediately when finding out that \(R \)'s status is not Pending anymore, and keeps trying to add it otherwise.

Every insertion trial starts by saving \(R \)'s current successor in \(L_i \) in the local variable succ for a later use (line 34). Next, The find method is called in order to locate \(R \) in \(L_i \) (line 35).

Our next concern is making sure that \(R \) has not been already inserted into \(L_i \), before trying to physically insert it. In order to make sure that \(R \) has not been already inserted into \(L_i \), we go over all records \(R' \) satisfying \(R'.data[i] = R.data[i] \) that follow curr in \(L_i \) (lines 36-40), and stop the current insertion procedure if one of them is \(R \) (line 39).

Now, if \(i \) is a unique field number, adding \(R \) to \(L_i \) may cause a violation of the uniqueness property. Therefore, before we try to add \(R \) to \(L_i \), we have to make sure that there does not exist any other record with \(R \)'s \(i \)-th property, which is logically in the table. As we prove in Chapter 4, curr is the only record that may be logically in the table and contain the same \(i \)-th property. If curr's \(i \)-th property is not equal to \(R \)'s \(i \)-th property (checked in line 42), then we can continue in the adding procedure. Otherwise, we need to make sure that either curr is not logically in the table (and we can continue in our adding procedure) or is logically in the table (and the adding procedure must fail).

If curr's status is Pending, then curr has not been fully added to all lists, and we are not yet able to determine whether its insertion procedure is going to succeed or fail. In this case, we help adding curr to \(L_{i+1}, \ldots, L_{N_T} \) (line 44), since it is guaranteed that it has already been inserted into \(L_1, \ldots, L_i \) (as we also prove in Chapter 4). Now, if curr's insertion has been successful, and its status has been set to InTable, R's insertion would violate the table's uniqueness property. Therefore, in this case, we set \(R \)'s status to Failed, which notifies all helping threads that its insertion is no longer relevant (line 46). Otherwise, if either curr's insertion has not been successful (its status is Failed) or it had been successful but curr has already been logically removed thereafter (its status is Removed), we can proceed with the adding procedure.

At this stage, regardless of \(i \) being a unique or a non-unique field number, we try to insert \(R \) into \(L_i \). We do it by making curr be its successor (line 48) and make pred be its predecessor (line 49) in \(L_i \). If both cas executions are successful then \(R \) is successfully inserted into \(L_i \). Otherwise, we start a new insertion trial.

3.2.3 The Lock-Free remove Operation

The remove operation (shown in Figure 3.4) receives a value \(val \) and a unique field number \(i \), and tries to logically remove a record \(R \) such that \(R.data[i] = val \). We assume
that \(i \) is a unique field number, because otherwise, there can be several records in the
table whose \(i \)-th property is \(val \). In line 52, the \texttt{remove} operation calls the \texttt{find} method
in order to determine whether there exists a record \(R \) which is logically in the table and
for which \(R.data[i] = val \). The potential victim for removal is assigned into the \texttt{victim}
local variable. If \texttt{victim}'s \(i \)-th property is not \(val \), then it is guaranteed that there is
no other relevant record, and the operation fails (line 54). Otherwise, if the attempt
to logically remove \texttt{victim} from the table (by setting \texttt{victim}'s status to \texttt{Removed}) fails,
the operation is considered to be a failure, and it returns in line 56.

If the trial to logically remove \texttt{victim} from the table is successful, then the operation
is considered successful. Before returning \texttt{true} in line 62, we mark all of the victim’s
\texttt{next} pointers, for its future physical removals by \texttt{find} executions.

3.2.4 The Lock-Free \texttt{retrieve} Operation

The \texttt{retrieve} operation (shown in Figure 3.5) receives a value \(val \) and a field number
\(i \), and returns the set of all tuples \(\langle e_1, \ldots, e_n \rangle \) satisfying \(e_i = val \) (meaning all arrays
\(R.data \) for which \(R \) is logically in the table and \(R.data[i] = val \)).

Interestingly, for the lock-free algorithm, the \texttt{retrieve} (or even a \texttt{contains}) operation
is not trivial when one searches for a property that is non-unique. Note that it remains
non-trivial even if we only need to retrieve one record with the required property.
The problem is that if we do not find a record with the required property, we cannot
determine in a linearizable manner that it is not in the table, because a traversal may
miss it due to lack of atomicity. This can happen, for example, in the following scenario.
The search first encounters a record with the given property and a \texttt{Pending} status.
Namely, this record is in the process of being added to the table. Next, the search finds
that the next record’s status is \texttt{Removed}. If there are no more records with this property,
the search may deduce erroneously that this property is not in the table. However, it
is possible that before the second record was removed, the insertion of the first record
has been completed. Namely, a record with this property has been in the table for the
entire execution of the search.

63: retrieve(val, i)
64: while true do
65: tmpSet ← ∅
66: curr ← head
67: while curr.data[i] < val do
68: curr ← curr.next[i]
69: if curr.data[i] > val
70: return tmpSet
71: first ← curr
72: while curr.data[i] == val do
73: status ← curr.status
74: if (status == InTable) || (status == Pending)
75: tmpSet ← tmpSet ∪ {(curr, status)}
76: curr ← curr.next[i]
77: curr ← head
78: while curr.data[i] < val do
79: curr ← curr.next[i]
80: if first == curr
81: tuples ← ∅
82: valid ← true
83: for (R, status) in tmpSet do
84: if R.status == status
85: if status == InTable
86: tuples ← tuples ∪ {R.data}
87: else
88: valid ← false
89: break
90: if valid
91: return tuples

Figure 3.5: The Lock-Free retrieve Operation

The problem is that the traversal of records with the required property is not atomic. This problem resembles the challenge of obtaining a snapshot of a lock-free data structure and there exist in the literature various ways to deal with it in a lock-free or even wait-free manner (e.g., [PT13]). We chose a simple lock-free solution for this problem. First, notice that a new record with a given property is always added before all existing records with that property. Now, it is possible to traverse the sublist (of records with the given property) repeatedly until we find two equal views of this list. Now, if these two views do not contain a record that is properly in the table, then we can determine that there is a point in the execution in which no record with this property was present. Whenever we do not obtain the same view, another operation has made progress and so lock-freedom is maintained.

The operation starts by traversing L_i to find the first record $curr$ that satisfies $curr.data[i] ≥ val$. If there does not exist a record with val as its i-th property, meaning the first record found satisfies $curr.data[i] > val$, then the set returned is empty (line 70). If a relevant record is found during this traversal, a pointer to the first relevant record is saved in the local variable $first$ (line 71). After saving it, pointers to all of
the following relevant records are also saved, together with their statuses (lines 72-76), in the $tmpSet$ set. Relevant records are records R such that $R.data[i] = val$ and whose status is either Pending or InTable.

After all the relevant seen records are saved, the operation starts a second traversal (line 77) and checks whether the first record R satisfying $R.data[i] = val$ is the same one as in the first traversal (line 80), saved in the first local variable. If it is not, then the whole procedure starts again (from line 64). Otherwise, it is guaranteed (see Chapter 4) that the snapshot saved in $tmpSet$ is a correct snapshot of all records in the table that have val in their i-th field, and this snapshot can be linearized when the second traversal starts.

After making sure that there are no new relevant records in L_i, the operation goes over the saved pairs of records and statuses $(R, status)$, and checks whether $R.status$ is still $status$ (lines 83-89). If all pairs satisfy this condition, all the relevant tuples (represented by saved records with an InTable status) are added to the tuples set (line 86), and returned as output (line 91). In Chapter 4 we prove that the set of tuples returned by the operation is the set of exactly all relevant tuples at the operation’s linearization point.
3.3 The Lock-Based Table

Moving to the proposed fine-grained lock-based design, we use the same overall strategy of maintaining a collection of linked-lists to provide the multiple indexing, but we use lists with fine-grained locking. First, let us highlight one potential pitfall. To execute an add or a remove of a record, we would like to lock a record (or two) in each list. A natural locking strategy would be to keep one lock for each record and lock the needed records in a disciplined order one by one starting from those needed for the first linked-list until those needed for the last linked-list. Interestingly, this creates a potential deadlock.

To see that, one needs to notice that the order of records in the different linked-lists may differ. So a record A can precede record B in the first list, but record B can precede A in the second list. Therefore, when two insertions are executed concurrently, we can see the following problem. The first thread acquires a lock to record A in order to execute the insertion to the first linked-list, and then the first thread waits to acquire the lock of record B in order to execute the insert to the second linked list. At the same time, a second thread locks B in order to insert a different record to the first linked-list and then waits for the lock of record A in order to insert a record to the second linked list, and we get a deadlock.

To avoid such deadlock, we allocate a lock per record per property. Now, we obtain an order on all locks that we can use to maintain discipline in the order of acquiring locks. In this order, locks of a preceding linked-list precede all locks of a subsequent linked-list and locks in between a linked-list are ordered according to the order of their records in that list.

We now give a detailed description of the lock based variant of the table. As in the lock-free approach, this algorithm maintains a collection of linked-lists, and each record contains the data and next arrays as well as the status flag. In contrast to the lock-free algorithm, here next contains standard pointers (without any marking mechanism); and each record contains an additional array locks that holds \(N_T \) locks.

In this algorithm, a thread may update \(R.next[i] \) only if it owns the lock \(R.locks[i] \). Moreover, it may update \(R.status \) only if it owns all locks in \(R.locks \). In contrast to the previous algorithm, here \(R.status \) will never be Failed since a record’s insertion cannot fail after it had started.

Here, the successful insertion of a new record into the table includes adding it to all lists and then changing its status from Pending to InTable, and the removal of a record includes changing its status from InTable to Removed and then removing it from all of the lists. Notice that, here, each operation is done entirely by its calling thread. Therefore, the remove operation is the one in charge of physically removing a record from the table.
3.3.1 The Lock-Based find Method

Like in the lock-free variant, here the find auxiliary method (shown in Figure 3.6) locates a record in L_i, by finding its potential predecessor and successor in the list. However, since physical removals are done only during remove executions, the lock-based find method does not physically remove records from the lists. This method receives a value val and a field number i, and returns the $pred$ and $curr$ references. As in the lock-free version, it holds that (1) $pred.data[i] < val$, (2) $curr.data[i] \geq val$ and (3) $curr$ is $pred$’s successor in L_i. Notice that, here, there is also no guarantee that the returned records will continue to satisfy the above three properties.

As in the lock-free variant, the traversal starts by setting $pred$ to reference $head$ (which is the first record in L_i) and setting $curr$ to reference $head$’s successor in L_i (lines 2-3). After this initialization, the $pred$ and $curr$ references are advanced throughout L_i, until the relevant two records are found and returned (line 6). Assuming that val is always bigger than $-\infty$ and smaller than ∞, the two relevant records are always found while traversing the list. Notice that there is a single traversal, which always ends by finding the relevant couple of records. However, when the calling operation gets the find output, $pred$ and $curr$ might not satisfy the above conditions anymore (either $pred$ or $curr$ have been meanwhile removed from the table, or a new record has been added between them). In such cases, the find method is called again in order to find a new couple of records.

3.3.2 The Lock-Based add Operation

The lock-based add operation (shown in Figure 3.7) receives a tuple tup, creates a new corresponding record R with a Pending status and tries to add R to the table. It keeps trying until it either succeeds or fails (failing means there exists a unique field number i and a record R' such that $R'.data[i] = R.data[i]$). Each trial consists of two phases. The first phase (lines 12-22) includes finding the designated predecessors and successors of R in each list, obtaining the relevant locks and making sure that inserting R into the table is not going to violate any uniqueness property. The second phase (lines 23-26) is executed only if the first phase is fully completed, and it cannot fail. Meaning, if the first phase was fully executed, the whole operation is
9: \(\text{add(tup)} \)
10: \(\text{newRecord} \leftarrow \text{makerecord}(\text{tup}) \) \(\triangleright \) Creating the new record
11: retry: \(\triangleright \) Starting a new adding attempt
12: for \(i = 1 \) to \(N_T \) do
13: \(\text{pred}_i, \text{curr}_i \leftarrow \text{find}((\text{newRecord.data}[i], i)) \)
14: \(\text{pred}_i.\text{locks}[i].\text{lock}() \)
15: \(\text{newRecord.locks}[i].\text{lock}() \)
16: if \((\text{pred}_i.\text{status} \neq \text{InTable}) \land (\text{pred}_i.\text{next}[i] \neq \text{curr}_i) \)
17: release all locks and goto retry
18: else if \(\text{Uniqu}(i) \) \(\triangleright \) If the \(i \)-th field is unique
19: if \(\text{curr}_i.\text{data}[i] = \text{R.data}[i] \)
20: if \(\text{curr}_i.\text{status} = \text{InTable} \)
21: release all locks and return false
22: else release all locks and goto retry
23: for \(i = 1 \) to \(N_T \) do
24: \(\text{newRecord.}\text{next}[i] \leftarrow \text{curr}_i \)
25: \(\text{pred}_i.\text{next}[i] \leftarrow \text{newRecord} \) \(\triangleright \) Physical insertion
26: \(\text{newRecord.}\text{status} \leftarrow \text{InTable} \) \(\triangleright \) Logical insertion
27: release all locks and return true

Figure 3.7: The Lock-Based \text{add} Operation

already guaranteed to be successful, and the second phase just completes the physical and logical insertion of \(R \) into the table. We are now going to give a detailed description of the two phases.

In the first phase, we traverse each list \(L_i \), using the \text{find} method, in order to find the designated \(i \)-predecessor and \(i \)-successor of \(R \) in \(L_i \). We keep the \(i \)-th predecessor in the \(\text{pred}_i \) local variable and the \(i \)-th successor in \(\text{curr}_i \). After finding each pair of records, we obtain \(\text{pred}_i \)'s \(i \)-th lock (line 14), obtain \(R.\text{locks}[i] \), and check whether \(\text{pred}_i \) still satisfies the \text{find}'s output conditions. That includes checking whether \(\text{pred}_i \) is indeed in the table (otherwise, we cannot assume that it is still physically in \(L_i \) after obtaining the lock) and whether \(\text{pred}_i \)'s successor in \(L_i \) is indeed \(\text{curr}_i \) (line 16). If one of those conditions does not hold, we cannot use this couple of records. In this case, we release all obtained locks and start all over again. Notice that if the two conditions do hold after obtaining \(\text{pred}_i \)'s \(i \)-th lock, they will hold until we release this lock or change something ourselves. This is guaranteed because \text{next} references are changed only after obtaining the relevant lock and a record’s status is changed only after obtaining all of the record’s locks.

After making sure that \(\text{pred}_i \) and \(\text{curr}_i \) satisfy the conditions, if \(i \) is a unique field number, we check whether \(\text{curr}_i.\text{data}[i] = \text{R.data}[i] \). If they are equal and \(\text{curr}_i \) is logically in the table, then \(R \) cannot be inserted into the table (inserting \(R \) would violate the uniqueness property). In this case, all locks obtained are released and we return \(\text{false} \) (line 21). If \(\text{curr}_i \) is not in the table (its status is not \text{InTable}), it means that its status is \text{Pending}. Therefore, we do not know yet if it is going to be inserted into the table or not (its insertion may fail). In this case we have to release all locks and start a new trial (line 22). Notice that its status cannot be \text{Removed}. If \(\text{curr}_i \)'s
status is Removed then it has already been physically removed (otherwise, we would not have succeeded in obtaining its lock). Since \(\text{pred}_i \) is in the table and still is \(\text{curr}_i \)'s predecessor in \(L_i \), it is impossible that \(\text{curr}_i \) has been physically removed. Therefore, if \(\text{curr}_i \)'s status is not InTable, it has to be Pending.

After obtaining all of the predecessors' locks and all of \(R \)'s locks, we move to the second phase. In the second phase, we update all of the next\([i]\) references and update them to reference the \(\text{curr}_i \)'s records found (line 24). After every such update, we perform the physical insertion of \(R \) into each list. We do it by updating the relevant \(\text{pred}_m, \text{next}_m \) to reference \(R \) (line 25). After the physical insertion is done, we complete the operation by setting \(R \)'s status to InTable (line 26), releasing all locks and returning true.

```plaintext
28: remove(val, i)
29:  \( \text{pred}, \text{victim} \leftarrow \text{find}(val, i) \)
30:  if (\( \text{victim}.data[i] \neq val \)) || (\( \text{victim}.status \neq \text{InTable} \)) return false
31: retry:
32:  \( \text{for} \ m = 1 \ \text{to} \ N_T \ \text{do} \)
33:  \( \text{pred}_m, \text{curr}_m \leftarrow \text{find}(\text{victim}.data[m], m) \)
34:  while (\( \text{curr}_m \neq \text{victim} \)) && (\( \text{curr}_m.data[m] == \text{victim}.data[m] \)) do
35:  \( \text{curr}_m \leftarrow \text{curr}_m.next[m] \)
36:  if \( \text{curr}_m \neq \text{victim} \)
37:  release all locks and return false
38:  \( \text{pred}_m.locks[m].lock() \)
39:  if (\( \text{pred}_m.status \neq \text{InTable} \)) || (\( \text{pred}_m.next[m] \neq \text{victim} \))
40:  release all locks and goto retry
41:  \( \text{victim}.locks[m].lock() \)
42: if \( \text{victim}.status \neq \text{InTable} \)
43: release all locks and return false
44: \( \text{victim}.status \leftarrow \text{Removed} \)
45: \( \text{for} \ m = 1 \ \text{to} \ N_T \ \text{do} \)
46: \( \text{pred}_m.next[m] \leftarrow \text{victim}.next[m] \)
47: release all locks and return true
```

Figure 3.8: The Lock-Based remove Operation

3.3.3 The Lock-Based remove Operation

The remove operation (shown in Figure 3.8) receives a value \(val \) and a field number \(i \) and tries to remove a record \(R \) such that \(R.data[i] = val \). As in the lock-free variant, here we also assume that \(i \) is a unique field number. We start by searching for a record \(R \) for which \(R.data[i] = val \), using the find method, in line 29 (notice that the \(\text{pred} \) record returned from this call is not used during the operation). We use this search in order to find out whether the wanted record is currently in the table. After the call returns, the local variable \(\text{victim} \) is a reference to the first record \(R \) in \(L_i \) such that \(R.data[i] \geq val \). Since \(i \) is a unique field number, it is guaranteed that for every record \(R' \) which follows \(R \) in \(L_i \), either \(R'.data[i] > val \) or \(R'.status \neq \text{InTable} \). Therefore, if
victim.data[i] > val or victim.status ≠ InTable, it is guaranteed that there does not exist a relevant record in the table when victim is found, and it is safe to return false in line 31, which means that the operation is unsuccessful.

If victim.data[i] = val, and its status is InTable, then victim becomes our removal objective, and we keep trying to remove it until we succeed or fail (after another remove operation has meanwhile removed it). Notice that if victim is removed by another executing thread while we are trying to remove it, it is safe to stop the whole procedure and return false (declaring the operation was unsuccessful). The reason is that right after victim’s status becomes Removed, it is guaranteed that there does not exist a record R such that R.data[i] = val in the table. Since i is a unique field number, such a record can be added to the table only after victim is removed. Therefore, there exists a point in time during the execution for which the operation can safely fail.

Each removing attempt starts by traversing the different lists Lm, trying to obtain victim’s predecessor’s locks[m] and victim’s locks[m] (lines 33-42). For the m-th loop iteration, victim is supposed to be saved in the currm local variable. If currm is not victim, it is guaranteed that victim has already been removed from the table, and therefore we release all obtained locks and return false in line 38. If currm is victim, we obtain predm.locks[m], check that predm is indeed victim’s predecessor in Lm, and that predm’s status is InTable. If one of these conditions does not hold, then we need to search for victim’s predecessor in Lm again, and we start a new removal trial (line 41). As explained before, predm’s successor in Lm and predm’s status cannot change after we obtain predm.locks[m] and thus, we only need to check it once in order to make sure that these conditions hold (until we release the lock or make any change ourselves). After making sure that both conditions hold, we can obtain victim.locks[m] and continue to the next list.

After finishing obtaining all of the relevant locks, we check again whether victim’s status is still InTable (line 43). If it is not InTable then, as already mentioned, it is safe to release all locks and return false, as done in line 44. If victim’s status is still InTable then we are the only ones able to change it (since we hold all of victim’s locks). The next step is setting victim’s status to Removed (line 43), which represents its logical removal from the table. After that, we physically remove victim from all of the lists by setting predm’s successor in Lm to be victim’s successor in Lm (lines 46-47). After the logical and physical removals are done, we release all locks and return true.

3.3.4 The Lock-Based retrieve Operation

Like in the lock-free variant, the retrieve operation (shown in Figure 3.9) receives a value val and a field number i, and returns the set of all tuples ⟨e1, . . . , en⟩ satisfying ei = val (meaning all arrays R.data for which R is logically in the table and R.data[i] = val). In a similar way to the lock-free retrieve, it traverses Li in order to find the first record R satisfying R.data[i] = val. Then, It obtains the i-th lock of R’s i-predecessor, and for
49: `retrieve(val, i)`
50: `retry:` \(\triangleright\) Starting a new search
51: `tuples ← ∅` \(\triangleright\) For returning the tuples
52: `if curr.data[i] > val` \(\triangleright\) There are no relevant records
53: `return tuples`
54: `pred.locks[i].lock()`
55: `while curr.data[i] == val do`
56: `curr.locks[i].lock()`
57: `if curr.status ≠ InTable` \(\triangleright\) Start again
58: `tuples ← tuples ∪ {curr.data}`
59: `curr ← curr.next[i]`
60: `release all locks and return tuples`

Figure 3.9: The Lock-Based `retrieve` Operation

Each record \(R'\) satisfying \(R'.data[i] = val\), it obtains \(R'.locks[i]\). After obtaining all of the relevant locks (making sure that no records with the given property are added to or removed from the table), it returns the set of all arrays \(R.data\) for which \(R.data[i] = val\).

Notice that, since the operation includes obtaining the \(i\)-th lock of all of the records \(R\) satisfying \(R.data[i] = val\), it is guaranteed that what is seen by the operation is always valid. Therefore, once all relevant locks are obtained, there is no need in a second check of the records’ statuses (as in the lock-free version). The operation starts by calling the `find` method in order to find the first record \(R\) which is physically in \(L_i\) and which satisfies \(R.data[i] = val\). If such a record does not exist (\(curr.data[i] > val\), when \(curr\) is the second record returned by the `find` call), then an empty set is returned as output (line 54). Otherwise, there exists at least one record \(R\) satisfying \(R.data[i] = val\) (currently referenced by the `curr` local variable). In line 55 we obtain `pred.locks[i]` in order to make sure that no new records \(R'\), for which \(R'.data[i] = val\), are inserted into \(L_i\) while we update our local `tuples` set. This is guaranteed since a new record \(R'\) which satisfies \(R'.data[i] = val\) can only be inserted into \(L_i\) between `pred` and `curr` (and only after obtaining `pred.locks[i]`). After obtaining the `pred.locks[i]` lock, we make sure that `pred` is still in the table (having an `InTable` status) and that it still holds that `pred.next[i] = curr`. Otherwise, we cannot assume that we have access to the first record \(R\) satisfying \(R.data[i] = val\) (which is assumed to be `curr`). Therefore, if one of these two conditions does not hold, we release the `pred.locks[i]` lock and start a new trial (from line 50).

After `pred.locks[i]` is obtained and it is guaranteed that it is indeed the \(i\)-predecessor of the first record \(R\) satisfying \(R.data[i] = val\), we go over all records whose `data[i]` value is `val` (lines 58-63) and for each one, we obtain its \(i\)-th lock and add its `data` array to our local `tuples` set. Notice that before we obtain a record’s lock, we always obtain its \(i\)-predecessor’s lock. Therefore, it is guaranteed that each record we encounter is indeed
in the table (in order to remove a record from L_i, one has to obtain its i-predecessor’s i-th lock). After we are done updating our tuples set, we release all locks and return it in line 64.
3.4 Adding a Fast Skip-List Indexing

We improve access to the table by using a skip-list index [SK16]. In the above sections, each table operation traverses at least one linked-list until reaching the desired record. Such linked-list traversals may yield poor performance. Moreover, in the lock-free variant, traversals might restart due to unsuccessful physical removals of marked records. To improve performance, we employ an index mechanism which enables getting to a record’s predecessor in a list faster (without traversing from the head of the list). For example, in an execution of `retrieve(1005, 3)` with the table of Figure 3.1, instead of starting from the `head` record, our index can be used to start traversing from the record which represents `⟨80, John, 1003⟩` (marked with `⋆`).

For each list \(L_i \) we use a linearizable skip-list \(S_i \) that serves as an index to the records in \(L_i \). \(S_i \) represents a sequence of record pointers that are sorted by their \(i \)-th field. \(S_i \) supports the `insert(R)` and `remove(R)` operations, which are used to insert and remove record pointers; their implementation ensure that each pointer may appear at most once in \(S_i \) (i.e., \(S_i \) is a set). It also supports the `getPrev(v)` operation that returns the latest record pointer \(R \) in \(S_i \) that satisfies \(R.data[i] < v \). As noted in [SK16], such \(S_i \) can be realized by a standard linearizable skip list; in our work it is implemented as a simple wrapper of Java’s `ConcurrentSkipListSet`.

Using the index During `find(v, i)` and `retrieve(v, i)` executions, instead of starting the traversal from `head` we start from the record \(R \) returned by \(S_i, getPrev(v) \). As described below, the content of \(S_i \) does not necessarily represent the exact content of the table. In particular, the returned record \(R \) may have already been removed from the table. In such case we invoke \(S_i, getPrev(R.data[i]) \) and continue in the same manner until `getPrev` returns a valid record (i.e., \(R.status = InTable \)). This process will necessarily stop after a finite number of steps, since `head` cannot be removed from \(S_i \).

Updating the index Each \(S_i \) is updated in a way that attempts to (but does not always) ensure that \(S_i \) points to the valid records in the table. When the table is created, `head` is added to all \(S_i \) indexes. After completing a successful insertion (or deletion) of a record \(R \) into (or from) the table, we add (or remove) \(R \) to all \(S_i \) indexes. Thus, \(S_i \) may point to a record that has already been deleted from the table. Furthermore, a removal of a record \(R \) from the table can be fully executed before \(R \) is added to all indexes - in such a case, \(S_i, remove(R) \) might be executed before \(S_i, add(R) \), resulting in leaving \(R \) in \(S_i \) forever (even though it is not in the table anymore). To prevent such cases, after adding \(R \) to the indexes we check the status of \(R \). If its status is not `InTable` then we explicitly remove \(R \) from all the indexes.
Chapter 4

Correctness

In this chapter we elaborate the proof for correctness of the algorithms described in Sections 3.2 and 3.3. For both variants, we prove some basic table invariants and give a linearizability proof. In addition, we prove that our lock-free variant is indeed lock-free, and that our lock-based variant is deadlock-free.
4.1 The Lock-Free Table

This section contains the proofs of our lock-free table’s invariants (in Section 4.1.1), a linearizability proof (in Section 4.1.2) and a proof that our table implementation is lock-free (in Section 4.1.3). First, we define some basic terms we are going to use throughout the proof.

Definition 1. We say that a record R is i-marked if the marked boolean flag of R’s next[i] field is true.

Definition 2. Given two records, R_1 and R_2, we say that R_1 is an i-predecessor of R_2 (or that R_2 is the i-successor of R_1) if R_1.next[i] points to R_2.

Definition 3. Given two records, R_1 and R_2, we say that R_2 i-follows R_1 (or that R_1 i-precedes R_2) if there exist records $R_{i_0}, R_{i_1}, \ldots, R_{i_k}$ such that $R_{i_0} = R_1$, $R_{i_k} = R_2$ and for every $0 < j \leq k$, R_j is the i-successor R_{j-1}.

Definition 4. A record R is i-reachable if R i-follows head.

Definition 5. A record R is logically in the table if its status is InTable and for every $1 \leq i \leq N_T$, R is i-reachable.

4.1.1 Table Invariants

In this section we show that the following invariants hold at any time during the execution:

1. For every $1 \leq i \leq N_T$, head and tail are always i-reachable.

2. A record R is logically in the table if and only if its status is InTable.

3. For every two records R_1, R_2 and $1 \leq i \leq N_T$, if R_2 i-follows R_1 then R_1.data[i] \leq R_2$.data[i].

4. For every unique field number i and any two records R_1, R_2, if both R_1 and R_2 are logically in the table then R_1.data[i] \neq R_2$.data[i].

Our basic assumption is that no thread ever sends the $-\infty$ or ∞ values as input to one of the table operations. Based on that, we are going to prove the above invariants. In order to prove that the above invariants hold throughout every legal execution, we still need to define a legal execution. Before doing so, we can already prove a basic claim regarding the relationship between every two i-reachable ($1 \leq i \leq N_T$) records.

Claim 6. Let $1 \leq i \leq N_T$ and let R_1, R_2 be two records. If both R_1 and R_2 are i-reachable then either R_1 i-follows R_2 or R_2 i-follows R_1.

26
Proof. By definition, there exist records \(R_{i_0}, \ldots, R_{i_m} \) and \(R_{j_0}, \ldots, R_{j_n} \) for which (1) \(\text{head} = R_{i_0} \), (2) \(\text{head} = R_{j_0} \), (3) \(R_{i_m} = R_1 \), (4) \(R_{j_n} = R_2 \), (5) for every \(0 \leq t < m \), \(R_t \)’s \(i \)-successor is \(R_{t+1} \), and (6) for every \(0 \leq t < n \), \(R_j \)’s \(i \)-successor is \(R_{j+1} \).

For simplicity, we assume that \(m \leq n \) (the case when \(m > n \) is symmetric). If for every \(0 \leq t \leq m \) it holds that \(R_{i_t} = R_{j_t} \), then \(R_{j_m} = R_1 \) and \(R_2 \) \(i \)-follows \(R_1 \). Otherwise, assume by contradiction that there exists \(0 \leq t \leq m \) for which \(R_{i_t} \neq R_{j_t} \), and let \(t \) be the minimal number for which \(R_{i_t} \neq R_{j_t} \). Since \(R_{i_0} = R_{j_0} = \text{head} \), \(t \geq 1 \) and thus, \(R_{i_{t-1}} \)’s \(i \)-successor is not \(R_{j_{t-1}} \)’s \(i \)-successor, meaning \(R_{i_{t-1}} \neq R_{j_{t-1}} \), in contradiction to \(t \)’s minimality.

Configurations, Steps and Executions A configuration \(C \) is an instantaneous snapshot of the system describing the state of all local and shared variables as well as the program counter and invocation stack of each thread. A step can be either a shared-memory access by a thread (including the result of the access) or a local step that simply updates the thread’s own local variables. For local steps, a step corresponds to executing one line of code. In particular, an invocation of a method and the return from a method are each considered to be a step.

We assume each step is atomic, so an execution consists of an alternating sequence of configurations and steps, starting with the initial configuration where the shared memory is initialized with \(\text{head} \) and \(\text{tail} \), meaning the table is empty. An execution is legal if every thread follows its algorithm in the subsequence consisting of the steps that it performs on the configuration that precedes it, and if every shared object behaves according to its sequential specification in the subsequence of steps that access it.

After defining a configuration, a step and an execution, we can use the terms of "before" and "after" when relating to different executed instructions. This way, it is easier to prove that certain invariants hold throughout the execution. Before diving into the correctness proof, we define a basic operator to be used in the proof:

Definition 7. We use \(p \leadsto R \) to denote that the pointer \(p \) points to the record \(R \). \(p \) can either be a local variable or a record field.

The next claim asserts some basic observations regarding local changes of record statuses and fields.

Claim 8. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k \) be a legal execution, let \(0 \leq j \leq k \), and let \(R \) be a record, then:

1. If there exists \(0 \leq j' < j \) and \(1 \leq i \leq N_T \) such that \(R \) is \(i \)-marked and is an \(i \)-predecessor of a record \(R' \) at \(C_{j'} \), then \(R \) is also \(i \)-marked and is an \(i \)-predecessor of \(R' \) at \(C_j \).

2. If there exists \(0 \leq j' < j \) such that \(R.\text{status} \in \{\text{Removed, Failed}\} \) at \(C_{j'} \) then \(R \)’s status at \(C_j \) is equal to \(R \)’s status at \(C_{j'} \).
We show that each of the parts of the claim holds throughout α.
Assume that the invariants hold throughout α.

Proof. head and tail are created with an InTable status, and are not i-marked at initialization (for every $1 \leq i \leq N_T$). Therefore, the claim is vacuously true at C_0.
Assume that the invariants hold throughout $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot \ldots \cdot C_{j-1}$ of the execution.
We show that each of the parts of the claim holds throughout $\alpha = \alpha' \cdot s_j \cdot C_j$.

1. Assume that there exists $0 \leq j' < j$ such that $R.status = InTable$ at $C_{j'}$ then $R.status \in \{InTable, Removed\}$ at C_j.

2. Assume that there exists $0 \leq j' < j$ for which $R.status \in \{Removed, Failed\}$ at $C_{j'}$. By the induction assumption, even if $j' \neq j - 1$, $R's$ status at C_{j-1} is equal to $R's$ status at $C_{j'}$. The only instructions that can change a record’s status field are successful cas executions which assume that $R.next[i]$’s marked flag is false. Therefore, R is also i-marked and is the i-predecessor of R' at C_j.

3. Assume that there exists $0 \leq j' < j$ for which $R.status = InTable$ at $C_{j'}$. By the induction assumption, even if $j' \neq j - 1$, $R.status \in \{InTable, Removed\}$ at C_{j-1}. If $R's$ status at C_{j-1} is Removed, then from (2), $R's$ status at C_j is also Removed. Otherwise, since the only instruction that can change an InTable status is a successful cas execution in line 55 (which changes the status to Removed), $R's$ status is also InTable or Removed at C_j.

4. Assume that there exists $0 \leq j' < j$ for which $R.status = Pending$ at $C_{j'}$ and $R.status = Removed$ at C_j. If $R's$ status at C_{j-1} is also Removed, then by the induction assumption, there exists $j' < j'' < j - 1 < j$ for which $R's$ status at $C_{j''}$ is InTable. Otherwise, since the only instruction that can change a status into Removed is a successful cas execution in line 55 (which only changes an InTable status), $R's$ status at C_{j-1} must be InTable. Therefore, in this case there also exists $j' < j'' = j - 1 < j$ for which $R's$ status at $C_{j''}$ is InTable.

5. If R is also i-marked at C_{j-1} then by the induction assumption, $R.status \in \{Removed, Failed\}$ at C_{j-1}. In this case, from (2), it also holds that $R.status \in \{Removed, Failed\}$ at C_j. Therefore, the claim is vacuously true at C_0.
\{\text{Removed, Failed}\} at \(C_j\). Otherwise, \(s_j\) is either the execution of line 24 during an \textit{add} operation, or of line 60 during a \textit{remove} operation. In the first case, there exists \(j'' < j\) for which \(R\)’s status is \textit{Failed} at \(C_j''\) (the condition in line 20 holds) and from (2), \(R\)’s status at \(C_j\) is \textit{Failed} \(\in\) \{\text{Removed, Failed}\}. In the second case, there exists \(j'' < j\) for which \(R\)’s status is \textit{Removed} at \(C_j''\) (after the successful \textit{cas} execution in line 55), and from (2), \(R\)’s status at \(C_j\) is \textit{Removed} \(\in\) \{\text{Removed, Failed}\}.

The head and tail records are the only records that are \(i\)-reachable at the initial configuration. In order to show later that head and tail remain the first and last members of every internal linked-list (respectively), using the fact that a record must be \(i\)-marked before it is removed from \(L_i\), we prove the following claim. Notice that by definition, head is always \(i\)-reachable, for every \(1 \leq i \leq N_T\). Therefore, there is no need to show it later.

Claim 9. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k\) be a legal execution and let \(0 \leq j \leq k\), then:

1. \(\text{head}.\text{status} = \text{tail}.\text{status} = \text{InTable} at C_j\).
2. For every \(i \in \{1, \ldots, N_T\}\), head and tail are not \(i\)-marked at \(C_j\).

Proof. At initialization, head and tail are created with an InTable status. We assume that for every \textit{remove}\((\text{val}, i)\) invocation, \(\text{val} \notin \{-\infty, \infty\}\). Since a record’s InTable status can only be changed during a \textit{remove}\((\text{val}, i)\) execution, and only if its \(i\)-th data element is \(\text{val}\), head and tail’s statuses never change during the execution. Therefore, (1) always holds, and (2) holds consequentially, from claim 8.

Definitions 10 and 11 are made in order to give the best description of the set of records that currently \(i\)-follow a certain record, and which are relevant in the sense of being logically in the table.

Definition 10. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k\) be a legal execution. Given \(0 \leq j \leq k\), the \(i\)-followers set of \(R\) at \(C_j\) is the set of all records \(R'\) satisfying (1) \(R' \neq R\), (2) \(R'\) \(i\)-follows \(R\) at \(C_j\), and (3) \(R'\) is not \(i\)-marked at \(C_j\).

Definition 11. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k\) be a legal execution. Given \(0 \leq j \leq k\), the \(i\)-inclusive followers set of \(R\) at \(C_j\) is the set of all records \(R'\) satisfying (1) \(R'\) \(i\)-follows \(R\) at \(C_j\), and (2) \(R'\) is not \(i\)-marked at \(C_j\).

Notice that, given \(1 \leq i \leq N_T\), the difference between a record’s \(i\)-followers set and a record’s \(i\)-inclusive followers set is at most the record itself. When the record is \(i\)-marked, its \(i\)-followers set and \(i\)-inclusive followers set are equal.

We use the notion of \(i\)-infancy in order to describe a record which has not been inserted into \(L_i\) yet. We will show later that an \(i\)-infant cannot \(i\)-follow any other record and therefore, we can update its \(i\)-successor during the insertion procedure without causing any damage.
Definition 12. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdots \cdot s_k \cdot C_k$ be a legal execution, let $0 \leq j \leq k$ and let $R \notin \{head, tail\}$ be a record. If there does not exist $j' \leq j$ for which $s_{j'}$ is a successful cas execution in line 49, satisfying $newRecord \rightsquigarrow R$, we say that R is an i-infant at C_j.

We allow multiple i-reachable records with the same i-th property, even when i is a unique field number, but at most one such record can be logically in the table. When i is not a unique field number, there can be multiple records with the same i-th property which are logically in the table. Therefore, we would like to define an order on the records that are eventually added into a certain linked-list. Intuitively, we order records by the order of their relevant properties, and records with the same property by the order they were added to the list (reversed).

Definition 13. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdots \cdot s_k \cdot C_k$ be a legal execution, let $0 \leq j \leq k$, let $i \in \{1, \ldots, N_T\}$ and let R_1, R_2 be records. We denote $R_1 <_i R_2$ if either $R_1.data[i] < R_2.data[i]$, or $R_1.data[i] = R_2.data[i]$ and there exists $0 \leq j' \leq j$ for which R_1 is an i-infant at $C_{j'}$ but R_2 is not an i-infant at $C_{j'}$.

Notice that the $<_i$ relation (Definition 13) is not a total order on all records, but it is a total order on the set of all records which are eventually inserted into L_i. This means that, given two records R_1 and R_2, it is clear whether R_1 should i-follow R_2 or R_2 should i-follow R_1. We later show that indeed R_2 only i-follows R_1 if $R_1 <_i R_2$.

Claim 14. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdots \cdot s_k \cdot C_k$ be a legal execution, let $0 \leq j \leq k$, let $i \in \{1, \ldots, N_T\}$ and let R_1, R_2 be two different records. If R_1 is not an i-infant at C_j then either $R_1 <_i R_2$ or $R_2 <_i R_1$.

Proof. If $R_1.data[i] \neq R_2.data[i]$ the by definition, we are done. Otherwise, Since a step is defined as executing one instruction, R_1 and R_2 cannot stop being i-infants at the same configuration. Therefore, either $R_1 <_i R_2$ or $R_2 <_i R_1$. Notice that no thread ever tries to insert a tuple containing a property from $\{-\infty, \infty\}$ into the table and thus, $head <_i R <_i tail$ for every record R. \qed

In order to show that the table invariants hold throughout any legal execution, we define a set of operations (definitions 15-18). As we later show (in claim 21), any change to the internal linked-lists can be made only by those operations. Therefore, we do not need to take into consideration any other operation in our later proofs.

Definition 15. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdots \cdot s_k \cdot C_k$ be a legal execution, and let $0 \leq j \leq k$. We say that s_j is an i-marking if there exist a record R_1 and $i \in \{1, \ldots, N_T\}$ such that R_1 is not i-marked at C_{j-1} and is i-marked at C_j.

30
Definition 16. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution, and let s_j be the execution of line 8, having $\text{pred} \sim R_1$, $\text{curr} \sim R_2$ and $\text{succ} \sim R_3$. We say that s_j is an i-snipping if (1) R_1 is i-reachable and not i-marked at C_{j-1}, (2) R_2 is i-marked at C_{j-1}, (3) R_2 is the i-successor of R_1 at C_{j-1}, (4) R_3 is the i-successor of R_2 at C_{j-1}, and (5) s_j assigns (R_3, false) to the $R_1.\text{next}[i]$ field.

Definition 17. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution, and let s_j be the execution of line 48, having $\text{newRecord} \sim R_1$ and $\text{curr} \sim R_2$, or of line 49, having $\text{pred} \sim R_1$ and $\text{newRecord} \sim R_2$. We say that s_j is an i-redirection if (1) R_2 is not an i-infant at C_{j-1}, (2) $R_1 <_i R_2$, (3) R_1's i-followers set at C_{j-1} is a subset of R_2's i-inclusive followers set at C_{j-1}, and (4) s_j assigns (R_2, false) to the $R_1.\text{next}[i]$ field.

Definition 18. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution, and let s_j be the execution of line 49, having $\text{pred} \sim R_1$ and $\text{newRecord} \sim R_2$. We say that s_j is an i-insertion if (1) R_1 is not an i-infant and not i-marked at C_{j-1}, (2) $R_1 <_i R_2$, (3) R_2 is an i-infant at C_{j-1} and not an i-infant at C_j, (4) R_1's i-followers set at C_{j-1} is a subset of R_2's i-followers set at C_{j-1}, and (5) s_j assigns (R_2, false) to the $R_1.\text{next}[i]$ field.

After defining our basic terms, we can now start with our correctness proof. As mentioned before, we assume $-\infty$ and ∞ are never sent as input to the table operations. Claim 19 shows that they are never sent as input to the find method as well.

Claim 19. Let val be the first input parameter of a find call. Then $\text{val} \notin \{-\infty, \infty\}$.

Proof. The find method is called only from lines 35 and 52. In line 35, val is a property of a tuple, sent as input to the add operation. We assume that no thread is trying to insert a tuple with a property from $\{-\infty, \infty\}$ and thus, $\text{val} \notin \{-\infty, \infty\}$ in this case.

In line 35, val is the property sent as input to the remove operation. We assume that no thread is trying to remove a tuple with a property from $\{-\infty, \infty\}$ and thus, $\text{val} \notin \{-\infty, \infty\}$ in this case as well.

Assuming that the find method indeed returns two records as output, claim 20 proves that those records are the relevant ones. Meaning, if val and i are the input parameters, then pred's i-th property is smaller than val, and curr's i-th property is at least val. Claim 20 only deals with properties, that do not change throughout the execution. We will relate to pred and curr's relevance as the potential i-predecessor and i-successor of searched records later.

Claim 20. Let R_1 and R_2 be two records. If $\text{pred} \sim R_1$ and $\text{curr} \sim R_2$, when $(\text{pred}, \text{curr})$ is the output of a find(val, i) execution, then $R_1.\text{data}[i] < \text{val} \leq R_2.\text{data}[i]$.

Proof. If the last assignment into pred was in line 3 then R_1 is head and, since $-\infty$ is never sent as input to the find method (claim 19), $R_1.\text{data}[i] < \text{val}$. Otherwise, the last
As mentioned, claim 20 assumes that the find method indeed returns two records. In our next claim, which proves that some invariants hold throughout any legal execution, we also assume that. We can do so because invariant 1 ensures that all relevant local variables (pred and curr) point to actual records (and not nulls) throughout the method execution (and in particular, when returning).

Claim 21. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k \) be a legal execution, let \(0 \leq j \leq k, 1 \leq i \leq N_T \) and let \(R_1, R_2 \) be two different records, then:

1. If \(\text{pred} \Rightarrow X \) or \(\text{curr} \Rightarrow X \) at \(C_j \), during a \(\text{find}(\text{val}, i) \) execution, then \(X \) is a record. In particular, if \(\text{pred} \Rightarrow X \) then \(X.data[i] < \text{val} \).
2. If \(R_2 \) is the \(i \)-successor of \(R_1 \) at \(C_j \) then \(R_2 \) is not an \(i \)-infant at \(C_j \).
3. If \(R_1 \) is not an \(i \)-infant at \(C_j \) then there exists \(j' \leq j \) for which \(R_1 \) is \(i \)-reachable at \(C_{j'} \).
4. If \(\text{pred} \Rightarrow R_1 \) and \(\text{curr} \Rightarrow R_2 \) at \(C_j \), during a \(\text{find}(\text{val}, i) \) execution, then \(R_1 \) and \(R_2 \) are not \(i \)-infants at \(C_j \).
5. If \(\text{pred} \Rightarrow R_1 \) and \(\text{curr} \Rightarrow R_2 \) at \(C_j \), during a \(\text{find}(\text{val}, i) \) execution, then there exists \(j_1 \leq j \) for which \(R_1 \) is \(i \)-reachable and \(R_2 \) is the \(i \)-successor of \(R_1 \) at \(C_{j_1} \).
6. If \(R_1.data[i] = R_2.data[i], R_1 <_i R_2 \), both \(R_1 \) and \(R_2 \) are not \(i \)-infants at \(C_{j-1} \) and \(R_2 \) is not \(i \)-marked at \(C_j \), then \(R_2 \) belongs to \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \).
7. If \(s_j \) is a successful cas execution in line 48, for which \(\text{newRecord} \Rightarrow R_1 \) and \(\text{curr} \Rightarrow R_2 \), then \(R_1 <_i R_2 \).
8. If \(R_2 \) is the \(i \)-successor of \(R_1 \) at \(C_j \) then \(R_1 <_i R_2 \).
9. Suppose there exists \(j_1 \leq j - 1 \) for which \((1) \ R_2 \) is not an \(i \)-infant at \(C_{j-1}, (2) \ R_2 \)'s \(i \)-inclusive followers set at \(C_{j-1} \) is a subset of \(R_1 \)'s \(i \)-inclusive followers set at \(C_{j-1} \).

Then \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-1} \) is a subset of \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \).
10. If \(R_1 \) is not \(i \)-marked and is an \(i \)-predecessor of \(R_2 \) at \(C_{j-1} \), and either is \(i \)-marked or is not an \(i \)-predecessor of \(R_2 \) at \(C_j \), then \(s_j \) is either an \(i \)-marking, an \(i \)-snipping, an \(i \)-redirection or an \(i \)-insertion.
11. If \(R_1 <_i R_2 \) then \(R_1 \) does not \(i \)-follow \(R_2 \) at \(C_j \).
12. If R_1 is i-reachable and is not i-marked at C_{j-1}, then R_1 is i-reachable at C_j.

13. If R_1 is not an i-infant and is not i-marked at C_j, then R_1 is i-reachable at C_j.

14. If R_2 belongs to R_1's i-inclusive followers set at C_{j-1} and is not i-marked at C_j then it belongs to R_1's i-inclusive followers set at C_j.

Proof. Most claim invariants are vacuously true at C_0. In addition, invariant 2 is true because tail cannot be an i-infant at C_0 by definition, invariant 3 is true because both head and tail are i-reachable at C_0, invariant 8 is true because head $<_{i}$ tail, invariant 11 is true because head does not i-follow tail at C_0, and invariant 13 is true because both head and tail are i-reachable at C_0.

Assume that the invariants hold throughout $\alpha' = C_0 \cdot s_1 \cdot C_1 \cdot \ldots \cdot C_{j-1}$ of the execution. We show that each of the parts of the claim hold throughout $\alpha = \alpha' \cdot s_j \cdot C_j$.

1. The steps that change the pred and curr local variables during the execution are the ones in lines 3, 4, 11, 15 and 16.

Suppose s_j is the execution of line 3, and that pred $\rightsquigglyrightarrow X$ at C_j. Then X is the head record. In addition, since $-\infty < val$ (by claim 19), $X.data[i] < val$.

Suppose s_j is the execution of line 4, and that curr $\rightsquigglyrightarrow X$ at C_j. By definition, tail is not an i-infant at C_{j-1}, and from claim 9, tail is not i-marked at C_{j-1}. By the induction assumption (invariant 13), tail is i-reachable at C_{j-1}. Since s_j does not change L_i, tail is still i-reachable at C_j. By definition, tail i-follows head at C_j. Therefore, head must have an i-successor at C_j. Conclusion: X is a record.

Suppose s_j is the execution of line 11, and that curr $\rightsquigglyrightarrow X$ at C_j. Let R be the record for which pred $\rightsquigglyrightarrow R$ at C_{j-1}. By the induction assumption, $R.data[i] < val$. Now, let s_{j_1} be the last execution of line 8 before s_j. By the induction assumption (invariant 4), R is not an i-infant at C_{j-1}. In addition, since the cas execution must be a successful one, R is not i-marked at C_{j_1}. By the induction assumption (invariant 13), R is i-reachable at C_{j_1}. As already explained, tail also must be i-reachable at C_{j_1} and therefore, by claim 6, either R i-follows tail or tail i-follows R at C_{j_1}. By claim 19, $val < tail.data[i]$ and therefore, $R.data[i] < tail.data[i]$.

By definition, $R <_{i} tail$. By the induction assumption (invariant 11), R does not i-follow tail at C_{j_1} and thus, tail i-follows R at C_{j_1}. By definition, tail belongs to R's i-inclusive followers set at C_{j-1}. Since tail is never i-marked (claim 9), by the induction assumption (invariant 14), tail belongs to R's i-inclusive followers set at C_{j-1}. Since R's next[i] pointer field points to X at C_{j-1}, by the definition of i-following, X is a record.

Suppose s_j is the execution of line 15, and that pred $\rightsquigglyrightarrow X$ at C_j. Since curr $\rightsquigglyrightarrow X$ at C_{j-1}, by the induction assumption, X is a record. In addition, since the condition checked in line 13 did not hold, $X.data[i] < i$.

33
Suppose s_j is the execution of line 16, and that $curr \rightsquigarrow X$ at C_j. Let R be the record for which $pred \rightsquigarrow R$ at C_{j-1} and let s_{j_1} be the step assigning X into the $succ$ local variable, either in line 6 or 12. By the induction assumption (invariant 4), R is not an i-infant at C_{j-1}. In addition, since s_{j_1} is the last assignment into $succ$, R is not i-marked at C_{j_1} (the condition checked in line 7 did not hold). Therefore, by the induction assumption (invariant 13), R is i-reachable at C_{j_1}. In addition, since $pred \rightsquigarrow R$ at C_{j-1}, by the induction assumption, $R.data[i] < val$.

As in a former case (the one for which s_j is the execution of line 11), tail i-follows R at C_{j_1}. Since R's $next[i]$ pointer field points to X at C_{j_1}, by the definition of i-following, X is a record.

For all other cases, the invariant holds by the induction assumption.

2. If R_2 is the i-successor of R_1 at C_{j-1} then by the induction assumption, R_2 is not an i-infant at C_{j-1}. By definition, R_2 is not an i-infant at C_j in this case. Otherwise, s_j is either a successful cas execution in line 8 for which $pred \rightsquigarrow R_1$ and $succ \rightsquigarrow R_2$, a successful cas execution in line 48 for which $newRecord \rightsquigarrow R_1$ and $curr \rightsquigarrow R_2$, or a successful cas execution in line 49 for which $pred \rightsquigarrow R_1$ and $newRecord \rightsquigarrow R_2$.

If s_j is a successful cas execution in line 8 for which $pred \rightsquigarrow R_1$ and $succ \rightsquigarrow R_2$, then there exists $j' < j$ for which R_1's i-successor is an i-predecessor of R_2 at $C_{j'}$. By the induction assumption, R_2 is not an i-infant at $C_{j'}$. By definition, R_2 is not an i-infant at C_j as well.

If s_j is a successful cas execution in line 48 for which $newRecord \rightsquigarrow R_1$ and $curr \rightsquigarrow R_2$, then by the induction assumption (invariant 4), there exists $j' < j$ for which R_2 is not an i-infant at $C_{j'}$. By definition, R_2 is not an i-infant at C_j as well.

If s_j is a successful cas execution in line 49 for which $pred \rightsquigarrow R_1$ and $newRecord \rightsquigarrow R_2$, then by definition, if R_2 is an i- infant at C_{j-1} then it is not an i-infant at C_j (otherwise, by definition it is not an i-infant at C_j as well).

3. If R_1 is also not an i-infant at C_{j-1} then by the induction assumption, there exists $j' \leq j-1 < j$ for which R_1 is i-reachable at $C_{j'}$. Otherwise, s_j is a successful cas execution in line 49 for which $newRecord \rightsquigarrow R_1$. Let R_3 be the record for which $pred \rightsquigarrow R_3$ at C_j. Since the cas is successful, R_3 is not i-marked at C_j. From claim 8, R_3 is not i-marked at C_{j-1} as well. In addition, by the induction assumption (invariant 4), R_3 is not an i-infant at C_{j-1}. By the induction assumption (invariant 13), R_3 is i-reachable at C_{j-1}. Since s_j only affects R_3's i-successor, it is still i-reachable at C_j. Finally, since R_1 is R_3's i-successor at C_j, it is i-reachable at C_j. Since $j \leq j$, the invariant holds.

4. If $pred \rightsquigarrow R_1$ and $curr \rightsquigarrow R_2$ at C_{j-1}, then by the induction assumption, R_1 and
5. If \(pred \leadsto R_1 \) and \(curr \leadsto R_2 \) at \(C_{j-1} \) then by the induction assumption, \(j_1 \leq j - 1 \leq j \) exists. Otherwise, \(s_j \) is either the execution of line 4, 11, 15 or 16.

If \(s_j \) is the execution of line 4 then since \(R_1 \) is the head record, by definition it is \(i \)-reachable at \(C_j \). Since \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_j \), the invariant holds for \(j_1 = j \) in this case.

If \(s_j \) is the execution of line 11, then let \(j_1 \) be the maximal value for which \(pred \) is not \(i \)-marked before (and not including) \(C_j \). Since \(R_1 \) is not \(i \)-marked when executing line 8, \(C_{j_1} \) is during the period for which \(pred \leadsto R_1 \). Therefore, from the induction assumption (invariant 4), \(R_1 \) is not an \(i \)-infant at \(C_{j_1} \). By the induction assumption (invariant 13), \(R_1 \) is \(i \)-reachable at \(C_{j_1} \). Since \(R_1 \) is \(i \)-marked at \(C_{j_1+1} \) or \(j_1 = j - 1 \), \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_{j_1} \), either by claim 8 or because \(s_j \) does not change \(R_1 \)'s \(i \)-successor (respectively). Therefore, the invariant holds for \(j_1 \) in this case.

If \(s_j \) is the execution of line 15 then \(R_1 = R_2 \) and we have a contradiction to our initial assumption.

If \(s_j \) is the execution of line 16 then let \(s_{j_1} \) be the assignment of \(R_2 \) into the \(succ \) variable, either in line 6 or 12. In both cases, \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_{j_1} \). We still need to show that \(R_1 \) is \(i \)-reachable at \(C_{j_1} \). By the induction assumption (invariant 4), \(R_1 \) is not an \(i \)-infant at \(C_{j_1} \). In addition, since \(s_j \) is the execution of line 16, the condition checked in line 7 does not hold for \(R_1 \). Therefore, by claim 8, \(R_1 \) is not \(i \)-marked at \(C_{j_1} \). By the induction assumption (invariant 13), \(R_1 \) is \(i \)-reachable at \(C_{j_1} \).
6. If \(R_2 \) belongs to \(R_1 \)'s \(i \)-followers set at \(C_{j-2} \) then, since \(R_2 \) is not \(i \)-marked at \(C_j \) (and by claim 8, at \(C_{j-1} \) as well), by invariant 14, \(R_2 \) belongs to \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \).

If \(R_2 \) does not belong to \(R_1 \)'s \(i \)-followers set at \(C_{j-2} \) then by the induction assumption, either \(R_1 \) is an \(i \)-infant at \(C_{j-2} \) or \(R_2 \) is an \(i \)-infant at \(C_{j-2} \). Since \(R_1 \prec_i R_2 \) and \(R_1.data[i] = R_2.data[i] \), and since both are not \(i \)-infant at \(C_{j-1} \), by definition \(R_2 \) is not an \(i \)-infant at \(C_{j-2} \). Therefore, \(R_1 \) is an \(i \)-infant at \(C_{j-2} \). In this case, \(s_{j-1} \) is a successful \(cas \) execution in line 49, having \texttt{newRecord} \(\sim R_1 \).

Let \(R_3 \) be the record for which \(\texttt{pred} \sim R_3 \) at \(C_{j-1} \). By invariant 4, \(R_3 \) is not an \(i \)-infant at \(C_{j-2} \). In addition, since the \(cas \) execution is successful, \(R_3 \) is not \(i \)-marked at \(C_{j-2} \). By the induction assumption (invariant 13), \(R_3 \) is \(i \)-reachable at \(C_{j-2} \).

Since \(R_2 \) is not an \(i \)-infant and is not \(i \)-marked at \(C_{j-2} \) (we know that it is not \(i \)-marked at \(C_j \) + claim 8), By the induction assumption (invariant 13), \(R_2 \) is \(i \)-reachable at \(C_{j-2} \).

From claim 6, either \(R_3 \) \(i \)-follows \(R_2 \) or \(R_2 \) \(i \)-follows \(R_3 \) at \(C_{j-2} \). From claim 20, \(R_3.data[i] < R_1.data[i] \) and therefore, by definition, \(R_3 \prec_i R_2 \). By the induction assumption (invariant 11), \(R_3 \) does not \(i \)-follow \(R_2 \) at \(C_{j-2} \) and thus, \(R_2 \) \(i \)-follows \(R_3 \) at \(C_{j-2} \). By definition, \(R_2 \) is in \(R_3 \)'s \(i \)-followers set at \(C_{j-2} \) and by the induction assumption (invariant 14), \(R_2 \) is in \(R_3 \)'s \(i \)-followers set at \(C_{j-1} \). Since \(R_1 \) is \(R_3 \)'s \(i \)-successor at \(C_{j-1} \), \(R_2 \) is also in \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \).

7. If \(R_1.data[i] < R_2.data[i] \) then by definition, \(R_1 \prec_i R_2 \) and we are done. Otherwise, since \(R_1.data[i] \) is sent as the first input parameter to the \texttt{find} call in line 35, from claim 20 it holds that \(R_1.data[i] = R_2.data[i] \).

We denote the \(\text{tmp} \leftarrow \text{curr} \) assignment in line 36 with \(s_{j_1} \) and the last time the instruction in line 40 was executed before \(C_j \) with \(s_{j_2} \). Notice that since \(R_1.data[i] = R_2.data[i] \) and the method did not return in line 39 (\(s_j \) is the execution of line 48), \(s_{j_2} \) is well-defined. Since \(R_2 \) is a \texttt{find} output parameter, from the induction assumption (invariant 4), \(R_2 \) is not an \(i \)-infant at \(C_{j_1} \).

Assume by contradiction that \(R_1 \prec_i R_2 \) does not hold. From claim 14, \(R_2 \prec_i R_1 \).

Therefore, there exist \(j_3, j_4 \) satisfying (1) \(j_3 < j_4 < j_1 \), (2) \(j_3 \) is the minimal value for which \(R_1 \) is not an \(i \)-infant at \(C_{j_3} \), and (3) \(j_4 \) is the minimal value for which \(R_2 \) is not an \(i \)-infant at \(C_{j_4} \). Since the \(cas \) execution in line 48 is successful, \(R_1 \) is not \(i \)-marked at \(C_{j_1} \). From claim 8, \(R_1 \) is also not \(i \)-marked at for every earlier configuration. Therefore, by the induction assumption (invariant 6), \(R_1 \) \(i \)-follows \(R_2 \) at \(C_{j_4} \). In addition, by invariant 14, \(R_1 \) \(i \)-follows \(R_2 \) at every configuration between \(C_{j_1} \) and \(C_{j_2} \).

Let \(R_3 \) be the last record satisfying \(\text{tmp} \sim R_3 \) and \(R_3 \prec_i R_1 \) between \(C_{j_1} \) and \(C_{j_2} \) (\(R_3 \) must exists, because \(R_2 \) satisfies those conditions). Notice that \(R_3 \) must
satisfy $R_3.data[i] = R_1.data[i]$, and that by the induction assumption (invariant 2), R_3 is not an i-infant while $tmp \rightsquigarrow R_3$.

By the induction assumption (invariant 6), R_1 belongs to R_3’s i-followers set at the assignment of R_3 into tmp (either in line 36 or in line 40). In addition, by the induction assumption (invariant 14), it belongs to R_3’s i-followers set until C_{j_2} (including C_{j_2}).

Since $R_3.data[i] = R_1.data[i]$, R_3 is not the last assignment into tmp before C_{j_2}. Now, let R_4 be the next record satisfying $tmp \rightsquigarrow R_4$. If R_4 is null then R_1 does not belong to R_3’s i-followers set when this assignment is executed, and before C_{j_2} - a contradiction. Otherwise, when the assignment $tmp \leftarrow R_4$ is made, R_3 is an i-predecessor of R_4, and by the induction assumption (invariant 2), R_4 is not an i-infant at this point. Since $R_4 \prec_i R_1$ does not hold (R_3 was chosen as the last record for which it holds), from claim 14, $R_1 \prec_i R_4$. By the induction assumption (invariant 11), R_1 does not i-follow R_4 when the assignment is done, and thus, also does not i-follow R_3. Therefore, R_1 does not belong to R_3’s i-followers set before C_{j_2} - a contradiction. Our assumption leads to a contradiction for every case and therefore, it is wrong. Conclusion: $R_1 \prec_i R_2$ does hold.

8. If R_2 is also the i-successor of R_1 at C_{j-1}, then by the induction assumption, $R_1 \prec_i R_2$ and we are done.

If s_j is a successful cas execution in line 8, then $pred \rightsquigarrow R_1$ and $succ \rightsquigarrow R_2$. Let R_3 be the record for which $curr \rightsquigarrow R_3$ at C_j. Since the cas execution is successful, R_3 is the i-successor of R_1 at C_{j-1} and by the induction assumption, $R_1 \prec_i R_3$. In addition, R_3 is i-marked and R_2 is the i-successor of R_3 when the condition in line 7 is checked. From claim 8, it is also the i-successor of R_3 at C_{j-1}. By the induction assumption, $R_3 \prec_i R_2$. Since the \prec_i relation (as described in definition 13) is transitive, $R_1 \prec_i R_2$.

If s_j is a successful cas execution in line 48 then $newRecord \rightsquigarrow R_1$ and $curr \rightsquigarrow R_2$. From invariant 7, $R_1 \prec_i R_2$.

If s_j is a successful cas execution in line 49 then $pred \rightsquigarrow R_1$ and $newRecord \rightsquigarrow R_2$. $R_2.data[i]$ is sent as the first input parameter to the find execution returning R_1 (in line 35). From claim 20, $R_1.data[i] < R_2.data[i]$ and by definition 13, $R_1 \prec_i R_2$.

Since all other instructions do not change the record referenced by $R_1.next[i]$, the invariant holds for them as well.

9. If $j_1 = j - 1$, then R_2’s i-inclusive followers set at C_{j-1} is a subset of R_1’s i-followers set at C_{j-1} and we are done. Otherwise, by the induction assumption, R_2’s i-inclusive followers set at C_{j-2} is a subset of R_1’s i-followers set at C_{j-2}.

If s_{j-1} does not change any $next[i]$ pointer, then by definition 10, R_1’s i-followers set at C_{j-2} equals R_1’s i-followers set at C_{j-1} and R_2’s i-inclusive followers set
at \(C_{j-2} \) equals \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-1} \). Therefore, in this case \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-1} \) is a subset of \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \).

If \(s_{j-1} \) does change a \(next[i] \) pointer then by the induction assumption (invariant 10), \(s_{j-1} \) is either an \(i \)-marking, an \(i \)-snipping, an \(i \)-redirection or an \(i \)-insertion. Now, let \(R \) be a record in \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-1} \). By definition 10, \(R \) \(i \)-follows \(R_2 \) at \(C_{j-1} \) and is not \(i \)-marked at \(C_{j-1} \).

Suppose \(s_{j-1} \) is an \(i \)-marking. Since an \(i \)-marking cannot affect any pointer (by definition 15), it can only affect a \(marked \) flag, and from claim 8, \(R \) also \(i \)-follows \(R_2 \) and is not \(i \)-marked at \(C_{j-2} \). By definition 10, \(R \) is in \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-2} \) and thus, in \(R_1 \)'s \(i \)-followers set at \(C_{j-2} \). Since \(R \) is not \(i \)-marked at \(C_{j-1} \), by definition 11 it is in \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \) as well.

Suppose \(s_{j-1} \) is an \(i \)-snipping. Assume by contradiction that \(R \) does not \(i \)-follow \(R_2 \) at \(C_{j-2} \). By definition, there exist records \(R_{i_0}, \ldots, R_{i_m} \) for which \(R_2 = R_{i_0}, R = R_{i_m} \) and for every \(0 < t \leq m \), \(R_{i_t} \) is \(R_{i_{t-1}} \)'s \(i \)-successor at \(C_{j-1} \). Since \(R \) does not \(i \)-follow \(R_2 \) at \(C_{j-2} \), there exists a maximal \(t \) among \(0, \ldots, m - 1 \) for which \(R \) does not \(i \)-follow \(R_{i_t} \) at \(C_{j-2} \). This means that \(R_{i_{t+1}} \) does not \(i \)-follow \(R_{i_t} \) at \(C_{j-2} \), but it is \(R_{i_t} \)'s \(i \)-successor at \(C_{j-1} \). Since \(s_{j-1} \) is an \(i \)-snipping, from definition 16 it must hold that there exists a record \(R' \) which is the \(i \)-successor of \(R_{i_t} \) and an \(i \)-predecessor of \(R_{i_{t+1}} \) at \(C_{j-2} \) - a contradiction to the fact that \(R_{i_{t+1}} \) does not \(i \)-follow \(R_{i_t} \) at \(C_{j-2} \). Therefore, \(R \) does \(i \)-follow \(R_2 \) at \(C_{j-2} \) and by definition, belongs to \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-2} \). Since \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-2} \) is a subset of \(R_1 \)'s \(i \)-followers set at \(C_{j-2} \), \(R \) belongs to \(R_1 \)'s \(i \)-followers set at \(C_{j-2} \). By the induction assumption (invariant 14), \(R \) belongs to \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \).

Suppose \(s_{j-1} \) is an \(i \)-redirection or an \(i \)-insertion. If \(R \) also \(i \)-follows \(R_2 \) at \(C_{j-2} \) then (since it is not \(i \)-marked), it belongs to \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-1} \). Therefore, it also belongs to \(R_1 \)'s \(i \)-followers set at \(C_{j-2} \), and from the induction assumption (invariant 14), it belongs to \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \). Otherwise (\(R \) does not \(i \)-follow \(R_2 \) at \(C_{j-2} \), since \(R \) does \(i \)-follow \(R_2 \) at \(C_{j-1} \)), there exist records \(R_{i_0}, \ldots, R_{i_m} \) for which \(R_2 = R_{i_0}, R = R_{i_m} \) and for every \(0 < t \leq m \), \(R_{i_t} \) is \(R_{i_{t-1}} \)'s \(i \)-successor at \(C_{j-1} \). Notice that we can assume that this path does not contain circles (otherwise, they can be removed, and we are still left with a proper path).

Since \(R \) does not \(i \)-follow \(R_2 \) at \(C_{j-2} \), there exists a maximal \(t \) among \(0, \ldots, m - 1 \) for which \(R_{i_t} \) \(i \)-follows \(R_2 \) at \(C_{j-2} \). This means that \(R_{i_{t+1}} \) does not \(i \)-follow \(R_{i_t} \) at \(C_{j-2} \), but it is \(R_{i_t} \)'s \(i \)-successor at \(C_{j-1} \). Since \(s_{j-1} \) changes \(R_{i_t} \)'s \(i \)-successor, \(R_{i_t} \) is not \(i \)-marked at \(C_{j-2} \) (by claim 8). By definition 11, \(R_{i_t} \) is in \(R_2 \)'s \(i \)-inclusive followers set at \(C_{j-2} \) and thus, in \(R_1 \)'s \(i \)-followers set at \(C_{j-2} \). By the induction assumption (invariant 14), \(R_{i_t} \) is in \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \). Since \(R \) \(i \)-follows \(R_{i_t} \) at \(C_{j-1} \), it also \(i \)-follows \(R_1 \) at \(C_{j-1} \). In addition, since it is not \(i \)-marked at \(C_{j-1} \), it belongs to \(R_1 \)'s \(i \)-followers set at \(C_{j-1} \). Notice that \(R_{i_t} \) and \(R \) must be
two different records. Assume by contradiction that \(R_1 = R \), then \(R_1 \) i-follows \(R_i \) and \(R_i \) i-follows \(R_1 \) at \(C_{j-1} \), in contradiction to the combination of claim 14 and invariant 11. Therefore, \(R_1 \neq R \) and \(R \) indeed belongs to its i-followers set at \(C_{j-1} \) (and not just its i-inclusive followers set at \(C_{j-1} \)).

10. The only instruction that can change \(R_1 \)'s i-th maked flag or i-successor are successful cas executions in lines 8, 24, 48, 50 and 60.

 If \(s_j \) is a successful cas execution in line 24 or 60, then by definition 15, \(s_j \) is an i-marking.

 If \(s_j \) is a successful cas execution in line 8, then \(\text{pred} \rightarrow R_1 \) and \(\text{curr} \rightarrow R_2 \).

 Let \(R_3 \) be the record for which \(\text{succ} \rightarrow R_3 \). We are going to show that \(s_j \) is an i-snipping, by definition 16:

 (1) By the induction assumption (invariant 4), \(R_1 \) is not an i-infant at \(C_{j-1} \). Since the cas execution at \(s_j \) is successful, \(R_1 \) is also not i-marked at \(C_{j-1} \). By the induction assumption (invariant 13), \(R_1 \) is i-reachable at \(C_{j-1} \). (2) The condition in line 7 held. Therefore, there exists \(j' < j - 1 \) for which \(R_2 \) is i-marked at \(C_{j'} \). From claim 8, \(R_2 \) is also i-marked at \(C_{j-1} \). (3) The cas execution at \(s_j \) is successful and thus, \(R_2 \) is the i-successor of \(R_1 \) at \(C_{j-1} \). (4) \(R_3 \) is the i-successor of \(R_2 \) when the condition in line 7 is checked. From claim 8, it is also the i-successor of \(R_2 \) at \(C_{j-1} \). (5) \(s_j \) assigns \(\langle R_3, \text{false} \rangle \) to the \(R_1.next[i] \) field.

 If \(s_j \) is a successful cas execution in line 48 then newRecord \(\rightarrow R_1 \) and \(\text{succ} \rightarrow R_2 \).

 Let \(R_3 \) be the record for which \(\text{curr} \rightarrow R_3 \). We are going to show that \(s_j \) is an i-redirection. Since \(R_3 \) is not an i-infant at \(C_{j-1} \) (by the induction assumption, invariant 4), \(R_1 \prec_i R_3 \) (by the induction assumption, invariant 7) and \(s_j \) assigns \(\langle R_3, \text{false} \rangle \) into \(R_1 \)'s next[i] field, we need to show that \(R_1 \)'s i-followers set at \(C_{j-1} \) is a subset of \(R_3 \)'s i-inclusive followers set at \(C_{j-1} \). Since \(R_2 \) is \(R_1 \)'s i-successor at \(C_{j-1} \), it suffices to show that \(R_2 \)'s i-inclusive followers set at \(C_{j-1} \) is a subset of \(R_3 \)'s i-inclusive followers set at \(C_{j-1} \). We are going to show that invariant 9 holds for \(R_3 \) and \(R_2 \).

 Let \(R_4 \) be the record for which \(\text{pred} \rightarrow R_4 \) at \(C_j \) and let \(C_{j_1} \) the configuration which is guaranteed by invariant 5. By definition, \(C_{j_1} \) is during the find execution, invoked in line 35, \(R_4 \) is i-reachable at \(C_{j_1} \) and \(R_3 \) is \(R_4 \)'s i-successor at \(C_{j_1} \). In addition, since \(R_2 \) is \(R_1 \)'s i-successor before this find execution, by the induction assumption (invariant 2), \(R_2 \) is not an i-infant at \(C_{j_1} \).

 We still need to show that \(R_2 \)'s i-inclusive followers set at \(C_{j-1} \) is a subset of \(R_3 \)'s i-inclusive followers set at \(C_{j_1} \). Let \(R \) be a record in \(R_2 \)'s i-inclusive followers set at \(C_{j_1} \). By definition, \(R \) is not i-marked at \(C_{j_1} \) and \(R \) i-follows \(R_2 \) at \(C_{j_1} \). By the induction assumption (invariant 2), \(R \) is not an i-infant at \(C_{j_1} \) and therefore, by the induction assumption (invariant 13), \(R \) is i-reachable at \(C_{j_1} \). By claim 6, either \(R \) i-follows \(R_4 \) or \(R_4 \) i-follows \(R \) at \(C_{j_1} \).
Since \(R \) i-follows \(R_2 \) at \(C_{j_1} \), by the induction assumption (invariant 11), either \(R = R_2 \) or \(R_2 <_i R \). Since \(R_2 \) i-follows \(R_1 \) when executing line 34, by the induction assumption (invariant 8), \(R_1 <_i R_2 \) and therefore, \(R_1 <_i R \), meaning \(R_1.data[i] \leq R.data[i] \). From claim 20, \(R_4.data[i] < R_1.data[i] \) and thus, by definition, \(R_4 <_i R \). Therefore, since either \(R \) i-follows \(R_4 \) or \(R_4 \) i-follows \(R \) at \(C_{j_1} \), by the induction assumption (invariant 11), \(R \) i-follows \(R_4 \) at \(C_{j_1} \). Since \(R_3 \) is \(R_4 \)'s i-successor at \(C_{j_1} \), \(R \) also i-follows \(R_3 \) at \(C_{j_1} \). Therefore, \(R \) is in \(R_3 \)'s i-inclusive followers set at \(C_{j_1} \).

After showing that \(R_2 \)'s i-inclusive followers set at \(C_{j_1} \) is a subset of \(R_3 \)'s i-inclusive followers set at \(C_{j_1} \), we can use invariant 9. \(R_2 \)'s i-inclusive followers set at \(C_{j_1} \) is indeed a subset of \(R_3 \)'s i-inclusive followers set at \(C_{j_1} \). Conclusion: \(s_j \) is an i-redirection.

If \(s_j \) is a successful cas execution in line 49 then \(\text{pred} \leadsto R_1 \) and \(\text{curr} \leadsto R_2 \). Let \(R_3 \) be the record for which \(\text{newRecord} \leadsto R_3 \). \(s_j \) assigns \(\langle R_3, \text{false} \rangle \) into the \(R_1.next[i] \) field, and from claim 20, \(R_1.data[i] < R_3.data[i] \). Therefore, by definition 13 \(R_1 <_i R_3 \).

From invariant 4, \(R_1 \) is not an i-infant at \(C_{j_1} \). In addition, since the cas execution is successful, \(R_1 \) is not i-marked at \(C_{j_1} \). In order to show that \(s_j \) is an i-redirection or an i-insertion, we still need to show that \(R_1 \)'s i-followers set at \(C_{j_1} \) is a subset of \(R_3 \)'s i-followers set at \(C_{j_1} \).

If \(R_3 \)'s i-successor at \(C_{j_1} \) is \(R_2 \), then, since \(R_2 \) is \(R_1 \)'s i-successor at \(C_{j_1} \) (the cas execution is successful), \(R_1 \)'s i-followers set at \(C_{j_1} \) is a subset of \(R_3 \)'s i-followers set at \(C_{j_1} \).

Otherwise (\(R_3 \)'s i-successor at \(C_{j_1} \) is not \(R_2 \)), there exists \(j' < j - 1 \) for which \(R_2 \) is \(R_3 \)'s i-successor at \(C_{j'} \) (right after the successful cas execution in line 48).

From the induction assumption (invariant 4), \(R_2 \) is not an i-infant at \(C_{j'} \). In addition, by definitions 10-11, \(R_2 \)'s i-inclusive followers set at \(C_{j'} \) is a subset of \(R_3 \)'s i-followers set at \(C_{j'} \). By the induction assumption, \(R_2 \)'s i-inclusive followers set at \(C_{j-1} \) is a subset of \(R_3 \)'s i-followers set at \(C_{j-1} \). Since \(R_2 \) is \(R_1 \)'s i-successor at \(C_{j-1} \), \(R_1 \)'s i-followers set at \(C_{j-1} \) is a subset of \(R_3 \)'s i-followers set at \(C_{j-1} \) in this case also.

Therefore, when \(s_j \) is a successful cas execution in line 49, if \(R_3 \) is an i-infant at \(C_{j-1} \) then \(s_j \) is an i-insertion and otherwise, \(s_j \) is an i-redirection.

There are no other instructions that can change \(R_1 \)'s i-th mraked flag or i-successor and thus, the invariant holds.

11. Suppose \(R_1 <_i R_2 \). Assume by contradiction that \(R_1 \) i-follows \(R_2 \) at \(C_j \). By definition, there exist records \(R_{i_0}, \ldots, R_{i_m} \) for which \(R_2 = R_{i_0}, R_1 = R_{i_m} \) and for every \(0 < t \leq m, R_{i_{t-1}} \neq R_{i_t} \) and \(R_{i_t} \) is \(R_{i_{t-1}} \)'s i-successor at \(C_j \). By the
induction assumption (invariant 2), for every \(0 < t \leq m\), \(R_{t_i}\) is also not an \(i\)-infant at \(C_j\) and therefore, from claim 14, either \(R_{t_i} \prec_i R_{t_{i-1}}\) or \(R_{t_{i-1}} \prec_i R_{t_i}\). Now, let \(0 < t \leq m\) be the minimal value for which \(R_{t_i} <_i R_{t_{i-1}}\) (since \(R_1 <_i R_2\), it must exist). By the induction assumption, \(R_{t_i}\) does not \(i\)-follow \(R_{t_{i-1}}\). Therefore, by invariant 10, \(s_j\) is either an \(i\)-snipping, an \(i\)-redirection or an \(i\)-insertion, changing \(R_{t_{i-1}}\)’s \(i\)-successor (it cannot be an \(i\)-marking, since it does not change any record’s \(i\)-successor).

Suppose \(s_j\) is an \(i\)-snipping. Then there must exist a record \(R_3\) which is \(R_{t_{i-1}}\)’s \(i\)-successor and an \(i\)-predecessor of \(R_{t_i}\) at \(C_{j-1}\). By definition, \(R_{t_i}\) \(i\)-follows \(R_{t_{i-1}}\) at \(C_{j-1}\) - a contradiction. Suppose \(s_j\) is an \(i\)-redirection. Then by definition 17, \(R_{t_{i-1}} <_i R_{t_i}\) - a contradiction. Suppose \(s_j\) is an \(i\)-insertion. Then by definition 18, \(R_{t_{i-1}} <_i R_{t_i}\) - a contradiction. Therefore, \(R_1\) does not \(i\)-follow \(R_2\) at \(C_j\).

12. Suppose \(R_1\) is \(i\)-reachable and is not \(i\)-marked at \(C_{j-1}\). By definition, there exist records \(R_{t_0}, \ldots, R_{t_m}\) for which \(\text{head} = R_{t_0}, R_1 = R_{t_m}\) and for every \(0 < t \leq m\), \(R_{t_i}\) is \(R_{t_{i-1}}\)’s \(i\)-successor at \(C_{j-1}\).

Assume by contradiction that \(R_1\) is not \(i\)-reachable at \(C_j\). If \(R_{t_{m-1}}\) is still \(i\)-reachable at \(C_j\), then \(R_1\) is not its \(i\)-successor at \(C_j\). Therefore, by invariant 10, \(s_j\) is either an \(i\)-snipping, an \(i\)-redirection or an \(i\)-insertion, changing \(R_{t_{m-1}}\)’s \(i\)-successor (it cannot be an \(i\)-marking, since it does not change any record’s \(i\)-successor). Suppose \(s_j\) is an \(i\)-snipping. Then \(R_1\) is \(i\)-marked at \(C_{j-1}\) - a contradiction. Suppose \(s_j\) is an \(i\)-redirection or an \(i\)-insertion. Since \(R_1\) is not \(i\)-marked at \(C_{j-1}\), it belongs to \(R_{t_{m-1}}\)’s \(i\)-followers set at \(C_{j-1}\). By definition 17, \(R_1\) belongs to \(R_{t_{m-1}}\)’s \(i\)-followers set at \(C_j\) and thus, it is \(i\)-reachable at \(C_j\) - a contradiction.

Therefore, \(R_{t_{m-1}}\) is not \(i\)-reachable at \(C_j\). Let \(0 < t < m - 1\) be the maximal value for which \(R_{t_i}\) is \(i\)-reachable at \(C_j\) (\(t\) must exist, since \(\text{head}\) is still \(i\)-reachable at \(C_j\)). By definition, \(R_{t_{i+1}}\) is not \(R_{t_i}\)’s \(i\)-successor at \(C_j\) and therefore, by invariant 10, \(s_j\) is either an \(i\)-snipping, an \(i\)-redirection or an \(i\)-insertion, changing \(R_{t_i}\)’s \(i\)-successor. Suppose \(s_j\) is an \(i\)-snipping. Then \(R_{t_{i+2}}\) is \(i\)-reachable at \(C_j\) - a contradiction. Suppose \(s_j\) is an \(i\)-redirection or an \(i\)-insertion. Then \(R_1\) \(i\)-follows \(R_{t_i}\) at \(C_j\), and therefore, is \(i\)-reachable at \(C_j\) - a contradiction.

Therefore, \(R_1\) is \(i\)-reachable at \(C_j\).

13. Suppose \(R_1\) is not an \(i\)-infant at \(C_{j-1}\) and is not \(i\)-marked at \(C_j\). From claim 8, \(R_1\) is also not \(i\)-marked at \(C_{j-1}\).

If \(R_1\) is an \(i\)-infant at \(C_{j-1}\) then \(s_j\) is the successful \(cas\) execution in line 49, having \(\text{newRecord} \leadsto R_1\). By invariant 10, \(s_j\) is either an \(i\)-insertion or an \(i\)-redirection. Since \(R_1\) is an \(i\)-infant at \(C_{j-1}\), \(s_j\) is an \(i\)-insertion. Let \(R_3\) be the record for which \(\text{pred} \leadsto R_3\) at \(C_j\). By definition, \(R_3\) is not an \(i\)-infant at \(C_{j-1}\) and is not \(i\)-marked.
at \(C_{j-1} \). By the induction assumption, \(R_3 \) is \(i \)-reachable at \(C_{j-1} \). Since \(s_j \) only affects \(R_3 \)'s \(i \)-successor, \(R_3 \) is still \(i \)-reachable at \(C_j \). Therefore, since \(R_1 \) is \(R_3 \)'s \(i \)-successor at \(C_j \), it is also \(i \)-reachable at \(C_j \).

If \(R_1 \) is not an \(i \)-infant at \(C_{j-1} \) then by the induction assumption, it is \(i \)-reachable at \(C_{j-1} \). From invariant 12, \(R_1 \) is \(i \)-reachable at \(C_j \) in this case as well.

14. Suppose \(R_2 \) belongs to \(R_1 \)'s \(i \)-inclusive followers set at \(C_{j-1} \) and is not \(i \)-marked at \(C_j \). By definition 11 it \(i \)-follows \(R_1 \) at \(C_{j-1} \). By definition, there exist records \(R_{t_0}, \ldots, R_{t_m} \) for which \(R_1 = R_{t_0}, R_2 = R_{t_m} \) and for every \(0 < t \leq m \), \(R_{t_i} \) is \(R_{t_{i-1}} \)'s \(i \)-successor at \(C_j \).

Assume by contradiction that \(R_2 \) does not belong to \(R_1 \)'s \(i \)-inclusive followers set at \(C_j \). From definition 11, it does not \(i \)-follow \(R_1 \) at \(C_j \). If \(R_{t_{m-1}} \) still \(i \)-follows \(R_1 \) at \(C_j \), then \(R_2 \) is not its \(i \)-successor at \(C_j \). Therefore, by invariant 10, \(s_j \) is either an \(i \)-snipping, an \(i \)-redirection or an \(i \)-insertion, changing \(R_{t_{m-1}} \)'s \(i \)-successor (it cannot be an \(i \)-marking, since it does not change any record's \(i \)-successor). Suppose \(s_j \) is an \(i \)-snipping. Then \(R_2 \) is \(i \)-marked at \(C_{j-1} \) - a contradiction. Suppose \(s_j \) is an \(i \)-redirection or an \(i \)-insertion. Since \(R_2 \) is not \(i \)-marked at \(C_{j-1} \), it belongs to \(R_{t_{m-1}} \)'s \(i \)-followers set at \(C_{j-1} \). By definition 17, \(R_2 \) belongs to \(R_{t_{m-1}} \)'s \(i \)-followers set at \(C_j \) and thus, it \(i \)-follows \(R_1 \) at \(C_j \) - a contradiction.

Therefore, \(R_{t_{m-1}} \) does not \(i \)-follow \(R_1 \) at \(C_j \). Let \(0 \leq t < m - 1 \) be the maximal value for which \(R_{t_i} \) \(i \)-follows \(R_1 \) at \(C_j \) (\(t \) must exist, since by definition, \(R_1 \) \(i \)-follows \(R_4 \) at \(C_j \)). By definition, \(R_{t_{i+1}} \) is not \(R_{t_i} \)'s \(i \)-successor at \(C_j \) and therefore, by invariant 10, \(s_j \) is either an \(i \)-snipping, an \(i \)-redirection or an \(i \)-insertion, changing \(R_{t_i} \)'s \(i \)-successor. Suppose \(s_j \) is an \(i \)-snipping. Then \(R_{t_{i+2}} \) \(i \)-follows \(R_1 \) at \(C_j \) - a contradiction. Suppose \(s_j \) is an \(i \)-redirection or an \(i \)-insertion. Then \(R_2 \) \(i \)-follows \(R_{t_i} \) at \(C_j \), and therefore, \(i \)-follows \(R_1 \) at \(C_j \) - a contradiction.

Therefore, \(R_2 \) belongs to \(R_1 \)'s \(i \)-inclusive followers set at \(C_j \).

Using claim 21, we can now easily prove that most invariants hold for our table (lemmas 22, 23 and 24). Notice that by the combination of lemma 22 and lemma 23, \(\text{head} \) and \(\text{tail} \) are always the first and last records of every internal linked-list (respectively).

Lemma 22. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k \) be a legal execution, let \(0 \leq j \leq k \) and let \(1 \leq i \leq N_T \). Then \(\text{head} \) and \(\text{tail} \) are \(i \)-reachable at \(C_j \).

Proof. By definition, \(\text{head} \) is \(i \)-reachable at \(C_j \). Therefore, we only need to show that \(\text{tail} \) is \(i \)-reachable at \(C_j \). By claim 9, \(\text{tail} \) is not \(i \)-marked at \(C_j \). In addition, by definition, \(\text{tail} \) is not an \(i \)-infant at \(C_j \). By claim 21 (invariant 13), \(\text{tail} \) is \(i \)-reachable at \(C_j \).

Lemma 23. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k \) be a legal execution, let \(0 \leq j \leq k \), \(1 \leq i \leq N_T \) and let \(R_1 \) and \(R_2 \) be two different records. If \(R_2 \) \(i \)-follows \(R_1 \) at \(C_j \) then \(R_1.data[i] \leq R_2.data[i] \).
Proof. Assume by contradiction that $R_1.data[i] > R_2.data[i]$. By definition, $R_2 <_i R_1$. By claim 21 (invariant 11), R_2 does not i-follow R_1 at C_j - a contradiction. Therefore, if R_2 i-follows R_1 at C_j then $R_1.data[i] \leq R_2.data[i]$. \hfill \square

Lemma 24. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \ldots s_k \cdot C_k$ be a legal execution, let $0 \leq j \leq k$ and let R be a record. R's status at C_j is InTable if and only if R is logically in the table at C_j.

Proof. If R is logically in the table at C_j then by definition, R's status at C_j is InTable. Now, suppose R's status at C_j is InTable. In order to show that R is logically in the table at C_j, we need to show that for every $1 \leq i \leq N_T$, R is i-reachable at C_j.

Since both head and tail are i-reachable at C_0, and are the only records at C_0, it holds for C_0. Assume that it holds throughout $\alpha' = C_0 \cdot s_1 \cdot C_1 \ldots C_j$ of the execution. We show that it holds throughout $\alpha = \alpha' \cdot s_j \cdot C_j$.

If R's status at C_{j-1} is also InTable, then by the induction assumption, R is i-reachable at C_{j-1}. If R is head then by definition, R is still i-reachable at C_j. Otherwise, again by definition, R has an i-predecessor at C_{j-1} and thus, by claim 21 (invariant 2), R is not an i-infant at C_{j-1}. By definition, R is also not an i-infant at C_j. From claim 8, R is not i-marked at C_j and therefore, from claim 21 (invariant 13), R is i-reachable at C_j.

If R's status at C_{j-1} is not InTable, then by claim 8, it is Pending. Therefore, s_j is a successful cas execution in line 31, satisfying newRecord \rightarrow R. when the method returns from the helpAddingField(newRecord, i) call in line 30, R's status is Pending (again, by claim 8). Therefore, it either returned in line 39 or 50.

In both cases, R had an i-predecessor before returning and by claim 21 (invariant 2), R is not an i-infant at C_j. From claim 8, R is not i-marked at C_j and therefore, from claim 21 (invariant 13), R is i-reachable at C_j in this case as well. \hfill \square

After showing that most of our table invariants hold throughout any legal execution, we still need to show that the uniqueness property is never violated. Before showing that in lemma 26, we prove the following claim:

Claim 25. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \ldots s_k \cdot C_k$ be a legal execution, let $0 \leq j \leq k$, $1 \leq i \leq N_T$ such that i is a unique field number, and let R_1, R_2 be two different records for which $R_1.data[i] = R_2.data[i]$, then if R_1 is an i-predecessor of R_2 at C_j, R_2’s status at C_j is either Removed or Failed.

Proof. Since head.data[i] < tail.data[i], the claim is vacuously true at C_0. Assume that the lemma holds throughout $\alpha' = C_0 \cdot s_1 \cdot C_1 \ldots C_{j-1}$ of the execution. We show that it holds throughout $\alpha = \alpha' \cdot s_j \cdot C_j$.

If R_1 is also an i-predecessor of R_2 at C_{j-1}, then by the induction assumption, R_2’s status at C_{j-1} is either Removed or Failed. From claim 8, R_2’s status at C_j is also
\[1 \leq R\]

Assume without loss of generality that \(R\). Assume by contradiction that \(R\). We get a contradiction here as well. Therefore, when executing line 45, \(R\).

Proof. Assume by contradiction that \(R\). Since \(R\)’s i-successor at \(C_j\) is \(R\) (the \(cas\) is successful) and \(R\)’s i-successor at an earlier point (when assigning \(R\) into \(succ\)) is \(R\), by claim 21 (invariant 8), \(R_{1}.data[i] \leq R_{3}.data[i] \leq R_{2}.data[i]\). Since \(R_{1}.data[i] = R_{2}.data[i]\), \(R_{3}.data[i] = R_{2}.data[i]\) and therefore (by the induction assumption), there exists an earlier point for which \(R_{2}\)’s status is either \(Removed\) or \(Failed\). From claim 8, \(R_{2}\)’s status at \(C_j\) is also \(Removed\) or \(Failed\).

If \(s_{j}\) is a successful \(cas\) execution in line 48, then \(newRecord \sim R_{1}\) and \(curr \sim R_{2}\). Assume by contradiction that \(R_{2}\)’s status at \(C_j\) is \(Pending\). Since \(i\) is a unique field number, the \(helpAdding(curr,i+1)\) (from claim 8, \(R_{2}\)’s status is \(Pending\) at every earlier configuration). Before returning from that method, the \(cas\) execution in line 31 was either successful or unsuccessful. For both cases, from claim 8, \(R_{2}\)’s status when execution line 45 is not \(Pending\) and therefore, it is not \(Pending\) at \(C_j\) - a contradiction. Now, assume by contradiction that \(R_{2}\)’s status at \(C_j\) is \(InTable\). If \(R_{2}\)’s status when executing line 45 is \(InTable\) then line 48 is not executed. Since it also cannot be \(Pending\), we get a contradiction here as well. Therefore, when executing line 45, \(R_{2}\)’s status is either \(Removed\) or \(Failed\). From claim 8, \(R_{2}\)’s status at \(C_j\) is also \(Removed\) or \(Failed\).

If \(s_{j}\) is a successful \(cas\) execution in line 49, then \(newRecord \sim R_{1}\) and \(newRecord \sim R_{2}\). By claim 20, \(R_{1}.data[i] < R_{2}.data[i]\) - a contradiction. \(\square\)

Lemma 26. Let \(\alpha = C_{0} \cdot s_{1} \cdot C_{1} \cdot s_{2} \cdot C_{2} \cdot \ldots \cdot s_{k} \cdot C_{k}\) be a legal execution, let \(0 \leq j \leq k\), \(1 \leq i \leq N_{T}\) such that \(i\) is a unique field number, and let \(R_{1}, R_{2}\) be two different records. If both \(R_{1}\) and \(R_{2}\) are logically in the table at \(C_j\) then \(R_{1}.data[i] \neq R_{2}.data[i]\).

Proof. Assume by contradiction that both \(R_{1}\) and \(R_{2}\) are logically in the table at \(C_j\) and that \(R_{1}.data[i] = R_{2}.data[i]\). By lemma 24, both \(R_{1}\) and \(R_{2}\) are \(i\)-reachable at \(C_j\) and therefore, from claim 6, either \(R_{1}\) \(i\)-follows \(R_{2}\) or \(R_{2}\) \(i\)-follows \(R_{1}\) at \(C_j\). Assume without loss of generality that \(R_{2}\) \(i\)-follows \(R_{1}\) at \(C_j\). By definition, there exist records \(R_{u_{i}}, \ldots, R_{u_{m}}\) for which \(R_{1} = R_{u_{0}}, R_{2} = R_{u_{m}}\) and for every \(0 < t \leq m\), \(R_{u_{i}}\) is the \(i\)-successor of \(R_{u_{i-1}}\) at \(C_j\). From claim 21 (invariant 8), for every \(0 \leq t < m\), \(R_{u_{i}}.data[i] \leq R_{u_{i+1}}.data[i]\). Since \(R_{1}.data[i] = R_{2}.data[i]\), \(R_{u_{m-1}}.data[i] = R_{2}.data[i]\).

From claim 25, \(R_{2}\)’s status at \(C_j\) is either \(Failed\) or \(Removed\) and thus, \(R_{2}\) is not logically in the table at \(C_j\) - a contradiction. Conclusion: If both \(R_{1}\) and \(R_{2}\) are logically in the table at \(C_j\) then \(R_{1}.data[i] \neq R_{2}.data[i]\). \(\square\)

4.1.2 Linearizability proof

Our table implementation is linearizable. This means that, for every execution, one can assign a linearization point to each completed operation and some of the uncompleted operations so that the linearization point of each operation occurs after the operation
starts and before it ends, and the results of these operations are the same as if they had been performed sequentially, in the order of their linearization points.

Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution. We shall define linearization points for each of the \textit{add}, \textit{remove} and \textit{retrieve} operations, terminated before C_k. In addition, it will be convenient to define linearization points for calls to the \textit{find} method, terminated before C_k. The first goal is to show that at any time, the set of tuples represented by records which are currently logically in the table is exactly the set of tuples for which there exists an already linearized add call inserting them into the table, and there does not exist an already linearized remove call removing them from the table. The second goal is to show that the output of each operation matches the table status, as will be explained next.

\textbf{find} First, we define linearization points for the \textit{find}(val, i) method. We wish to choose a linearization point for the \textit{find}(val, i) so the two records \textit{pred}, \textit{curr}, returned as output, satisfy (1) $\textit{pred.data[i]} < \textit{val} \leq \textit{curr.data[i]}$, (2) \textit{pred} and \textit{curr} are both i-reachable at the linearization point, and (3) \textit{curr} is \textit{pred}'s i-successor at the linearization point. Notice that by the time the method returns, \textit{pred} and \textit{curr} may no longer satisfy those conditions.

\textit{Claim 27}. If a \textit{find}(val, i) method was invoked at s_{j_1}, and returned at s_{j_2} ($0 < j_1 < j_2 \leq k$) with R_1 and R_2 as the output parameters ($\textit{pred} \sim R_1$, $\textit{curr} \sim R_2$), then there exists j for which:

1. $j_1 < j < j_2$.
2. R_2 is R_1's i-successor at C_j.
3. Both R_1 and R_2 are i-reachable at C_j.
4. For every record R_3 which is i-reachable at C_j and satisfying $R_3.data[i] < \textit{val}$, R_3 i-precedes R_1 at C_j.
5. For every record R_3 which is i-reachable at C_j and satisfying $R_3.data[i] \geq \textit{val}$, R_3 i-follows R_2 at C_j.

\textit{Proof}. Suppose we have a number j satisfying 1-3. We can now prove 4 and 5 using j: Suppose R_3 is i-reachable at C_j and $R_3.data[i] < \textit{val}$. Since R_1 is i-reachable at C_j, from claim 6, R_3 either i-follows or i-precedes R_1 at C_j. Assume by contradiction that R_3 does not i-precede R_1 at C_j. Then R_3 i-follows R_1 at C_j and $R_1 \neq R_3$. Therefore, R_3 i-follows R_2 at C_j. From claim 20, $R_2.data[i] \geq \textit{val}$. Since $R_3.data[i] < \textit{val} \leq R_2.data[i]$, by definition 13, $R_3 <_i R_2$. From claim 21 (invariant 11), R_3 does not i-follow R_2 at C_j - a contradiction. Therefore, every record R_3 which is i-reachable at C_j and satisfying $R_3.data[i] < \textit{val}$, R_3 i-precedes R_1 at C_j. Now suppose R_3 is i-reachable at C_j and $R_3.data[i] \geq \textit{val}$. Since R_2 is i-reachable at C_j, from claim 6, R_3 either i-follows or
We are now going to show that \(j \) exists. Otherwise, if \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_j \), \(R_3 \) must be \(R_1 \) and from claim 20, \(R_3.data[i] < val \) - a contradiction. Otherwise, \(R_3 \) must \(i \)-precede \(R_1 \) at \(C_j \), and \(R_1 \neq R_3 \) as well. Since \(R_1 \) is not an \(i \)-infant at \(C_j \) (claim 21, invariant 4), either \(R_1 <_i R_3 \) or \(R_3 <_i R_1 \). Since \(R_3 \) \(i \)-precedes \(R_1 \) at \(C_j \), by claim 21 (invariant 11), \(R_3 <_i R_1 \). By definition 13, \(R_3.data[i] \leq R_1.data[i] \). Therefore, \(R_3.data[i] < val \) - a contradiction. Since every possible case results in a contradiction, our assumption was wrong. Therefore, for every record \(R_3 \) which is \(i \)-reachable at \(C_j \) and satisfying \(R_3.data[i] \geq val \), \(R_3 \) \(i \)-follows \(R_2 \) at \(C_j \).

We are now going to show that \(j \) indeed exists, and that it satisfies 1-3.

If the last assignment of \(R_2 \) into the \textit{curr} variable during the method execution is in line 4, we choose \(s_j \) to be this assignment.

1. \(j_1 < j < j_2 \): Since \(s_j \) is an execution of an instruction during the method execution, obviously \(j_1 < j < j_2 \) holds.

2. \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_j \): By definition.

3. \(R_1 \) and \(R_2 \) are \(i \)-reachable at \(C_j \): If the last assignment of \(R_2 \) into the \textit{curr} variable during the method execution is in line 4, then \(R_1 \) is the \textit{head} record. By definition, \(R_1 \) is \(i \)-reachable at \(C_j \). Since \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_j \), it is also \(i \)-reachable at \(C_j \).

If the last assignment of \(R_2 \) into the \textit{curr} variable during the method execution is in line 11, let \(s_{j_3} \) be this assignment and let \(s_{j_4} \) be the last execution of line 8 before \(s_{j_4} \). If \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(s_{j_3} \), we choose \(j = j_3 \).

1. \(j_1 < j < j_2 \): Since \(s_{j_3} \) is an execution of an instruction during the method execution and \(j = j_3 \), obviously \(j_1 < j < j_2 \) holds.

2. \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_j \): \(j \) is chosen to be \(j_3 \) because \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(s_{j_3} \).

3. \(R_1 \) and \(R_2 \) are \(i \)-reachable at \(C_j \): The last execution of line 8 before \(s_{j_4} \) must be a successful \textit{cas} execution (otherwise, we go back to line 2). Therefore, \(R_1 \) is not \(i \)-marked at \(C_{j_4} \) and from claim 8, it is not \(i \)-marked at \(C_{j'} \) for every \(j' \leq j_3 \). From claim 21 (invariant 4), \(R_1 \) is not an \(i \)-infant at \(C_{j_3} \), and therefore, from claim 21 (invariant 13), \(R_1 \) is \(i \)-reachable at \(C_j \) (= \(C_{j_4} \)). Since \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_j \), it is also \(i \)-reachable at \(C_j \).

Otherwise, if \(R_2 \) is not \(R_1 \)'s \(i \)-successor at \(s_{j_3} \), since \(R_2 \) is \(R_1 \)'s \(i \)-successor at \(C_{j_4} \), there exists \(j_3 < j' < j_4 \) for which \(s_{j'} \) makes \(R_1 \)'s \textit{next}[i] field point to \(R_2 \). In this case, we choose \(j = j' \).
1. \(j_1 < j < j_2\): Holds since \(j_1 < j_3 < j' < j_4 < j_2\).

2. \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_j\): Holds since \(s_j\) makes \(R_1\)'s \(next[i]\) field point to \(R_2\).

3. \(R_1\) and \(R_2\) are \(i\)-reachable at \(C_j\): Since \(R_1\)'s \(i\)-successor at \(C_j\) is different from \(R_1\)'s \(i\)-successor at \(C_{j-1}\), by claim 8, \(R_1\) is not \(i\)-marked at \(C_j\). As explained in the former case, \(R_1\) is \(i\)-reachable at \(C_j\), and so is \(R_2\).

If the last assignment of \(R_2\) into the \(curr\) variable during the method execution is in line 16, let \(s_{j_6}\) be this assignment. There exists \(j_5 < j_6\) for which \(s_{j_5}\) is the last assignment of \(R_2\) into the \(succ\) variable, either in line 6 or 12. In this case, we choose \(j = j_5\). Notice that \(curr \Rightarrow R_1\) at \(C_{j_5}\).

1. \(j_1 < j < j_2\): Since \(s_{j_5}\) is an execution of an instruction during the method execution, obviously \(j_1 < j < j_2\) holds.

2. \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_j\): Holds both possibilities, since \(curr \Rightarrow R_1\), \(succ \Rightarrow R_2\) and \(curr.next[i] \Rightarrow succ\) at \(C_{j_5}\).

3. \(R_1\) and \(R_2\) are \(i\)-reachable at \(C_j\): From claim 21 (invariant 4), \(R_1\) is not an \(i\)-infant at \(C_{j_5}\). Line 7 must be executed between \(s_{j_5}\) and \(s_{j_6}\). Since \(s_{j_5}\) is the last assignment of \(R_2\) into the \(succ\) variable before \(s_{j_6}\), the condition checked must hold and therefore, \(R_1\) is not \(i\)-marked at this point. From claim 8, \(R_1\) is also not \(i\)-marked at \(C_{j_5}\). As explained in the former case, \(R_1\) is \(i\)-reachable at \(C_j\) (= \(C_{j_5}\)), and so is \(R_2\).

Since the last assignment into the \(curr\) variable must be one of the above, the claim holds.

We define the linearization point of a \(\text{find}(val, i)\) execution that has terminated to be \(C_j\), described in claim 27. Note that there may be several \(j\)'s satisfying the conditions of the claim and any of them can be chosen. From claim 20, the records \(\text{pred}, curr\), returned as output, indeed satisfy \(\text{pred.data}[i] < val \leq curr.data[i]\). In addition, from claim 27, \(\text{pred}\) and \(\text{curr}\) are both \(i\)-reachable at the linearization point, and \(\text{curr}\) is \(\text{pred}\)'s \(i\)-successor.

add After defining the linearization points of each \(\text{find}(val, i)\) execution which terminated, we can define the linearization points of each \(\text{add}(\text{tup})\) execution which terminated. We define a successful \(\text{add}\) execution as an execution which returned \(true\), and an unsuccessful \(\text{add}\) execution as an execution which returned \(false\).

Given a successful \(\text{add}(\text{tup})\) and the record \(\text{newRecord}\), created in line 18, we want to set a linearization point which is between the invocation and the termination of the operation, and for which \(\text{newRecord}\) is logically in the table.
Claim 28. Given an \textit{add(tup)} operation which was invoked at \(s_{j_1}\) and terminated at \(s_{j_2}\) (\(0 < j_1 < j_2 \leq k\)), let \(R\) be the record created in line 18 (meaning, \textit{newRecord} \(\leadsto R\) during the execution). If the operation returned \textit{true} then there exists \(j_1 < j < j_2\) for which \(R\) is logically in the table at \(C_j\).

\textbf{Proof.} Using lemma 24, it suffices to show that there exists \(j_1 < j < j_2\) for which \(R\)'s status at \(C_j\) is \textit{InTable}.

Before returning from the \textit{helpAdding(newRecord,1)} call in line 19, the operation must have tried to change \(R\)'s status vis a \textit{cas} execution in line 31. Let \(s_{j'}\) be this \textit{cas} execution. Obviously, \(j_1 < j' < j_2\). If \(R\)'s status at \(C_{j'-1}\) is \textit{Pending}, then this \textit{cas} execution is successful and \(R\)'s status at \(C_{j'}\) is \textit{InTable}. If the \textit{cas} execution is unsuccessful because \(R\)'s status is already \textit{InTable} at \(C_{j'-1}\), then \(R\)'s status at \(C_{j'}\) is also \textit{InTable}. For both cases, we choose \(j = j'\) and we are done. If \(R\)'s status at \(C_{j'-1}\) is \textit{Removed} then, from claim 8, and since \(R\) was created with a \textit{Pending} status in line 18, there exists \(j_1 < j'' < j' - 1\) for which \(R\)'s status at \(C_{j''}\) is \textit{InTable}. In this case, we choose \(j = j''\). Since the operation returns true in line 27, then \(R\)'s status when executing line 20 is not \textit{Failed}. From claim 8, it cannot be \textit{Failed} at \(C_{j'}\). Therefore, \(C_j\) is well-defined. \(\square\)

We define the linearization point of a successful \textit{add(tup)} execution that has terminated to be \(C_j\), described in claim 28. From claim 28, it is guaranteed that the new record created during the operation, and which represents the tuple \(tup\), has been added into the table during the execution.

Given an unsuccessful \textit{add(tup)} operation, we want to set a linearization point which is between the invocation and the termination of the operation, for which a record representing \(tup\) cannot be inserted into the table. Failure can only happen if a record with an equal value of a unique field is logically in the list. Formally, let \(tup = (e_1, \ldots, e_{N_T})\) and let \(i \in \{1, \ldots, N_T\}\) be a unique field number. We want to show that at the operation linearization point there exists a record \(R'\) which is not the record created in line 18 during the operation, satisfying \(R'.data[i] = e_i\), and is logically in the table during that linearization point.

Claim 29. Given an \textit{add(tup)} operation which was invoked at \(s_{j_1}\) and terminated at \(s_{j_2}\) (\(0 < j_1 < j_2 \leq k\)), let \(R\) be the record created in line 18 (meaning, \textit{newRecord} \(\leadsto R\) during the execution). If the operation returned \textit{false} then there exist (1) \(j_1 < j < j_2\), (2) \(i \in \{1, \ldots, N_T\}\) for which \(i\) is a unique field number, and (3) a record \(R' \neq R\) whose status is \textit{InTable} at \(C_j\) and for which \(R'.data[i] = R.data[i]\).

\textbf{Proof.} If the operation returned \textit{false}, then \(R\)'s status when executing line 20 was \textit{Failed}. Since new records are created with a \textit{Pending} status, \(R\)'s status was changed in a successful \textit{cas} execution in line 46, during a \textit{helpAddingField(newRecord,i)} for which \textit{newRecord} \(\leadsto R\). Let \(R'\) be the record for which \(curr \leadsto R'\) when the \textit{cas} is
executed, and let s_j be the reading of the status of R' in line 45. Since s_j was after R was created and before the execution of line 20, $j_1 < j < j_2$. In addition, since line 46 was executed, i is a unique field number, $R'.data[i] = R.data[i]$, and the status of R' at C_j was InTable.

We still need to show that $R \neq R'$. Notice that, since line 46 was executed, the condition checked in line 38 did not hold for $\text{tmp} \sim R'$. Therefore, $R \neq R'$. \hfill \square

We define the linearization point of an unsuccessful add(tup) execution that has terminated to be C_j, described in claim 29. From claim 29, it is guaranteed that inserting the new record into the table at C_j would break the uniqueness property of our table.

remove We define a successful remove execution as an execution which returned true, and an unsuccessful remove execution as an execution which returned false. Assume a successful $\text{remove}(\text{val}, i)$ was invoked at s_{j_1} and returned at s_{j_2}. Let R be the record found in line 52 (meaning, $\text{victim} \sim R$). We want to set a linearization point s_j for which $j_1 < j < j_2$, and s_j is an operation step that logically removes R from the table. Notice that, since the operation is successful, we can choose s_j to be the successful case execution in line 55 changing R’s status from InTable to Removed. Obviously, s_j is executed by the operation, and $j_1 < j < j_2$. In addition, by lemma 24, s_j indeed logically removes R from the table.

Now, assume an unsuccessful remove. We want to set a linearization point between the invocation and termination of the operation, for which there does not exist a record that can be removed by the operation (meaning, the operation failure is justified).

Claim 30. Given a remove(val, i) operation, invoked at s_{j_1} and terminated at s_{j_2} $(0 < j_1 < j_2 \leq k)$, let R be the record found in line 52 (meaning, $\text{victim} \sim R$ during the execution). If the operation returned false then there exists $j_1 < j < j_2$ for which there does not exist a record R_1 satisfying $R_1.data[i] = \text{val}$ that is logically in the table at C_j.

Proof. Let C_{j_1} be the linearization point of the find(val, i) call in line 52, and let R_2 be the pred record, returned as output from that call. Obviously, $j_1 < j_3 < j_2$. From claim 27, both R_2 and R are i-reachable and R is R_2’s i-successor at C_{j_3}. From claim 20, $R_2.data[i] < \text{val} \leq R.data[i]$.

Now, let $R_1 \neq R$ be a record for which $R_1.data[i] = \text{val}$. If R_1 is i-reachable at C_{j_3} then by claim 6, it either i-precedes or i-follows R_2 at C_{j_3}, and either i-precedes or i-follows R at C_{j_3}. Since $R_2 <_{i} R_1$, from claim 21 (invariant 11), R_1 cannot i-precede R_2. Therefore, since $R_1 \neq R$, R_1 i-follows R at C_j. Using claim 21 again, it must hold that $R \prec_{i} R_1$ and thus, $R.data[i] \leq \text{val}$. Therefore, $R.data[i] = \text{val}$. Since we assume i is a unique field number (it was sent as input to a remove call), by claim 25, R_1’s status at C_{j_3} is not InTable (meaning, it is not logically in the table). Conclusion: for every record $R_1 \neq R$ such that $R_1.data[i] = \text{val}$, R_1 is not logically in the table at C_{j_3}.
If the operation returned \textit{false} in line 54, we choose \(j = j_3 \). Obviously, \(j_1 < j < j_2 \).

From claim 20, \(R_2.data[i] < \text{val} \leq R.data[i] \). Since the operation returned in line 54, \(R.data[i] \neq \text{val} \) and therefore, \(\text{val} < R.data[i] \). Since \(R.data[i] \neq \text{val} \) and there does not exist any other record \(R_1 \) for which \(R_1.data[i] = \text{val} \), and that is logically in the table at \(C_j \), \(j \) satisfies all conditions for that case, and we are done.

If the operation returned \textit{false} in line 56 and \(R \)'s status at \(C_{j_3} \) is not \textit{InTable} then \(R \) is not logically in the table at \(C_{j_3} \). In this case, we choose \(j = j_3 \). As explained above, there also does not exist any other record \(R_1 \) for which \(R_1.data[i] = \text{val} \), and that is logically in the table at \(C_j \). Therefore, \(j \) satisfies all conditions for that case as well.

If the operation returned \textit{false} in line 56, but \(R \)'s status at \(C_{j_3} \) is \textit{InTable}, let \(s_{j_4} \) be the unsuccessful \textit{cas} execution in line 55. Since the \textit{cas} execution in line 55 is unsuccessful, \(R \)'s status at \(C_{j_4-1} \) is not \textit{InTable}. Let \(C_j \) be the first configuration between \(C_{j_3} \) and \(C_{j_4-1} \) for which \(R \)'s status is not \textit{InTable}. Obviously, \(j_1 < j < j_2 \).

Since \(R \) is logically in the table at \(C_{j-1} \) and \(R.data[i] = \text{val} \) (the condition checked in line 53 does not hold), from lemma 26, there does not exist \(R_1 \neq R \) which is logically in the table at \(C_{j-1} \) and for which \(R_1.data[i] = \text{val} \). Since \(s_j \) just changes \(R \)'s status, there also does not exist \(R_1 \neq R \) which is logically in the table at \(C_j \) and for which \(R_1.data[i] = \text{val} \). Since \(R \) is also not logically in the list at \(C_j \) (its status is not \textit{InTable} at \(C_j \)), there does not exist a record \(R_1 \) which is logically in the table at \(C_j \) and for which \(R_1.data[i] = \text{val} \). Therefore, \(j \) satisfies all conditions for that case as well. \(\square \)

We define the linearization point of an unsuccessful \textit{remove}(\textit{val}, \textit{i}) execution that has terminated to be \(C_j \), described in claim 30. From claim 30, it is guaranteed that indeed there does not exist any record that can be removed at \(C_j \), according to the operation input parameters.

\textbf{retrieve} For each \textit{retrieve}(\textit{val}, \textit{i}) execution that has terminated, we want to set a linearization point for which the set of tuples returned by the operation is the set of all tuples \(t = \langle e_1, \ldots, e_{N_T} \rangle \) which are currently in the table and satisfy \(t.e_i = \text{val} \). Formally, assume a \textit{retrieve}(\textit{val}, \textit{i}) execution, invoked at \(s_{j_1} \) and terminated at \(s_{j_2} \) (returning a set \(S \) of tuples). We want to set a linearization point \(C_j \) for which (1) \(j_1 < j < j_2 \), (2) for every record \(R \) satisfying \(R.data[i] = \text{val} \), it holds that \(R.data \in S \) if and only if \(R \) is logically in the table at \(C_j \).

\textbf{Claim 31.} Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k \) be a legal execution, and let \(1 \leq i \leq N_T \). If there exist records \(R_1, R_2, \ldots, R_m \) and \(j_1 < j_2 < \ldots < j_{m-1} \) such that for every \(1 \leq t \leq m - 1 \), \(R_t \) is the \(i \)-predecessor of \(R_{t+1} \) at \(C_j \), then there exists \(j_1 \leq j \leq j_{m-1} \) for which \(R_{m-1} \) \(i \)-follows \(R_1 \) and \(R_m \) is the \(i \)-successor of \(R_m \) at \(C_j \).

\textbf{Proof.} We are going to prove the claim by induction on \(m \).

\textbf{Base Case (}\(m = 2 \): the claim obviously holds for \(j_1 \).

\textbf{Induction Step:} Assume that the claim holds for \(m - 1 \), and let \(R_1, R_2, \ldots, R_m \) and \(j_1 < j_2 < \ldots < j_{m-1} \) be the described records and numbers. By the induction
Claim 32. \(C_i \) checked in line 80 must hold, \(R_j \) record, both of lines 77-79 before the operation returns, and for every \(0 \leq j \leq m-1 \), it holds that \(R_j.data \) from claim 21 (invariant 11), \(R_j \) is an \(i \)-successor of \(R_{m-1} \) at \(C_j' \) then the claim holds for \(j = j' \).

If \(R_m \) is not the \(i \)-successor of \(R_{m-1} \) at \(C_j' \) then there exists \(j' < j \leq m-1 \) for which \(R_m \) is not the \(i \)-successor of \(R_{m-1} \) at \(C_j \). From claim 8, \(R_{m-1} \) is not \(i \)-marked at \(C_j \) and therefore, not \(i \)-marked at \(C_{j_m-1} \). By definition 11, \(R_{m-1} \) belongs to \(R_1 \)'s \(i \)-inclusive followers set at \(C_{j_{m-1}} \). Since \(R_{m-1} \) is not \(i \)-marked at \(C_j \), from claim 21 (invariant 14), it also belongs to \(R_1 \)'s \(i \)-inclusive followers set at \(C_{j_{m-1}} \). Therefore, \(R_{m-1} \) \(i \)-follows \(R_1 \) at \(C_j \). Since \(R_{m-1} \) is the \(i \)-successor of \(R_{m-1} \) at \(C_j \), the claim holds for \(j \).

Let \(R_1, \ldots, R_m \) be the records assigned into the \(curr \) variable during the last execution of lines 66-68 before the operation returns, and for every \(0 \leq t < m \), let \(s_{j_t} \) be the step assigning \(R_{t+1} \) into \(curr \). Obviously, \(j_0 < j_1 < \ldots < j_{m-1} \) and for every \(1 \leq t \leq m-1 \), \(R_t \) is an \(i \)-predecessor of \(R_{t+1} \) at \(C_{j_t} \). From claim 31, there exists \(j_1 \leq j' \leq j_0 \) for which \(R_{m-1} \) \(i \)-follows \(R_1 \) and \(R_m \) is \(R_{m-1} \)'s \(i \)-successor at \(C_{j'} \). Since \(R_1 \) is the \(head \) record, by definition, both \(R_{m-1} \) and \(R_m \) are \(i \)-reachable at \(C_{j'} \).

Now, if the operation returns in line 70, then \(S \) is empty. In this case, we want to prove that there does not exist any record \(R \) for which \(R.data[i] = val \), and that is logically in the table at \(C_{j'} \) (obviously satisfying \(j_1 < j' < j_2 \)).

Claim 32. Let \(j = j' \). If the operation returns in line 70, then there does not exist any record \(R \) for which \(R.data[i] = val \), and that is logically in the table at \(C_j \).

Proof. Assume by contradiction that there exists such record \(R \). Since \(R \) is logically in the table at \(C_j \), by definition it is \(i \)-reachable at \(C_j \). Since the operation returns in line 70, \(R_{m-1}.data[i] < val < R_m.data[i] \). Therefore, by definition 13, \(R_{m-1} \prec_i R \prec_i R_m \) from claim 21 (invariant 14), \(R \) does not \(i \)-precede \(R_{m-1} \) and does not \(i \)-follow \(R_m \) at \(C_j \). Since \(R_m \) is \(R_{m-1} \)'s \(i \)-successor at \(C_j \), \(R \) does not \(i \)-follows \(R_{m-1} \) at \(C_j \) as well - a contradiction to claim 6. Therefore, there does not exist any record \(R \) for which \(R.data[i] = val \), and that is logically in the table at \(C_j \).

If the operation returns in line 91, then \(S \) is the \(tuples \) set, returned in this line. Let \(R'_1, \ldots, R'_n \) be the records assigned into the \(curr \) variable during the last execution of lines 77-79 before the operation returns, and for every \(0 \leq t < n \), let \(s_{j'_t} \) be the step assigning \(R'_{t+1} \) into \(curr \). Obviously, \(j'_0 < j'_1 < \ldots < j'_{n-1} \) and for every \(1 \leq t \leq n-1 \), \(R'_t \) is an \(i \)-predecessor of \(R'_{t+1} \) at \(C_{j'_t} \). From claim 31, there exists \(j'_1 \leq j'' < j'_{n-1} \) for which \(R'_{n-1} \) \(i \)-follows \(R'_1 \) and \(R'_n \) is \(R'_{n-1} \)'s \(i \)-successor at \(C_{j''} \). Since \(R'_1 \) is the \(head \) record, both \(R'_{n-1} \) and \(R'_n \) are \(i \)-reachable at \(C_{j''} \). In addition, since the condition checked in line 80 must hold, \(R_m = R'_n \).

We are going to show that for every record \(R \) it holds that \(R.data \in S \) if and only if \(R.data[i] = val \) and \(R \) is logically in the table at \(C_{j''} \). Since \(j_1 < j'' < j_2 \), we can use \(C_{j''} \) as our linearization point when the operation returns in line 91.
Claim 33. Let $j = j''$. For every record R it holds that $R.data \in S$ if and only if $R.data[i] = \text{val}$ and R is logically in the table at C_j.

Proof. Let R be a record for which $R.data \in S$. Then R was inserted, with its status, into tmpSet in line 75 (and therefore, $R.data[i] = \text{val}$), and $R.data$ was inserted into S in line 86. Since the insertion into tmpSet happened before C_j, and R's status was read in line 84, and in both cases, R's status was InTable (otherwise, $R.data$ would not have been inserted into S), from claim 8, R's status at C_j was also InTable. From lemma 24, R was logically in the table at C_j.

Let R be a record for which $R.data[i] = \text{val}$ and that is logically in the table at C_j. In particular, R is i-reachable at C_j. Assume by contradiction that R is an i-infant at C_j. Since R_n' (= R_m) has an i-predecessor at C_j' (R_{m-1}), by claim 21 (invariant 2), R_n' is not an i-infant at C_j. Since the operation did not return in line 70, $R_n'.data[i] = \text{val}$. Therefore, by definition, $R < R_n'$. In addition, it must hold that $R_{n-1}.data[i] < \text{val}$ and thus, $R_{n-1} < R$. From claim 21 (invariant 11), R does not i-precede R_{n-1}' and does not i-follow R_n' at C_j. Since R_n' is R_{n-1}''s i-successor at C_j, R also does not i-follow R_{n-1}' at C_j. Since both R_{n-1}' and R are i-reachable at C_j, we get a contradiction to claim 6. Therefore, R is not an i-infant at C_j.

Since R's status at C_j is InTable, by claim 8, it is not i-marked at C_j and also at any earlier configuration. Since R is not an i-infant at C_j', from claim 21 (invariant 13), R is i-reachable at C_j', at C_j, and at every configuration between them.

If R is inserted, with its current status, into tmpSet, in line 75, then since this line is executed after C_j', the status inserted is InTable. In addition, since the operation returns in line 91, when reading R's status in line 84, it must be equal to the inserted status (which is InTable). Therefore, $R.data$ is inserted into S in line 86.

Now, assume by contradiction that R and its current status are not inserted into tmpSet in line 75. Let R_{m+1}, \ldots, R_{m+k} be the records assigned into the curr variable in lines 72-76. In addition, for every $0 \leq t \leq k - 1$, let $s_{j_{m+t}}$ the step assigning R_{m+t-1} into the curr variable in line 76 (notice that $s_{j_{m-1}}$ is the assignment of R_m into curr in line 68).

If there exists $0 \leq t < k$ for which R_{m+t} is R, then since these lines are executed between C_j' and C_j, when executing lines 73-75, having $\text{curr} \sim R$, R is inserted with its InTable status into tmpSet in line 75 - a contradiction. Therefore, there does not exist $0 \leq t < k$ for which R_{m+t} is R.

Notice that for every $0 \leq t < k$, $R_{m+t}.data[i] = \text{val}$. In addition, since at some configuration during the execution of lines 72-76, R_{m+k} is the i-successor of R_{m-k-1}, from claim 21 (invariant 8), $R_{m-k-1} < R_{m+k}$. Therefore, since $R_{m+k}.data[i] \neq \text{val}$ (the condition checked in line 72 did not hold for it), $R_{m+k}.data[i] > \text{val}$.

Since R and R_m are two different records which are i-reachable at C_j', from claim 6, either R i-follows R_m or R_m i-follows R at C_j'. In addition, since R_{m-1} is also i-reachable at C_j', either R i-follows R_{m-1} or R_{m-1} i-follows R at C_j'. Since $R_{m-1} <_i R$
We are now going to prove that our table implementation is lock-free. Meaning, if all record are in the table at \(t \), there exists a finite number of records with a status of Pending at \(C_j \).

Proof. Let \(R \) be a record whose status is Pending during \(\alpha' \). We are going to show that there exists \(1 \leq t \leq m \) for which \(O_t \) is an add execution for which \(R \) is created in line 18.

Claim 35. There is a finite number of records with a Pending status at \(C_j \).

Proof. Let \(R \) be a record whose status is Pending during \(\alpha' \). We are going to show that there exists \(1 \leq t \leq m \) for which \(O_t \) is an add execution for which \(R \) is created in line 18.
Since R's status is $Pending$, from claim 9, R is not head or tail. Therefore, R was created in line 18 of an \textit{add} execution. Assume by contradiction that this operation had terminated before C_k. Before returning from the \textit{helpAdding} execution (invoked in line 19), the \textit{cas} execution in line 31 either changes R's status to be \textit{InTable}, or fails because R's status is not $Pending$. From claim 8, R's status during α' is never $Pending$ - a contradiction. Therefore, there exists $1 \leq t \leq m$ for which O_t is an \textit{add} execution such that R is created in line 18.

The set of all records whose status is $Pending$ at some point during α' is smaller than m and therefore, it is finite. \hfill \Box

Claim 36. There is a finite number of status changes during α'.

Proof. From claim 35, there is a finite number of records with a $Pending$ status during α' and therefore, there is a finite number of status changes such that the original status is $Pending$ during α'.

From claim 8, the only kind of status change for which the original status is not $Pending$, is a change from \textit{InTable} to \textit{Removed}. This change can only happen when executing line 55 of a running \textit{remove} operation. Therefore, the number of such status changes is smaller than m. Conclusion: there is a finite number of status changes during α'. \hfill \Box

Claim 37. There is a finite number of i-markings during α'.

Proof. An i-marking can be executed only in line 24 or 60. If the i-marking is done in line 24, then the marked pointer belongs to the record created in line 18. If the i-marking is done in line 60, then the marked pointer belongs to the record found in line 52. Since a marked pointer cannot be marked again, the total number of i-markings during α' is $N_T \cdot m$. Therefore, there is a finite number of i-markings during α'. \hfill \Box

Claim 38. There is a finite number of i-insertions during α'.

Proof. By the definition of an i-insertion, a record cannot be i-inserted twice (since after its first i-insertion, it is no longer an i-infant). Therefore, the total number of i-insertions during α' is at most the sum of the number of records created before C_k (at most k) and the number of records created after C_k (at most m), multiplied by N_T. Therefore, there is a finite number of i-insertions during α'. \hfill \Box

Definition 39. Let s_j be an i-redirection. We say that s_j is an observable i-redirection if R_1 (as chosen in definition 17) is not an i-infant at C_{j-1}.

Claim 40. Let $0 \leq j$, let $1 \leq i \leq N_T$ and let R be a record which is not an i-infant at C_j. Then tail belongs to R's i-inclusive followers set at C_j.

54
Proof. By definition, \(\text{tail} \) belongs to \(\text{head} \) and \(\text{tails} \)'s \(i \)-inclusive followers set at \(C_0 \) for every \(1 \leq i \leq N_T \). Now, let \(1 \leq i \leq N_T \) and assume that for every record \(R_1 \) and for every \(j' \leq j - 1 \), if \(R_1 \) is not an \(i \)-infant at \(C_{j'} \), then \(\text{tail} \) belongs to \(R_1 \)'s \(i \)-inclusive followers set at \(C_{j'} \).

Let \(R \) be a record which is not an \(i \)-infant at \(C_j \). If \(R \) is also not an \(i \)-infant at \(C_{j-1} \), then by the induction assumption, \(\text{tail} \) belongs to \(R \)'s \(i \)-inclusive followers set at \(C_{j-1} \). By claim 9, \(\text{tail} \) is not \(i \)-marked at \(C_j \) and therefore, by claim 21 (invariant 14), \(\text{tail} \) also belongs to \(R \)'s \(i \)-inclusive followers set at \(C_j \).

If \(R \) is an \(i \)-infant at \(C_{j-1} \), then by claim 21 (invariant 10) \(s_j \) is an \(i \)-insertion for which \(\text{newRecord} \rightsquigarrow R \). Let \(R_1 \) be the record for which \(\text{pred} \rightsquigarrow R_1 \) at \(C_j \). By claim 21 (invariant 4), \(R_1 \) is not an \(i \)-infant at \(C_{j-1} \) and therefore, as explained above, \(\text{tail} \) belongs to its \(i \)-inclusive followers set at \(C_j \). Since \(R \) is \(R_1 \)'s \(i \)-successor at \(C_j \), by definition \(\text{tail} \) also belongs to \(R \)'s \(i \)-inclusive followers set at \(C_j \). \(\square \)

Claim 41. Let \(R \) be the record for which \(\text{newRecord} \rightsquigarrow R \) during a \(\text{helpAddingField(newRecord, i)} \) execution. Let \(s_{j_1} \) be the execution of line 34 and let \(s_{j_2} \) be the last execution of line 37 (during the same \(\text{while} \) loop iteration). If \(R \) is not an \(i \)-infant at \(C_{j_1} \) and is not \(i \)-marked at \(C_{j_2} \) then \(\text{tmp} \rightsquigarrow R \) at \(C_{j_2} \).

Proof. From claim 8, \(R \) is not \(i \)-marked at \(C_j \) for every \(1 \leq j \leq j_2 \). In addition, by definition, \(R \) is not an \(i \)-infant at \(C_j \) for every \(1 \leq j \leq j_2 \). From claim 13, \(R \) is \(i \)-reachable at \(C_j \) for every \(1 \leq j \leq j_2 \).

If \(R \) was returned as the \(\text{curr} \) output variable from the \(\text{find} \) call in line 35, then the claim obviously holds. Otherwise, let \(C_{j_0} \) be that \(\text{find} \)'s linearization point, guaranteed by claim 27. Let \(R_{i_0}, R_{i_1}, \ldots, R_{i_n} \) be the records that the \(\text{tmp} \) local variable references during the execution of lines 36-40 and for every \(1 \leq t \leq n \), let \(s_{j_t} \) be the step reading \(R_{i_t} \) into \(\text{tmp} \). \(R_{i_0} \) is the record returned as the \(\text{curr} \) output parameter for the \(\text{find} \) call and therefore (by claim 27), it is \(i \)-reachable at \(C_{j_{i_0}} \). Since \(j_1 < j_0 < j_2 \), \(R \) is also \(i \)-reachable at \(C_{j_0} \) and from claim 6, \(R \) \(i \)-follows \(R_{i_0} \) or \(R_{i_0} \) \(i \)-follows \(R \) at \(C_{j_0} \) (also from claim 6). Since its \(i \)-th property must be smaller than \(R \)'s (by claim 20), by lemma 23, \(R \) \(i \)-precedes \(R \) at \(C_{j_0} \). Meaning, \(R \) cannot \(i \)-precede \(R_{i_0} \) at \(C_{j_0} \). Therefore, \(R \) \(i \)-follows \(R_{i_0} \) at \(C_{j_0} \).

Assume by contradiction that \(R_{i_n} \) is not \(R \). Let \(t \) be the minimal value among \(0, \ldots, n \) for which \(R \) does not \(i \)-follow \(R_{i_t} \) at \(C_{j_{i_t}} \). As shown above, \(t > 0 \). In addition, since \(R_{i_{t-1}} \) is not \(R \), it must hold that \(R_{i_{t-1}}.\text{data}[i] \neq R.\text{data}[i] \). Since \(R_{i_{t-1}}.\text{data}[i] = R.\text{data}[i] \) and \(R_{i_{t-1}} \) is an \(i \)-predecessor of \(R_{i_t} \) at \(C_{j_{i_{t-1}}} \), by lemma 23, \(R_{i_{t-1}}.\text{data}[i] > R.\text{data}[i] \). Therefore, by claim 21 (invariant 11), \(R \) cannot \(i \)-follow \(R_{i_{t-1}} \) at \(C_{j_{i_{t-1}}} \) and thus, \(t \leq n \).

Since \(R \) \(i \)-follows \(R_{i_{t-1}} \) at \(C_{j_{i_{t-1}}} \), by definition, \(R \) belongs to \(R_{i_{t-1}} \)'s \(i \)-inclusive followers set at \(C_{j_{i_{t-1}}} \). From claim 21 (invariant 14), and since \(R \) is not \(i \)-marked before \(C_{j_2} \), \(R \) belongs to \(R_{i_{t-1}} \)'s \(i \)-inclusive followers set at \(C_{j_{i_t}} \). Since \(R_{i_t} \) is \(R_{i_{t-1}} \)'s \(i \)-successor
at C_{j_t} and R does not i-follow R_{i_t} at C_{j_t}, we get a contradiction. Conclusion: R_{i_t} is R. Therefore, $tmp \rightsquigarrow R$ at C_{j_2}.

Claim 42. There is a finite number of observable i-redirections during α'.

Proof. By definition, i-redirections are done only during $\text{helpAddingField}(\text{newRecord}, i)$ in a while loop iteration for which the condition checked in line 33 holds. Assume by contradiction that there is an infinite number of observable i-redirections during α'. From claim 35, there is a finite number of records with a Pending status during α'. Therefore, there must exist a record R for which there is an infinite number of observable i-redirections, either in line 48 or 49, for which $\text{newRecord} \rightsquigarrow R$.

Since the cas in line 49 is executed only if the cas in line 48 is successful, it must hold that the cas in line 48 is successful infinitely many times. From claim 8, R is never i-marked.

Let s_j be the first observable i-redirections during α' for which $\text{newRecord} \rightsquigarrow R$. If s_j is the execution of line 48 then by definition 39, R is not an i-infant at C_j. If s_j is the execution of line 49, then if R is an i-infant at C_{j-1}, by claim 21 (invariant 10), s_j is an i-insertion and therefore, R is not an i-infant at C_j. If R is not an i-infant at C_{j-1}, then by definition it is not an i-infant at C_j as well. Therefore, for every case, R is not an i-infant at C_j.

Since there is an infinite number of observable i-redirections for which $\text{newRecord} \rightsquigarrow R$, there is an observable i-redirection that is executed during a while iteration that starts after s_j. Let s_{j_1} be the execution of line 34 and let s_{j_2} be the last execution of line 37 during that iteration. Since R is not an i-infant at C_j, it is also not an i-infant at C_{j_1}. In addition, since R is never i-marked, it is not i-marked at C_{j_2}. From claim 41, the method returns in line 39 and thus, no observable i-redirections is executed during that iteration - a contradiction. Therefore, there is a finite number of observable i-redirections during α'.

By claims 36, 37, 38 and 42, the number of status changes, i-markings, i-insertions and observable i-redirections (for any $1 \leq i \leq N_T$) during α' is finite. Therefore, without loss of generality, we can set C_k to be a later configuration for which there are no status changes, i-markings, i-insertions and observable i-redirections (for any $1 \leq i \leq N_T$) during α' at all.

Claim 43. There is a finite number of i-snippings during α'.

Proof. Let $1 \leq i \leq N_T$. Since the only existing records can be head, tail and records created in line 18, there are at most $2 + k + m$ records. Now, assume by contradiction that there are infinitely many i-snippings during α'. Then there exists a record R_2 for which $\text{curr} \rightsquigarrow R_2$ when executing the i-snipping, infinitely many times during α'. Let s_j be such an i-snipping ($j' \geq k$). We are going to prove by induction that for every $j \geq j'$, R_2 is not i-reachable at C_j:
Base Case \((j = j')\): Assume by contradiction that \(R_2\) is \(i\)-reachable at \(C_j\). Let \(R_1\) and \(R_3\) be the records from definition 16. Since \(R_2\) is no longer \(R_1\)'s \(i\)-successor at \(C_j\), there exist another record, \(R\) which is \(i\)-reachable at \(C_j\), and whose \(i\)-successor at \(C_j\) is \(R_2\). Since \(s_j\) only changes \(R_1\)'s \(i\)-successor, \(R\)'s \(i\)-successor at \(C_{j-1}\) is also \(R_2\).

Since \(R_1\) is \(i\)-reachable at \(C_{j-1}\) (by definition), and \(s_j\) only changes \(R_1\)'s \(i\)-successor, \(R_1\) is \(i\)-reachable at \(C_j\). From claim 6, either \(R_1\) \(i\)-follows \(R\) or \(R\) \(i\)-follows \(R_1\) at \(C_j\). If \(R_1\) \(i\)-follows \(R\) at \(C_j\) then by definition (and since \(R \neq R_1\)), \(R_1\) \(i\)-follows \(R_3\) at \(C_j\). Since \(R_2\) is the \(i\)-successor of \(R_1\) at \(C_{j-1}\), by claim 21 (invariant 8), \(R_1 < i R_2\). Since \(R_1\) \(i\)-follows \(R_2\) at \(C_j\), we get a contradiction to claim 21 (invariant 11). Therefore, \(R\) must \(i\)-follow \(R_1\) at \(C_j\). Since \(R_3\) is \(R_1\)'s \(i\)-successor at \(C_j\) (and since \(R \neq R_1\)), \(R\) also \(i\)-follows \(R_3\) at \(C_j\) and thus, \(R_2\) \(i\)-follows \(R_3\) at \(C_j\). Meaning, by claim 21 (invariant 11) and the fact that \(R_2\) is not an \(i\)-infant at \(C_j\), \(R_3 < i R_2\). Since \(R_3\) is \(R_2\)'s \(i\)-successor at \(C_j\), we get a contradiction to claim 21 (invariant 8).

Therefore, \(R_2\) is not \(i\)-reachable at \(C_j\).

Induction Step: Assume that \(R_2\) is not \(i\)-reachable at \(C_{j-1}\), and assume by contradiction that \(R_2\) is \(i\)-reachable at \(C_j\). By definition, there exist records \(R_{t_0}, \ldots, R_{t_n}\) such that \(R_{t_0} = \text{head}, R_{t_n} = R_2\) and for every \(1 \leq t \leq n\), \(R_{t_i}\) is the \(i\)-successor of \(R_{t_{i-1}}\) at \(C_j\). Let \(t\) be the maximal value for which \(R_{t_i}\) is \(i\)-reachable at \(C_{j-1}\). Notice that \(0 \leq t < n\), since \(\text{head}\) is always \(i\)-reachable (by definition) and \(R_2\) is not \(i\)-reachable at \(C_{j-1}\). In addition, \(R_{t_{i+1}}\) is not \(R_{t_i}\)'s \(i\)-successor at \(C_{j-1}\).

Since \(R_{t_i}\)'s \(i\)-successor at \(C_{j-1}\) is different from its \(i\)-successor at \(C_j\), by claim 21 (invariant 10), \(s_j\) is either an \(i\)-snipping, an \(i\)- redirection or an \(i\)-insertion. \(s_j\) cannot be an \(i\)-snipping, since \(R_{t_{i+1}}\) is not \(i\)-reachable at \(C_{j-1}\). It cannot be an \(i\)-insertion because there are no \(i\)-insertions during \(\alpha'\). Therefore, it is an \(i\)- redirection. Since \(R_{t_i}\) is either \(\text{head}\) or has an \(i\)-predecessor at \(C_{j-1}\), by claim 21 (invariant 2), \(R_{t_i}\) is not an \(i\)- infant at \(C_{j-1}\). Therefore, by definition 39, \(s_j\) is an observable \(i\)- redirection. Since there are no observable \(i\)- redirections during \(\alpha'\), we get a contradiction. Therefore, \(R_2\) is not \(i\)-reachable at \(C_j\).

Now, from choosing \(R_2\), there exists \(j'' > j'\) for which \(\text{curr} \sim R_2\) when executing \(s_{j''}\), which is an \(i\)-snipping. By the definition of \(i\)-snipping and \(i\)-reachability, \(R_2\) is \(i\)-reachable at \(C_{j''-1}\) - a contradiction. Therefore, there is a finite number of \(i\)-snippings during \(\alpha'\). \(\square\)

Now, using claim 43, without loss of generality, we can set \(C_k\) to be a later configuration for which there are no status changes, \(i\)-markings, \(i\)-insertions, observable \(i\)- redirections and \(i\)-snippings (for any \(1 \leq i \leq N_T\)) during \(\alpha'\) at all.

Claim 44. There exists \(k' \geq k\) for which the condition checked in line 7 never holds after \(C_{k'}\).

Proof. Since the only existing records can be \(\text{head}, \text{tail}\) and records created in line 18, there are at most \(2+k+m\) records. Assume by contradiction that the condition checked
in line 7 holds infinitely many times after \(C_k\). Then there exists a record \(R\) for which \(\text{curr} \rightsquigarrow R\) when the condition holds infinitely many times after \(C_k\).

Let \(s_{j_1}\) and \(s_{j_2}\) be two executions of line 7 for which this condition holds when \(\text{curr} \rightsquigarrow R\) \((k < j_1 < j_2)\). When executing line 8 after \(s_{j_1}\), since there are no \(i\)-snippings after \(C_k\), the \(\text{cas}\) execution fails and the traversal starts from \(\text{head}\) again, in line 3.

Let \(R_1\) be the record for which \(\text{pred} \rightsquigarrow R_1\) at \(C_{j_2}\). If \(R_1\) is \(\text{head}\), then by claim 9, \(R_1\) is not \(i\)-marked at \(C_{j_2}\). Otherwise, it has been assigned into the \(\text{pred}\) variable in line 15, during the current traversal. Let \(s_{j_3}\) be the last time for which line 7 was executed when \(\text{curr} \rightsquigarrow R_1\) during the current traversal. Since the traversal is still ongoing at \(C_{j_2}\), and that \(\text{curr} \rightsquigarrow R_1\) when getting to line 15, the condition did not hold. Therefore, \(R_1\) was not \(i\)-marked at \(C_{j_3}\). Since there are no \(i\)-markings after \(C_k\), and \(k < j_1 < j_3\), \(R_1\) is not \(i\)-marked at \(C_{j_2}\) in this case also.

Now, let \(s_{j_4}\) be the step assigning \(R\) into the \(\text{curr}\) local variable. If \(s_{j_4}\) is the execution of line 4 or 11 then \(R\) is \(R_1\)’s \(i\)-successor at \(C_{j_4}\), and since there are no \(i\)-snippings, \(i\)-insertions and observable \(i\)-redirections after \(C_k\), \(R\) is \(R_1\)’s \(i\)-successor at \(C_{j_2}\) as well (by claim 21, invariant 4, \(R_1\) is not an \(i\)-infant at \(C_{j_4}\)). If \(s_{j_4}\) is the execution of line 16 then there exists \(k < j_1 < j_3\) for which \(R\) was assigned into the \(\text{succ}\) variable, either in line 6 or 12 at \(s_{j_5}\). Obviously, \(R\) was \(R_1\)’s \(i\)-successor at \(C_{j_5}\), and for the above reasons, it is also still \(R_1\)’s \(i\)-successor at \(C_{j_2}\).

Since \(R\) is \(R_1\)’s \(i\)-successor at \(C_{j_2}\), the fact that \(R_1\) is not \(i\)-marked at \(C_{j_2}\), and the fact that this cannot change until executing line 8, the execution of line 8 is an \(i\)-snipping, in contradiction to the fact that there are no \(i\)-snippings after \(C_k\). Therefore there exists \(k' \geq k\) for which the condition checked in line 7 never holds after \(C_{k'}\). \(\square\)

Now, using claim 44, without loss of generality, we can set \(k = k' + 1\). Now, there are no status changes, \(i\)-markings, \(i\)-insertions, observable \(i\)-redirections, \(i\)-snippings (for any \(1 \leq i \leq N_T\)), and the condition checked in line 7 never holds during \(\alpha'\). We are going to derive a contradiction by showing that some operation from \(S\) terminates during \(\alpha'\).

Claim 45. Every execution of the \textit{find} method eventually terminates.

\textbf{Proof.} Suppose \(\text{val}\) and \(i\) are the input parameters to a \textit{find} invocation. If the method terminates before \(C_k\), then we are done. Otherwise, assume by contradiction that the execution never terminates. After \(C_k\), the condition checked in line 7 never holds.

Now, let \(s_{k_1}\) be the first execution of line 13 after \(C_k\). Notice that since the condition checked in line 7 never holds after \(C_k\) and that the execution never terminates, line 13 is executed after \(C_k\). Let \(R\) be the record for which \(\text{curr} \rightsquigarrow R\) at \(C_{k_1}\). From claim 21 (invariant 4), \(R\) is not an \(i\)-infant at \(C_{k_1}\) and thus, from claim 40, \(\text{tail}\) belongs to \(R\)’s \(i\)-inclusive followers set at \(C_{k_1}\). In particular, \(\text{tail}\) \(i\)-follows \(R\) at \(C_{k_1}\). By definition, there exist records \(R_0, R_1, \ldots, R_n\) such that \(R_0 = R, R_n = \text{tail}\) and for each \(0 < t \leq n\), \(R_t\) is the \(i\)-successor of \(R_{t-1}\) at \(C_{k_1}\).

From claim 21 (invariant 2), \(R_1, \ldots, R_n\) are also not \(i\)-infants at \(C_{k_1}\). Therefore, for every \(0 \leq t < n\), the \(i\)-successor of \(R_t\) cannot be changed via an \(i\)-redirection which
is not an observable one. In addition, since there are no i-snippings, i-insertions and observable i-redirections during α', for every $0 \leq t < n$, the i-successor of R_t cannot be changed at all. Therefore, for every $k' > k_1$ and for every $0 < t \leq n$, R_t is still the i-successor of R_{t-1} at $C_{k'}$.

Since the condition in line 7 never holds after $C_{k_1}, R_1, \ldots, R_n$ are assigned into the succ variable in line 6 and then into the curr variable in line 16, one by one. When $\text{curr} \rightsquigarrow R_n$, from claim 19, the condition checked in line 13 holds and the method returns in line 14 - a contradiction. Therefore, every execution of the find method eventually terminates.

Claim 46. Every execution of lines 37-40 eventually terminates.

Proof. Suppose newRecord and i are the input parameters to a helpAddingField invocation, and that $\text{newRecord} \rightsquigarrow R$ throughout the execution. If the execution of lines 37-40 terminates before C_{k_1}, then we are done. Otherwise, assume by contradiction that the execution never terminates.

Let s_{k_1} be the first execution of line 37 after C_{k_1}, and let R_0 be the record for which $\text{tmp} \rightsquigarrow R_0$ at C_{k_1}. If $\text{curr} \rightsquigarrow R_0$ at C_{k_1} as well then from claim 21 (invariant 4), R_0 is not an i-infant at C_{k_1}. Otherwise, R_0 must have an i-predecessor when assigned into the tmp variable in line 40 and thus, by claim 21 (invariant 2), it is also not an i-infant at C_{k_1}.

From claim 40, tail belongs to R_0’s i-inclusive followers set at C_{k_1}. By definition, there exist records R_1, \ldots, R_n for which $R_n = \text{tail}$ and for every $0 < t \leq n$, R_t is the i-successor of R_{t-1} at C_{k-1}. Notice that since for every $0 < t \leq n$, R_t has an i-predecessor at C_{k_1} and thus, by claim 21 (invariant 2), it is also not an i-infant at C_{k_1}.

The only $\text{next}[i]$ change that can occur after C_k is an i-redirection which is not an observable one. Since R_0, R_1, \ldots, R_n are not i-infants at C_{k_1}, for every $k' \geq k_1$ and for every $0 < t \leq n$, R_t is still the i-successor of R_{t-1} at $C_{k'}$. Therefore, eventually, tail is assigned into the tmp local variable in line 40. Since we assume $R.data[i] < \infty$, the condition checked in line 37 no longer holds and the execution of lines 37-40 terminates - a contradiction. Therefore, every execution of lines 37-40 eventually terminates.

Claim 47. Every execution of lines 66-68 or lines 77-79 eventually terminates.

Proof. Without loss of generality, we are going to prove the claim for the execution of lines 66-68. The same proof holds for lines 77-79.

Suppose val and i are the input parameters to a retrieve invocation. If the execution of lines 66-68 terminates before C_{k_1}, then we are done. Otherwise, assume by contradiction that the execution never terminates.

Let s_{k_1} be the first execution of line 67 after C_{k_1}, and let R_0 be the record for which $\text{curr} \rightsquigarrow R_0$ at C_{k_1}. If $R_0 = \text{head}$ then by definition, R_0 is not an i-infant at C_{k_1}. Otherwise, R_0 must have an i-predecessor when assigned into the curr variable in line 68 and thus, by claim 21 (invariant 2), it is also not an i-infant at C_{k_1}.
From claim 40, \texttt{tail} belongs to \(R_0\)'s \(i\)-inclusive followers set at \(C_{k_1}\). By definition, there exist records \(R_1, \ldots, R_n\) for which \(R_n = \texttt{tail}\) and for every \(0 < t \leq n\), \(R_t\) is the \(i\)-successor of \(R_{t-1}\) at \(C_{k-1}\). Notice that since for every \(0 < t \leq n\), \(R_t\) has an \(i\)-predecessor at \(C_{k_1}\) and thus, by claim 21 (invariant 2), it is also not an \(i\)-infant at \(C_{k_1}\).

The only \(\text{next}[i]\) change that can occur after \(C_k\) is an \(i\)-redirection which is not an observable one. Since \(R_0, R_1, \ldots, R_n\) are not \(i\)-infants at \(C_{k_1}\), for every \(k' \geq k_1\) and for every \(0 < t \leq n\), \(R_t\) is still the \(i\)-successor of \(R_{t-1}\) at \(C_{k'}\). Therefore, eventually, \(\text{tail}\) is assigned into the \(\text{curr}\) local variable in line 68. Since we assume \(val < \infty\), the condition checked in line 67 no longer holds and the execution of lines 66-68 terminates - a contradiction. Therefore, every execution of lines 66-68 eventually terminates. \(\square\)

Claim 48. Every execution of lines 72-76 eventually terminates.

Proof. Suppose \(val\) and \(i\) are the input parameters to a \texttt{retrieve} invocation. If the execution of lines 72-76 terminates before \(C_k\), then we are done. Otherwise, assume by contradiction that the execution never terminates.

Let \(s_{k_1}\) be the first execution of line 72 after \(C_k\), and let \(R_0\) be the record for which \(\text{curr} \rightsquigarrow R_0\) at \(C_{k_1}\). If \(R_0 = \text{head}\) then by definition, \(R_0\) is not an \(i\)-infant at \(C_{k_1}\). Otherwise, \(R_0\) must have an \(i\)-predecessor when assigned into the \(\text{curr}\) variable in line 76 and thus, by claim 21 (invariant 2), it is also not an \(i\)-infant at \(C_{k_1}\).

From claim 40, \(\text{tail}\) belongs to \(R_0\)'s \(i\)-inclusive followers set at \(C_{k_1}\). By definition, there exist records \(R_1, \ldots, R_n\) for which \(R_n = \text{tail}\) and for every \(0 < t \leq n\), \(R_t\) is the \(i\)-successor of \(R_{t-1}\) at \(C_{k-1}\). Notice that since for every \(0 < t \leq n\), \(R_t\) has an \(i\)-predecessor at \(C_{k_1}\) and thus, by claim 21 (invariant 2), it is also not an \(i\)-infant at \(C_{k_1}\).

The only \(\text{next}[i]\) change that can occur after \(C_k\) is an \(i\)-redirection which is not an observable one. Since \(R_0, R_1, \ldots, R_n\) are not \(i\)-infants at \(C_{k_1}\), for every \(k' \geq k_1\) and for every \(0 < t \leq n\), \(R_t\) is still the \(i\)-successor of \(R_{t-1}\) at \(C_{k'}\). Therefore, eventually, \(\text{tail}\) is assigned into the \(\text{curr}\) local variable in line 76. Since we assume \(val < \infty\), the condition checked in line 72 no longer holds and the execution of lines 72-76 terminates - a contradiction. Therefore, every execution of lines 72-76 eventually terminates. \(\square\)

Claim 49. Every execution of the \texttt{helpAddingField} method eventually terminates.

Proof. Suppose \(\text{newRecord}\) and \(i\) are the input parameters. We are going to show by a backwards induction on \(i\) that the method eventually terminates.

Base Case \((i = N_T):\) Assume by contradiction that the method does not terminate. By claims 45 and 46 (respectively), both the \texttt{find} call in line 35 and the traversal in lines 36-40 always terminate. Since the method does not return in line 39, from claim 41, the record \(R\) for which \(\text{newRecord} \rightsquigarrow R\) is either an \(i\)-infant when executing line 36 or \(i\)-marked when executing line 37 for the last time.

Since the second input parameter to the \texttt{helpAdding} call in line 44 is \(N_T + 1\), it always terminates. Therefore, the method does not terminate because at least one of
the cas executions in lines 48-49 fails at every loop iteration, and R’s status always remains Pending.

If R is i-marked at some point then by claim 8, its status is no longer Pending - a contradiction. Therefore, since the method never returns in line 39, R stays an i-infant at Ck′ for every k′ > k.

From lemmas 22 and 23, there exist records R0, R1, ..., Rn such that R0 = head, Rn = tail and for every 0 < t ≤ n, Rt is the i-successor of Rt−1 at Ck. By definition, R0 and Rn are not i-infants at Ck. In addition, for every 0 < t < n, Rt has an i-predecessor at Ck and thus, by claim 21 (invariant 2), it is also not an i-infant at Ck. Since there are no status changes, i-snippings, i-insertions and observable i-redirections at α′, for every 0 < t ≤ n and k′ ≥ k, Rt is still Rt−1’s i-successor at Ck′.

Now, every find(newRecord.data[i], i) call invoked in line 35 after Ck, should return the same (pred, curr) window (by claim 27). This holds even for different invocations of the helpAddingField(newRecord, i) method, as long as newRecord⇝R. Therefore, at some point, R’s i-successor also becomes stable (since R is an i-infant at Ck′ for every k′ ≥ k, its i-successor is updated only by i-redirections which are not observable, in line 48). Therefore, the cas execution that keeps failing is the one in line 49.

Since the find(newRecord.data[i], i) call is invoked after Ck (meaning, L1 is of the form R0 → R1 → ... → Rn), by claim 27, it is guaranteed that there exist k1 ≥ k and 0 ≤ t < n for which pred⇝Rt, curr⇝Rt+1, Rt is not i-marked and Rt+1 is Rt’s i-successor at Ck+1. In addition, since Rt is not an i-infant at Ck1 (by claim 21, invariant 4), its i-successor remains Rt+1 and it remains not i-marked for every k′ ≥ k1. Therefore, the cas executed in line 49 should be successful - a contradiction. Conclusion: the method always terminates when i = NT.

Induction Step: By the induction assumption, the call to helpAdding(curr, i + 1) in line 44 always terminates. Therefore, in a similar way to the base case, the method always terminates when i < NT as well.

Claim 50. Every execution of the helpAdding method eventually terminates.

Proof. This derives directly by the guaranteed termination of the helpAddingField method (claim 49).

From the above claims, the find and helpAdding methods always terminate. In order to show that both the add and the remove operations always terminate, we still need to show that the loops in lines 21-25 and 57-61 always terminate.

Claim 51. Every execution of lines 21-25 eventually terminates.

Proof. Let R be the record that was created in line 18 and let 1 ≤ i ≤ NT. If lines 21-25 are executed then R’s status is Failed. From claim 8, it remains Failed forever.

Since the only way R’s i-successor can be changed after Ck is by an i-redirection which is not observable, it can only be changed during a helpAddingField(newRecord, i) call
for which newRecord \sim R (in line 48). By claim 49, all helpAddingField(newRecord, i) invocations eventually terminate. Therefore, at some point, R’s i-successor can be changed only during helpAddingField calls that were invoked after R’s status had become Failed. Since those calls must return immediately (the condition checked in line 33 does not hold for R), R’s i-successor remains stable, starting from this point.

Therefore, after this point, the cas execution in line 24 can only fail because R is already i-marked. In this case, the condition checked in line 23 does not hold and thus, the loop in lines 21-25 eventually terminates.

\[
\text{Claim 52. Every execution of lines 57-61 eventually terminates.}
\]

\[
\text{Proof. Let } R \text{ be the record that was found in line 52 and let } 1 \leq i \leq N_T. \text{ If lines 57-61 are executed then } R’s \text{ status is } Removed. \text{ From claim 8, it remains } Removed \text{ forever.}
\]

Since the only way R’s i-successor can be changed after C_k is by an i-redirection which is not observable, it can only be changed during a helpAddingField(newRecord, i) call for which newRecord \sim R (in line 48). By claim 49, all helpAddingField(newRecord, i) invocations eventually terminate. Therefore, at some point, R’s i-successor can be changed only during helpAddingField calls that were invoked after R’s status had become Removed. Since those calls must return immediately (the condition checked in line 33 does not hold for R), R’s i-successor remains stable, starting from this point.

Therefore, after this point, the cas execution in line 60 can only fail because R is already i-marked. In this case, the condition checked in line 59 does not hold and thus, the loop in lines 57-61 eventually terminates.

By claims 51 and 52, the add and remove operations always terminate. We still need to show that the retrieve operation always terminates.

\[
\text{Claim 53. Every execution of the retrieve operation eventually terminates.}
\]

\[
\text{Proof. Assume by contradiction that there is a retrieve(val, i) execution that never terminates. In particular, the condition checked in line 69 never holds. By claims 47 and 48, the loops in lines 66-68, 72-76 and 77-79 always terminate. Therefore, every loop iteration (the loop in line 64) terminates, and there exists an iteration that starts after C_k.}
\]

By lemmas 22 and 23, there exist records R_0, R_1, \ldots, R_n such that R_0 = head, R_n = tail, and for every 0 < t \leq n, \[R_{t-1}.\text{data}[i] \leq R_t.\text{data}[i] \] and R_t is the i-successor of R_{t-1} at C_k.

By definition, R_0 and R_n are not i-infants at C_k. In addition, for every 0 < t < n, R_t has an i-predecessor at C_k and thus (by claim 21, invariant 2), it is also not an i-infant at C_k. Therefore, for every 0 \leq t < n, R_t’s i-successor cannot be changed using a non-observable i-redirection after C_k. Since there are no status changes, i-snippings, i-insertions and observable i-redirections after C_k, the described sequence of records does not change during the current loop of the retrieve execution.
From claim 47 the loops in lines 67-68 and 77-79 terminate. Since the sequence of records described above is stable after C_k, both traversals get to the same record and therefore, the condition in line 80 holds (notice that by claim 48, the loop in lines 72-76 terminates as well).

The tmpSet set contains only records that were inserted into it in line 75 and tus, it is a finite set. Since there are no status changes after C_k, the condition, checked for every saved record, in line 84, holds for every such record. Therefore, valid’s value when checking it in line 90 is true, and the operation returns in line 91 - a contradiction. Conclusion: Every execution of the retrieve operation eventually terminates.

Since all add, remove and retrieve eventually terminate, there does not exist an execution $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots$, and $k > 0$ for which no executing operation terminates after C_k. Therefore, our table implementation is lock-free, and we end our progress proof with the following theorem:

Theorem 54. The implementation given in Figure 3.2, 3.3, 3.4 and 3.5 is a lock-free implementation of a table.
4.2 The Lock-Based Table

This section contains the proofs of our lock-based table’s invariants (in Section 4.2.1), a linearizability proof (in Section 4.2.2) and a proof that our lock-based table implementation is deadlock-free (in Section 4.2.3).

As in the lock-free variant correctness proof, we are going to use the definitions of \(i\)-predecessors and \(i\)-successors (see definition 2), \(i\)-following and \(i\)-preceeding (see Definition 3), and \(i\)-reachability (see Definition 4). The definitions of configurations, steps and executions remain the same as in Section 4.1. Notice that since the \(next[i]\) pointers in the lock-based version are not marked, we no longer need the \(i\)-marked notation. Instead, we use some new definitions for describing the \(locks\) arrays:

Definition 55. Let \(R\) be a record. We say that \(R\) is partially locked at \(C_j\) if there exist \(j_1 \leq j\) and \(1 \leq i \leq N_T\) for which \(s_{j_1}\) obtains \(R\)'s \(i\)-th lock in line 14 or 39. In addition, there does not exist \(j_1 < j_2 \leq j\) such that \(s_{j_2}\) releases this lock.

Definition 56. Let \(R\) be a record. We say that \(R\) is fully locked at \(C_j\) if all of \(R\)'s locks were obtained by the same thread, either by executing line 15 or 42 for every \(1 \leq i \leq N_T\), and have not been released before \(C_j\).

Notice that by definition, a record cannot be both partially locked and fully locked at the same configuration.

Definition 57. Let \(R\) be a record. We say that \(R\) is \(i\)-locked if \(R.locks[i] = true\).

Since the original \(i\)-infancy definition (see Definition 12) relies on the specific lock-free \(add\) implementation, we are going to use a slightly different definition here:

Definition 58. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k\) be a legal execution, let \(0 \leq j \leq k\) and let \(R \notin \{head, tail\}\) be a record. If there does not exist \(j' \leq j\) for which \(s_{j'}\) is the execution of line 25, for which \(newRecord \Rightarrow R\), we say that \(R\) is an \(i\)-infant at \(C_j\).

4.2.1 Table Invariants

After defining the \(i\)-infancy term, we can use the \(<_i\) partial order, defined in Section 4.1 (Definition 13). Now, before getting to the linearizability and deadlock-freedom proofs, we need to show that the following always hold:

1. For every \(1 \leq i \leq N_T\), \(head\) and \(tail\) are always \(i\)-reachable.

2. A record \(R\) is logically in the table if and only if its status is \(InTable\) and it is \(i\)-reachable for every \(1 \leq i \leq N_T\).

3. For every two records \(R_1, R_2\) and \(1 \leq i \leq N_T\), if \(R_2\) \(i\)-follows \(R_1\) then \(R_1.data[i] \leq R_2.data[i]\).
4. For every $1 \leq i \leq N_T$ such that i is a unique field number, and two records R_1, R_2, if both R_1 and R_2 are logically in the table then $R_1.data[i] \neq R_2.data[i]$.

We start with some basic observations.

Claim 59. Let $1 \leq i \leq N_T$ and let R_1, R_2 be two records. If both R_1 and R_2 are i-reachable then either R_1 i-follows R_2 or R_2 i-follows R_1.

Proof. See the proof of claim 6 in Section 4.1.

Claim 60. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution, let R be a record and let $0 \leq j_1 \leq j_2 \leq k$. If for every $j_1 \leq j \leq j_2$, R is partially locked, then R’s status at C_{j_1} is equal to R’s status at C_{j_2}.

Proof. Assume by contradiction that R’s status at C_{j_1} is different from R’s status at C_{j_2}. A record’s status can only change when executing line 26 or 45. Therefore, there exists $j_1 \leq j \leq j_2$ for which either s_j is the execution of line 26 while newRecord $\rightarrow R$ or the execution of line 45 while victim $\rightarrow R$. In both cases, R must be fully locked, in contradiction to the fact that R is partially locked at C_j. Therefore, if for every $j_1 \leq j \leq j_2$, R is partially locked, then R’s status at C_{j_1} is equal to R’s status at C_{j_2}.

Claim 61. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution, let R be a record and let $0 < j \leq k$. If R’s status at C_j is different from R’s status at C_{j-1} then the thread that executes this change also holds all of R’s locks at C_j.

Proof. R’s status can only be changed when executing line 26 (and newRecord $\rightarrow R$) or 45 (and victim $\rightarrow R$). In both cases, all of R’s locks are obtained (and not released), before executing the status change, by the executing thread.

Claim 62. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution and let $0 \leq j \leq k$, then both head and tails’ status at C_j is InTable.

Proof. At initialization, head and tail are created with an InTable status. We assume that for every remove(val, i) invocation, $val \notin \{-\infty, \infty\}$. Since a record’s InTable status can only be changed during a remove(val, i) execution, and only if its i-th data element is val, head and tails’ statuses never change during the execution.

Notice that a record’s status can also change during an add(tup) execution. Since the record whose status is changed, is created during this execution, and that its status becomes InTable anyway, this is not relevant for the case of head and tail.

Claim 63. Let val be the first input parameter of a find call. Then $val \notin \{-\infty, \infty\}$.

Proof. See the proof of Claim 19 in Section 4.1. Notice that in the lock-based table version, the find method is called during retrieve executions as well. Since we assume neither $-\infty$ nor ∞ are sent as input parameters to the retrieve operation, the proof of claim 19 still holds for the lock-based version.
Claim 64. Let R be a record and let $1 \leq i \leq N_T$. R’s i-successor can be changed only by the thread holding $R.lock[i]$.

Proof. R’s i-successor can only be changed in line 24 while $\text{newRecord} \rightarrow R$, 25 while $\text{pred}_i \rightarrow R$ or 47 while $\text{pred}_i \rightarrow R$. In all three cases, R’s i-th lock is held by the executing thread. \hfill \square

Claim 65. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution, let R be a record, let $1 \leq i \leq N_T$ and let $0 \leq j \leq k$. If s_j is the execution of line 25 for which $\text{newRecord} \rightarrow R$, then R is an i-infant at C_{j-1}.

Proof. Assume by contradiction that R is not an i-infant at C_{j-1}. By definition, there exists $j' \leq j - 1$ for which $s_{j'}$ is the execution of line 25, having $\text{newRecord} \rightarrow R$. Since the newRecord variable always points to the record created in line 10, $s_{j'}$ is a step done by the same executing thread (the one which executes s_j). Since the add operation returns after lines 23-25 are executed for the first time, we get a contradiction. Therefore, if s_j is the execution of line 25 for which $\text{newRecord} \rightarrow R$, then R is an i-infant at C_{j-1}. \hfill \square

Claim 66. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution, let $0 \leq j < j' \leq k$, and let R be a record, then:

1. If $R.status = \text{Removed}$ at C_j then R’s status at $C_{j'}$ is also Removed.
2. If $R.status = \text{InTable}$ at C_j then $R.status \in \{\text{InTable}, \text{Removed}\}$ at $C_{j'}$.
3. If R’s status at C_j is Pending and R’s status at $C_{j'}$ is Removed then there exists $j < j'' < j'$ for which R’s status at $C_{j''}$ is InTable.

Proof. head and tail are created with an InTable status. Therefore, the claim is vacuously true at C_0. Assume that the invariants hold throughout $\alpha' = C_0 \cdot s_1 \cdot C_1 \cdot \ldots \cdot C_{j'-1}$ of the execution. We show that each part of the claim holds throughout $\alpha = \alpha' \cdot s_{j'} \cdot C_{j'}$.

1. Assume R’s status is Removed at C_j. By the induction assumption, R’s status at $C_{j'-1}$ is also Removed. The only instruction that can change a record’s status field to a status which is not Removed is the one in line 26.

Assume by contradiction that $s_{j'}$ is indeed an execution of line 26 that changes R’s status (meaning, $\text{newRecord} \rightarrow R$). Since R’s status at $C_{j'-1}$ is Removed (and records are created with a Pending status), by the induction assumption, there exists $j_1 < j' - 1$ for which R’s status at C_{j_1} is InTable. Since a record’s status can only become InTable when executing the add operation during which it was created (line 10), s_{j_1} and $s_{j'}$ are executed during the same add execution. Since $j_1 < j'$ and the fact that the operation returns after executing line 26 for the first time, we get a contradiction. Therefore, R’s status at $C_{j'}$ is Removed.
After stating our basic observations, we are now going to prove some small table invariants, in a similar way to the proof of claim 21 in Section 4.1. Notice that here we also rely on the fact that during a find execution, pred and curr always reference actual records (and not just nulls). This is ensured by the first claim invariant.

Claim 67. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k \) be a legal execution, let \(0 \leq j \leq k \), let \(i \in \{1, \ldots, N_T\} \) and let \(R_1, R_2 \) be two different records. If \(R_1 \) is not an \(i \)-infant at \(C_j \) then either \(R_1 <_i R_2 \) or \(R_2 <_i R_1 \).

Proof. See the proof of Claim 14 in Section 4.1.

Claim 68. Let \(R_1 \) and \(R_2 \) be two records. If \(\text{pred} \leadsto R_1 \) and \(\text{curr} \leadsto R_2 \), when \(\langle \text{pred}, \text{curr} \rangle \) is the output of a find\((val, i)\) execution, then \(\text{R}_1.data[i] < val \leq \text{R}_2.data[i] \).

Proof. If the last assignment into \(\text{pred} \) was in line 2 then \(R_1 \) is head and, since \(-\infty\) is never sent as input to the find method (claim 63), \(\text{R}_1.data[i] < val \). Otherwise, the last assignment into \(\text{pred} \) was in line 7, right after the condition in line 5 did not hold for \(R_1 \). Therefore, \(\text{R}_1.data[i] < val \) in this case also. Regarding \(R_2 \): since \(R_2 \) was returned as curr in line 6, the condition in line 5 held for \(R_2 \). Therefore, \(val \leq \text{R}_2.data[i] \).

After stating our basic observations, we are now going to prove some small table invariants, in a similar way to the proof of claim 21 in Section 4.1. Notice that here we also rely on the fact that during a find execution, pred and curr always reference actual records (and not just nulls). This is ensured by the first claim invariant.

Claim 69. Let \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k \) be a legal execution, let \(0 \leq j \leq k \), \(1 \leq i \leq N_T \) and let \(R_1, R_2 \) be two different records, then:

1. If \(\text{pred} \leadsto X \) or \(\text{curr} \leadsto X \) at \(C_j \), during a find\((val, i)\) execution, then \(X \) is a record. In particular, if \(\text{pred} \leadsto X \) then \(X.data[i] < val \).
2. If R_2 is the i-successor of R_1 at C_j then R_2 is not an i-infant at C_j.

3. If $\text{pred} \sim R_1$ and $\text{curr} \sim R_2$ at C_j, during a $\text{find}(\text{val}, i)$ execution, then R_1 and R_2 are not i-infants at C_j.

4. If R_1 is not an i-infant at C_j and its status is not Removed at C_j, then R_1 is i-reachable at C_j.

5. If $R_1 <_i R_2$ then R_1 does not i-follow R_2 at C_j.

6. If R_2 i-follows R_1 at C_{j-1} and its status is not Removed at C_j, then R_2 i-follows R_1 at C_j.

7. If R_1 is not an i-infant at C_j then tail i-follows R_1 at C_j.

Proof. Invariants 1, 3 and 6 are vacuously true at C_0. In addition, invariant 2 is true because tail cannot be an i-infant at C_0 by definition, invariant 4 is true because both head and tail are i-reachable at C_0, invariant 5 is true because head does not i-follow tail at C_0, and invariant 7 is true because tail i-follows both head and tail at C_0.

Assume that the invariants hold throughout $\alpha' = C_0 \cdot s_1 \cdot C_1 \cdots C_{j-1}$ of the execution. We show that each claim invariant holds throughout $\alpha = \alpha' \cdot s_j \cdot C_j$.

1. Suppose $\text{pred} \sim X$ at C_j. If $\text{pred} \sim X$ at C_{j-1} as well then by the induction assumption, X is a record and $X.data[i] < \text{val}$. Otherwise, s_j is either the execution of line 2 or 7.

 If s_j is the execution of line 2 then X is head and thus, it is a record. In addition, from claim 63, $X.data[i] = -\infty < \text{val}$. If s_j is the execution of line 7 then $\text{curr} \sim X$ at C_{j-1}. By the induction assumption, X is a record. In addition, since the condition in line 5 does not hold for X, $X.data[i] < \text{val}$.

 Now, suppose $\text{curr} \sim X$ at C_j. If $\text{curr} \sim X$ at C_{j-1} as well then by the induction assumption, X is a record. Otherwise, s_j is either the execution of line 3 or 8.

 If s_j is the execution of line 3, then X is head’s i-successor at C_{j-1}. By the induction assumption (invariant 7), tail i-follows head at C_{j-1}. Therefore, by definition, X is a record in this case. If s_j is the execution of line 8, let R be the record for which $\text{pred} \sim R$ at C_{j-1}. By the induction assumption, R is a record. In addition, by the induction assumption (invariant 3), R is not an i-infant at C_{j-1}. Therefore, by the induction assumption (invariant 7), tail i-follows R at C_{j-1}. Since X is R’s i-successor at C_{j-1}, by definition X is a record.

2. If R_2 is also the i-successor of R_1 at C_{j-1} then by the induction, R_2 is not an i-infant at C_{j-1} and by definition, R_2 is not an i-infant at C_j. Otherwise, s_j must be the execution of line 24, 25 or 47.
If s_j is the execution of line 24 then $\textit{newRecord} \leadsto R_1$ and $\textit{curr}_i \leadsto R_2$ at C_{j-1}. By the induction assumption (invariant 3), R_2 is not an i-infant at C_{j-1} and therefore, not an i-infant at C_j as well.

If s_j is the execution of line 25 then $\textit{pred}_i \leadsto R_1$ and $\textit{newRecord} \leadsto R_2$. By definition 58, R_2 is not an i-infant at C_j.

If s_j is the execution of line 47 then $\textit{pred}_i \leadsto R_1$ at C_{j-1}. Let R_3 be the record for which $\textit{victim} \leadsto R_3$ at C_{j-1}. Then R_2 is the i-successor of R_3 at C_{j-1}. By the induction assumption, R_2 is not an i-infant at C_{j-1} and thus, not an i-infant at C_j.

3. If $\textit{pred} \leadsto R_1$ at C_{j-1} then by the induction assumption, R_1 is not an i-infant at C_{j-1} and by definition, it is not an i-infant at C_j as well. Otherwise, s_j is either the execution of line 2 or 7. If s_j is the execution of line 2 then $R_1 = \textit{head}$ and by definition, R_1 is not an i-infant at C_j. If s_j is the execution of line 7 then $\textit{curr} \leadsto R_1$ at C_{j-1} and by the induction assumption, it is not an i-infant at C_{j-1}.

By definition, R_1 is not an i-infant at C_j.

If $\textit{curr} \leadsto R_2$ at C_{j-1} then by the induction assumption, R_2 is not an i-infant at C_{j-1} and by definition, it is not an i-infant at C_j as well. Otherwise, s_j is either the execution of line 3 or 8. In both cases, R_2 has an i-predecessor at C_{j-1} and by the induction assumption (invariant 2), it is not an i-infant at C_{j-1}. By definition, R_2 is not an i-infant at C_j.

4. Suppose R_1 is not i-reachable at C_{j-1}. By claim 66, R_1’s status at C_{j-1} is not $\textit{Removed}$ and therefore, by the induction assumption, R_1 must be an i-infant at C_{j-1}. By definition, s_j is the execution of line 25 for which $\textit{newRecord} \leadsto R_1$. Let R be the record for which $\textit{pred}_i \leadsto R$ at C_{j-1}. By the induction assumption (invariant 3), R is not an i-infant at C_{j-1}.

Let s_{j_1} be the execution of line 14 which obtains R’s i-th lock, and let $j_2 = j - 1$.

By definition, for every $j_1 \leq j' \leq j_2$, R is partially locked at $C_{j'}$. By claim 60, R’s status at C_{j_1} is equal to R’s status at C_{j_2}. Since there exists $j_1 \leq j' \leq j_2$ for which R’s status at $C_{j'}$ is $\textit{InTable}$ (the condition checked in line 16 must not hold for R), by claim 66, R’s status at C_{j-1} is $\textit{InTable}$. By the induction assumption, R is i-reachable at C_{j-1}. Since s_j only affects R’s i-successor, R is still i-reachable at C_j. By definition, R_1 is also i-reachable at C_j.

Now, suppose R_1 is i-reachable at C_{j-1}. By definition, there exist records $R_{i_0}, R_{i_1}, \ldots, R_{i_n}$ for which $R_{i_0} = \textit{head}$, $R_{i_n} = R_1$ and for every $0 < t \leq n$, R_{i_t} is the i-successor of $R_{i_{t-1}}$ at C_{j-1}. By definition, R_{i_0} is not an i-infant at C_{j-1}. In addition, by the induction assumption (invariant 2), for every $0 < t \leq n$, R_{i_t} is also not an i-infant at C_{j-1}.

Assume by contradiction that R_1 is not i-reachable at C_j. Let t be the minimal
number among 0, . . . , n for which \(R_{i_t} \) is not \(i \)-reachable at \(C_j \). Since \(R_1 \) is not \(i \)-reachable at \(C_j \) and head is always \(i \)-reachable by definition, 0 < \(t \) ≤ \(n \). Since \(R_{i_{t-1}} \) is still \(i \)-reachable at \(C_j \), \(R_{i_t} \) is no longer \(R_{i_{t-1}} \)'s \(i \)-successor at \(C_j \). Therefore, \(s_j \) is either the execution of line 25 or 47. Notice that \(s_j \) cannot be the execution of line 24, since by claim 65, this means that \(R_{i_{t-1}} \) is an \(i \)-infant at \(C_{j-1} \).

If \(s_j \) is the execution of line 25, then \(\text{pred}_i \sim R_{i_{t-1}} \) at \(C_j \). Notice that since \(R_{i_{t-1}} \)'s \(i \)-th lock is obtained in line 14, by claim 64, its \(i \)-successor when checking the condition in line 16 is equal to its \(i \)-successor at \(C_{j-1} \). Since \(R_{i_{t-1}} \)'s \(i \)-successor at \(C_{j-1} \) is \(R_{i_t} \), \(\text{curr}_i \sim R_{i_t} \) at \(C_{j-1} \) (as well as at \(C_j \)). Let \(R \) be the record for which \(\text{newRecord} \sim R \) at \(C_j \). Since \(R \) is \(R_{i_{t-1}} \)'s \(i \)-successor and \(R_{i_t} \) is \(R \)'s \(i \)-successor at \(C_j \) (since we obtain \(R \)'s \(i \)-th lock, by claim 64, \(R_{i_t} \) is \(R \)'s \(i \)-successor after the execution of line 24), by definition \(R_{i_t} \) is \(i \)-reachable at \(C_j \) - a contradiction.

If \(s_j \) is the execution of line 47, then \(\text{pred}_i \sim R_{i_{t-1}} \) at \(C_j \). Notice that since \(R_{i_{t-1}} \)'s \(i \)-th lock is obtained in line 39, by claim 64, its \(i \)-successor when checking the condition in line 40 is equal to its \(i \)-successor at \(C_{j-1} \). Since \(R_{i_{t-1}} \)'s \(i \)-successor at \(C_{j-1} \) is \(R_{i_t} \), \(\text{victim} \sim R_{i_t} \) at \(C_{j-1} \). Since \(R_{i_t} \)'s status after executing line 45 is \(\text{Removed} \), by claim 66, \(R_{i_t} \)'s status at \(C_j \) is also \(\text{Removed} \). Therefore, \(t < n \). Since \(R_{i_{t+1}} \) is \(R_{i_t} \)'s \(i \)-successor at \(C_{j-1} \), it is \(R_{i_{t-1}} \)'s \(i \)-successor at \(C_j \). In addition, since \(s_j \) only affects \(R_{i_{t-1}} \)'s next[i] field, by definition \(R_{i_t} \) is \(i \)-reachable at \(C_j \) - a contradiction.

We get a contradiction either when \(s_j \) is the execution of line 25 or the execution of line 47. Since these are the only possible options, \(R_1 \) is \(i \)-reachable at \(C_j \).

5. Suppose \(R_1 <_i R_2 \). Assume by contradiction that \(R_1 \) \(i \)-follows \(R_2 \) at \(C_j \). By definition, there exist records \(R_{i_0}, R_{i_1}, \ldots, R_{i_n} \) for which \(R_{i_0} = R_2 \) and for every 0 < \(t \) ≤ \(n \), \(R_{i_t} \) is the \(i \)-successor of \(R_{i_{t-1}} \) at \(C_{j-1} \). By the induction assumption (invariant 2), for every 0 < \(t \) ≤ \(n \), \(R_{i_t} \) is not an \(i \)-infant at \(C_{j-1} \). Therefore, by claim 67, for every 0 < \(t \) ≤ \(n \), either \(R_{i_{t-1}} <_i R_{i_t} \) or \(R_{i_t} <_i R_{i_{t-1}} \).

Since \(R_{i_n} <_i R_{i_0} \), there must exist a minimal \(t \) among 1, . . . , \(n \) for which \(R_{i_t} <_i R_{i_{t-1}} \). By the induction assumption, \(R_{i_t} \) does not \(i \)-follow \(R_{i_{t-1}} \) at \(C_{j-1} \) and thus, \(s_j \) updates \(R_{i_{t-1}} \)'s \(i \)-successor. Therefore, \(s_j \) is either the execution of line 24, 25 or 47.

If \(s_j \) is the execution of line 24 then \(\text{newRecord} \sim R_{i_{t-1}} \) and \(\text{curr}_i \sim R_{i_t} \) at \(C_j \). By claim 68, \(R_{i_{t-1}} \).data[i] ≤ \(R_{i_t} \).data[i]. Since \(R_{i_t} <_i R_{i_{t-1}} \), by definition \(R_{i_{t-1}} \).data[i] = \(R_{i_t} \).data[i] and there exists \(j' \) for which \(R_{i_t} \) is an \(i \)-infant at \(C_{j'} \) and \(R_{i_{t-1}} \) is not an \(i \)-infant at \(C_{j'} \). By claim 65, \(R_{i_{t-1}} \) is an \(i \)-infant at \(C_j \) (since line 25 has not been executed yet). Since \(R_{i_t} \) is not an \(i \)-infant at \(C_j \), there does not exist such \(j' \) - a contradiction.

If \(s_j \) is the execution of line 25 then \(\text{pred}_i \sim R_{i_{t-1}} \) and \(\text{newRecord} \sim R_{i_t} \) at \(C_j \). By claim 68, \(R_{i_{t-1}} \).data[i] < \(R_{i_t} \).data[i] and thus, \(R_{i_{t-1}} <_i R_{i_t} \) - a contradiction.
If \(s_j \) is the execution of line 47 then \(\text{pred}_i \rightsquigarrow R_{t_{i-1}} \). Let \(R \) be the record for which \(\text{victim} \rightsquigarrow R \) at \(C_j \). Then \(R_{t_i} \) is \(R \)'s \(i \)-successor at \(C_{j-1} \). By the induction assumption, \(R_{t_{i-1}} \prec_i R \) and \(R \prec_i R_{t_i} \). Since the \(\prec_i \) relation is a transitive relation by definition, \(R_{t_{i-1}} \prec_i R_{t_i} \) - a contradiction.

Since every possible case derives a contradiction, if \(R_1 \prec R_2 \) then \(R_1 \) does not \(i \)-follow \(R_2 \) at \(C_j \).

6. Since \(R_2 \) \(i \)-follows \(R_1 \) at \(C_{j-1} \), by the induction assumption (invariant 2), \(R_2 \) is not an \(i \)-infant at \(C_{j-1} \). Since \(R_2 \) \(i \)-follows \(R_1 \) at \(C_{j-1} \), by definition there exist records \(R_{t_0}, R_{t_1}, \ldots, R_{t_n} \) for which \(R_{t_0} = R_1, R_{t_n} = R_2 \) and for every \(0 < t \leq n \), \(R_{t_i} \) is the \(i \)-successor of \(R_{t_{i-1}} \) at \(C_{j-1} \). In addition, by the induction assumption (invariant 2), for every \(0 < t \leq n \), \(R_{t_i} \) is not an \(i \)-infant at \(C_{j-1} \).

Assume by contradiction that \(R_2 \) does not \(i \)-follow \(R_1 \) at \(C_j \). Let \(t \) be the minimal value among \(0, \ldots, n \) for which \(R_2 \) \(i \)-follows \(R_{t_i} \) at \(C_j \). Notice that since \(R_2 \) does not \(i \)-follow \(R_1 \) and does \(i \)-follow itself (by definition) at \(C_j \), \(0 < t \leq n \). Since \(R_2 \) does not \(i \)-follow \(R_{t_{i-1}} \) at \(C_j \), \(R_{t_i} \) is not the \(i \)-successor of \(R_{t_{i-1}} \) at \(C_j \) (and it does not \(i \)-follow it as well). Therefore, \(s_j \) is either the execution of line 24, 25 or 47.

Suppose \(s_j \) is the execution of line 24 for which \(\text{newRecord} \rightsquigarrow R_{t_{i-1}} \). That means that \(s_j \) is executed during the \(\text{add} \) execution for which \(R_{t_{i-1}} \) is created in line 10. Therefore, by claim 65, \(R_{t_{i-1}} \) is an \(i \)-infant at \(C_j \). By the induction assumption (invariant 3), there does not exist \(j'' < j \) such that \(s_{j''} \) updates \(R_{t_{i-1}} \)'s \(i \)-successor in line 25 or 47. In addition, since line 24 can be executed at most once during every \(\text{add} \) execution, \(R_{t_{i-1}} \)'s \(\text{next}[i] \) field is null at \(C_{j-1} \). Therefore, \(R_{t_i} \) is not the \(i \)-successor of \(R_{t_{i-1}} \) at \(C_{j-1} \) - a contradiction.

Suppose \(s_j \) is the execution of line 25, for which \(\text{pred}_i \rightsquigarrow R_{t_{i-1}} \) at \(C_j \). Notice that \(R_{t_{i-1}} \)'s \(i \)-th lock is held by the thread executing this \(\text{add} \) operation, since before executing line 16. By claim 64, the \(i \)-successor of \(R_{t_{i-1}} \) when executing line 16 is still its \(i \)-successor at \(C_{j-1} \). Therefore, \(\text{curr}_i \rightsquigarrow R_{t_i} \) at \(C_j \). Now let \(R \) be the record for which \(\text{newRecord} \rightsquigarrow R \) at \(C_j \). Since \(R \)'s \(i \)-successor after executing line 24 is \(R_{t_i} \), and since the executing thread holds \(R \)'s \(i \)-th lock, by claim 64, \(R_{t_i} \) is \(R \)'s \(i \)-successor at \(C_j \). Since \(R \) is \(R_{t_{i-1}} \)'s \(i \)-successor at \(C_j \), by definition, \(R_{t_i} \) \(i \)-follows \(R_{t_{i-1}} \) at \(C_j \) - a contradiction.

Suppose \(s_j \) is the execution of line 47 for which \(\text{pred}_i \rightsquigarrow R_{t_{i-1}} \). When checking the condition in line 40, \(R_{t_{i-1}} \)'s \(i \)-th lock is already obtained by the executing thread. Therefore, by claim 64, \(R_{t_{i-1}} \)'s \(i \)-successor at this point is equal to \(R_{t_{i-1}} \)'s \(i \)-successor at \(C_{j-1} \). Therefore, \(\text{victim} \rightsquigarrow R_{t_i} \) at \(C_j \). In addition, \(R_{t_{i+1}} \) is \(R_{t_{i-1}} \)'s \(i \)-successor at \(C_j \). Notice that indeed \(t < n \) in this case, since \(R_{t_i} \)'s status when executing line 45 is \(\text{Removed} \) (\(R_2 \)'s status at \(C_j \) is \(\text{InTable} \), and by claim 66, it cannot be \(\text{Removed} \) at an earlier configuration). Now, since \(R_{t_{i+1}} \) is \(R_{t_i} \)'s \(i \)-successor at \(C_j \), \(R_2 \) \(i \)-follows \(R_{t_{i+1}} \). Since \(R_{t_{i+1}} \) is \(R_{t_{i-1}} \)'s \(i \)-successor at \(C_j \), \(R_2 \)
also \(i\)-follows \(R_{i-1}\) at \(C_j\) - a contradiction.

Since every possible case derives a contradiction, \(R_2\) \(i\)-follows \(R_1\) at \(C_j\).

7. If \(R_1\) is an \(i\)-infant at \(C_{j-1}\) then \(s_j\) is the execution of line 25, for which \texttt{newRecord} \(\rightarrow\) \(R_1\). Let \(R\) be the record for which \(curr_i \rightarrow R\) at \(C_j\). Let \(s_{ji}\) be the execution of line 24 for which \(R\) becomes \(R_1\)'s \(i\)-successor. Since \(R_1\)'s \(i\)-th lock is held by the thread executing this \texttt{add} operation, by claim 64, \(R\) is also \(R_1\)'s \(i\)-successor at \(C_j\). By the induction assumption (invariant 3), \(R\) is not an \(i\)-infant at \(C_{j-1}\) and therefore, by the induction assumption, \(tail\) \(i\)-follows \(R\) at \(C_{j-1}\). Since \(s_j\) only affects \(R_1\)'s \texttt{next}[\(i\)] field (and by invariant 5, \(R_1\) is not in the path from \(R\) to \texttt{tail} at \(C_{j-1}\)), \texttt{tail} \(i\)-follows \(R\) at \(C_j\) as well. By definition, \(tail\) \(i\)-follows \(R_1\) at \(C_j\) in this case.

Now, suppose \(R_1\) is not an \(i\)-infant at \(C_{j-1}\). By the induction assumption, \(tail\) \(i\)-follows \(R_1\) at \(C_{j-1}\). By claim 62, \texttt{tail}'s status at \(C_j\) is \texttt{InTable} and thus, by invariant 6, \(tail\) \(i\)-follows \(R_1\) at \(C_j\) in this case as well.

Now, given a legal execution \(\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k\), we are able to show that all table invariants hold for \(\alpha\), using lemmas 70, 71, 72 and 74. Notice that being logically in the table is defined as having an \texttt{InTable} status and being \(i\)-reachable for every \(1 \leq i \leq N_T\).

Lemma 70. For every \(1 \leq i \leq N_T\) and \(0 \leq j \leq k\), \texttt{head} and \texttt{tail} are \(i\)-reachable at \(C_j\).

Proof. Since \texttt{head} is \(i\)-reachable at \(C_j\) by definition, we only need to show that \texttt{tail} is \(i\)-reachable at \(C_j\). By claim 62, \texttt{tail}'s status at \(C_j\) is \texttt{InTable}. In addition, by definition, \texttt{tail} is not an \(i\)-infant at \(C_j\). By claim 69 (invariant 4), \texttt{tail} is \(i\)-reachable at \(C_j\). \(\square\)

Lemma 71. Let \(R\) be a record and let \(0 \leq j \leq k\). \(R\) is logically in the table if and only if its status is \texttt{InTable}.

Proof. By definition, if \(R\) is logically in the table at \(C_j\) then its status is \texttt{InTable} at \(C_j\). Therefore, we only need to show the opposite direction. Assume that \(R\)'s status at \(C_j\) is \texttt{InTable}. In order to show that \(R\) is logically in the table, we need to show that for every \(1 \leq i \leq N_T\), \(R\) is \(i\)-reachable at \(C_j\).

Let \(1 \leq i \leq N_T\). Assume by contradiction that \(R\) is an \(i\)-infant at \(C_j\). Since records are created with a \texttt{Pending} status, \(R\)'s status has already been changed in line 26. Before executing line 26, \(R\) ceased being an \(i\)-infant at \(C_j\) (when line 25 was executed during the \(i\)-th loop iteration) - a contradiction. Therefore, \(R\) is not an \(i\)-infant at \(C_j\). Since its status is not \texttt{Removed} at \(C_j\), by claim 69 (invariant 4), \(R\) is \(i\)-reachable at \(C_j\). \(\square\)

Lemma 72. Let \(R_1\) and \(R_2\) be two different records, let \(0 \leq j \leq k\) and let \(1 \leq i \leq N_T\). If \(R_2\) \(i\)-follows \(R_1\) then \(R_1 <_i R_2\).
Proof. By claim 69 (invariant 2), R_2 is not an i-infant at C_j and thus, by claim 67, either $R_1 <_i R_2$ or $R_2 <_i R_1$. By claim 69 (invariant 5), $R_1 <_i R_2$.

Claim 73. Let R_1 and R_2 be two records, let $0 \leq j \leq k$ and let $1 \leq i \leq N_T$ such that i is a unique field number. If R_2 is the i-successor of R_1 at C_j then $R_1.data[i] < R_2.data[i]$.

Proof. We are going to prove claim 73 by induction. The lemma holds for C_0 since $\text{head.data}[i] < \text{tail.data}[i]$ for every $1 \leq i \leq N_T$.

Now, assume that the lemma holds for every $j' < j$ and $1 \leq i \leq N_T$ such that i is a unique field number. Let $1 \leq i \leq N_T$ such that i is a unique field number. We are going to show that the lemma holds for i and j. Let R_1 and R_2 be two records such that R_2 is the i-successor of R_1 at C_j. In particular, R_2 i-follows R_1 at C_j. Therefore, by lemma 72, $R_1.data[i] \leq R_2.data[i]$. Assume by contradiction that $R_1.data[i] = R_2.data[i]$. By the induction assumption, R_2 is not the i-successor of R_1 at C_{j-1}. Therefore, s_j is either the execution of line 24, 25 or 47.

If s_j is the execution of line 24 then $\text{newRecord} \sim R_1$ and $\text{curr}_i \sim R_2$ at C_j. Since this line is executed and i is a unique field number, the condition in line 19 must not hold for R_1, R_2. Therefore, $R_1.data[i] \neq R_2.data[i]$ - a contradiction. If s_j is the execution of line 25 then $\text{pred}_i \sim R_1$ and $\text{newRecord} \sim R_2$ at C_j. By claim 68, $R_1.data[i] < R_2.data[i]$ - a contradiction. If s_j is the execution of line 47 then $\text{pred}_i \sim R_1$ and $\text{victim} \sim R_2$ at C_j. By claim 68, $R_1.data[i] < R_2.data[i]$ - a contradiction.

Since every case derives a contradiction, $R_1.data[i] \neq R_2.data[i]$. Therefore, if R_2 is the i-successor of R_1 at C_j, then $R_1.data[i] < R_2.data[i]$.

Lemma 74. Let R_1 and R_2 be two records, let $0 \leq j \leq k$ and let $1 \leq i \leq N_T$ such that i is a unique field number. If both R_1 and R_2 are i-reachable at C_j then $R_1.data[i] \neq R_2.data[i]$.

Proof. Assume by contradiction that there exist two records R_1 and R_2 such that both R_1 and R_2 are i-reachable at C_j and $R_1.data[i] = R_2.data[i]$. By claim 59, either R_1 i-follows R_2 or R_2 i-follows R_1 at C_j. Without loss of generality, we assume that R_2 i-follows R_1 at C_j. By definition, there exist records R_{i_0}, \ldots, R_{i_n} such that $R_{i_0} = R_1$, $R_{i_n} = R_2$ and for every $0 < t \leq n$, R_{i_t} is the i-successor of $R_{i_{t-1}}$ at C_j. Since $R_1.data[i] = R_2.data[i]$, by lemma 72, $R_{i_0}.data[i] = R_{i_n}.data[i]$ - a contradiction to claim 73. Therefore, if both R_1 and R_2 are i-reachable at C_j then $R_1.data[i] \neq R_2.data[i]$.

4.2.2 Linearizability proof

We are now going to show that our lock-based table is linearizable. Let $\alpha = C_0 \cdot s_1 \cdot C_1 \cdot s_2 \cdot C_2 \cdot \ldots \cdot s_k \cdot C_k$ be a legal execution. As in the lock-free version, we are going to define linearization points for each of the add, remove and retrieve operations, terminated before C_k. Notice that here, we also define a linearization point for the find executions, since the linearization points of some of the table operations rely on them.
find Assume a find\textit{(val, i)} execution was invoked at \(s_{j_1}\) and returned at \(s_{j_2}\) (\(0 < j_1 < j_2 \leq k\)), and let \(R_1\) and \(R_2\) be the two records returned as output from this call (respectively). We are going to show that there exists a configuration \(C_j\), which is between the invocation and termination of this call, for which \(R_1\) is \(i\)-reachable and \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_j\). In order to do so, we are going to use claims 75, 76 and 77.

Claim 75. Let \(R\) be a record, \(0 \leq j \leq k\) and \(1 \leq i \leq N_T\). If \(R\)'s status at \(C_j\) is Removed then \(R\)'s \(i\)-successor at \(C_j\) is equal to \(R\)'s \(i\)-successor at \(C_{j-1}\).

Proof. The claim is vacuously true at \(C_0\). Now assume that the claim holds for \(0, \ldots, j-1\). We are going to prove by induction on \(j\) that the claim still holds for \(j\). Assume by contradiction that \(R\)'s status at \(C_j\) is Removed and that \(R\)'s \(i\)-successor at \(C_j\) is different from \(R\)'s \(i\)-successor at \(C_{j-1}\). Then \(s_j\) is either the execution of line 24, 25 or 47.

If \(s_j\) is the execution of line 24, then newRecord \(\Rightarrow\) \(R\). Since records are created with a Pending status, by claim 66, there exists \(j' < j\) for which \(R\)'s status at \(C_{j'}\) is InTable. Notice that a record's status can only become InTable after the execution of line 26 during the add execution for which it was created in line 10. Since \(R\) was created in line 26 of the current add execution, this means that line 24 cannot be executed at \(s_j\) - a contradiction.

If \(s_j\) is the execution of line 25 then pred\(_i\) \(\Rightarrow\) \(R\) at \(C_j\). When executing line 16 during the \(i\)-th loop iteration, \(R\)'s status is InTable. \(R\) is partially locked since before the execution of line 16, and until \(C_j\). Therefore, by claim 60, \(R\)'s status at \(C_j\) is also InTable - a contradiction.

If \(s_j\) is the execution of line 47 then then pred\(_i\) \(\Rightarrow\) \(R\) at \(C_j\). When executing line 40, during the \(i\)-th loop iteration, \(R\)'s status is InTable. \(R\) is partially locked since before the execution of line 40, and until \(C_j\). Therefore, by claim 60, \(R\)'s status at \(C_j\) is also InTable - a contradiction.

Since each possible case derives a contradiction, if \(R\)'s status at \(C_j\) is Removed then \(R\)'s \(i\)-successor at \(C_j\) is equal to \(R\)'s \(i\)-successor at \(C_{j-1}\). \(\square\)

Claim 76. There exists \(j_1 < j < j_2\) for which \(R_1\) is \(i\)-reachable at \(C_j\).

Proof. If \(R_1 = head\) then by definition, it is \(i\)-reachable for every \(j_1 < j < j_2\) and we are done. Otherwise, We are going to prove that each record which is referenced by the pred local variable during the execution is \(i\)-reachable at some point during the execution (and in particular, \(R_1\)). Since the execution terminates, there is a finite series of records \(R_{t_0}, R_{t_1}, \ldots, R_{t_n}\) which are assigned into the pred local variable during the execution. Let \(s_{t_0}, s_{t_1}, \ldots, s_{t_n}\) be the steps assigning them into the pred variable, respectively \((t_0 < t_1 < \ldots < t_n)\). Notice that \(R_{t_0} = head\) and that \(s_{t_0}\) is the execution of line 2. In addition, \(R_{t_n} = R_1\) and \(s_{t_n}\) is the last execution of line 7 during the method execution.

We are going to prove by induction on \(m\) that there exists \(j_1 < j < t_m\) for which \(R_{t_m}\) is \(i\)-reachable at \(C_j\).
Base Case \((m = 0)\): By definition, \(R_{t_0}\) is \(i\)-reachable at \(C_{t_0}\).

Induction Step: Assume that there exists \(j_1 < j' \leq t_{m-1}\) for which \(R_{t_m}\) is \(i\)-reachable at \(C_{j'}\). If \(R_{t_m}\) is \(R_{t_{m-1}}\)'s \(i\)-successor at \(C_{j'}\), then we are done. Otherwise, let \(j' < j \leq t_m\) be the minimal value for which \(R_{t_m}\) is \(R_{t_{m-1}}\)'s \(i\)-successor at \(C_{j}\). Notice that since \(R_{t_m}\) is \(R_{t_{m-1}}\)'s \(i\)-successor at \(C_{t_m}\), \(j\) must exist. By claim 69 (invariant 3), \(R_{t_{m-1}}\) is not an \(i\)-infant at \(C_{j'}\) and thus, not an \(i\)-infant at \(C_{j}\). In addition, by the minimality of \(j\), \(R_{t_{m-1}}\)'s \(i\)-successor at \(C_{j}\) is different from its \(i\)-successor at \(C_{j-1}\). Therefore, by claim 75, \(R_{t_{m-1}}\)'s status at \(C_{j}\) is not Removed. By claim 69 (invariant 4), \(R_{t_{m-1}}\) is \(i\)-reachable at \(C_{j}\) and thus, \(R_{t_m}\) is also \(i\)-reachable at \(C_{j}\).

\[\square\]

Claim 77. There exists \(j_1 < j < j_2\) for which \(R_1\) is \(i\)-reachable and \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_{j}\).

Proof. Let \(s_{j'}\) be the assignment of \(R_2\) into the method’s curr local variable. Then \(s_{j'}\) must be either the execution of line 3 or 8. In both cases, \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_{j'}\).

If \(R_1\) is \(i\)-reachable at \(C_{j'}\) then we are done (by setting \(j = j'\)). Otherwise, by claim 76, there exists \(j_1 < j'' \leq j'\) for which \(R_1\) is \(i\)-reachable at \(C_{j''}\).

If \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_{j''}\), then we are done. Otherwise, let \(j'' < j \leq j'\) be the minimal value for which \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_{j}\). Notice that since \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_{j'}\), \(j\) must exist. By claim 69 (invariant 3), \(R_1\) is not an \(i\)-infant at \(C_{j''}\) and thus, not an \(i\)-infant at \(C_{j}\). In addition, by the minimality of \(j\), \(R_1\)'s \(i\)-successor at \(C_{j}\) is different from its \(i\)-successor at \(C_{j-1}\). Therefore, by claim 75, \(R_1\)'s status at \(C_{j}\) is not Removed. By claim 69 (invariant 4), \(R_1\) is \(i\)-reachable at \(C_{j}\). In addition, \(R_2\) is \(R_1\)'s \(i\)-successor at \(C_{j}\).

\[\square\]

The configuration \(C_j\), guaranteed by claim 77, is the linearization point of every find execution that has terminated.

add We are going to define the linearization points of each add(tup) execution that has terminated during \(\alpha\). The definitions of successful and unsuccessful executions remain the same as in Section 4.1.

Claim 78. Given an add(tup) operation which was invoked at \(s_{j_1}\) and terminated at \(s_{j_2}\) \((0 < j_1 < j_2 \leq k)\), let \(R\) be the record created in line 10 (meaning, newRecord \(\rightarrow R\) during the execution). If the operation returned true then there exists \(j_1 < j < j_2\) for which \(R\) is logically in the table at \(C_j\).

Proof. The operation returned true in line 27. Let \(s_j\) be the execution of line 26. Obviously, \(j_1 < j < j_2\) and \(R\)'s status at \(C_j\) is InTable.

\[\square\]

We define the linearization point of a successful add(tup) execution that has terminated to be \(C_j\), described in claim 78. From claim 78, it is guaranteed that the new record
created during the operation, and which represents the tuple \(\text{tup} \), has been logically added into the table during the execution.

Given an unsuccessful \(\text{add}(\text{tup}) \) operation, we want to set a linearization point which is between the invocation and the termination of the operation, for which a record representing \(\text{tup} \) cannot be logically inserted into the table. Formally, let \(\text{tup} = (e_1, \ldots, e_{N_T}) \) and let \(i \in \{1, \ldots, N_T\} \) be a unique field number. We want to show that at the linearization point there exists a record \(R' \) which is not the record created in line 10 during the operation, satisfying \(R'.\text{data}[i] = e_i \), and is logically in the table during that linearization point.

Claim 79. Given an \(\text{add}(\text{tup}) \) operation which was invoked at \(s_{j_1} \) and terminated at \(s_{j_2} \) (\(0 < j_1 < j_2 \leq k \)), let \(R \) be the record created in line 10 (meaning, newRecord \(\leadsto \) \(R \) during the execution). If the operation returned \(\text{false} \) then there exist (1) \(j_1 < j < j_2 \), (2) \(i \in \{1, \ldots, N_T\} \) for which \(i \) is a unique field number, and (3) a record \(R' \neq R \) whose status is \(\text{InTable} \) at \(C_j \) and for which \(R'.\text{data}[i] = R.\text{data}[i] \).

Proof. The operation returned \(\text{false} \) in line 21. Let \(R' \) be the record for which the conditions checked in line 19 and 20 held before returning. In addition, let \(s_j \) be the execution of line 20. Obviously, \(j_1 < j < j_2 \), and the status of \(R' \) at \(C_j \) is \(\text{InTable} \). In addition, there exists \(i \in \{1, \ldots, N_T\} \) for which \(i \) is a unique field number and \(R'.\text{data}[i] = R.\text{data}[i] \). Therefore, \(j \) satisfies all of the needed conditions.

We define the linearization point of an unsuccessful \(\text{add}(\text{tup}) \) execution that has terminated to be \(C_j \), described in claim 79. From claim 79, it is guaranteed that inserting the new record into the table at \(C_j \) would break the uniqueness property of our table.

remove The definitions of successful and unsuccessful \(\text{remove} \) executions remain the same as in Section 4.1 as well.

Assume a successful \(\text{remove}(\text{val}, i) \) was invoked at \(s_{j_1} \) and returned at \(s_{j_2} \). Let \(R \) be the record found in line 29 (meaning, \(\text{victim} \leadsto R \) throughout the execution). We want to set a linearization point \(s_j \) for which \(j_1 < j < j_2 \), and \(s_j \) is an operation step that logically removes \(R \) from the table.

Notice that, since the operation returns in line 48, we can choose \(s_j \) to be the execution of line 45, setting the record’s status to \(\text{Removed} \). The only thing we still need to show that the record’s status is indeed \(\text{InTable} \) before this step (meaning, by lemma 71, this step logically removes the record from the table). We are going to show it in claim 80.

Claim 80. Let \(s_j \) be the execution of line 45 and let \(R \) be the record for which \(\text{victim} \leadsto R \) at \(C_j \). Then \(R \)'s status at \(C_{j-1} \) is \(\text{InTable} \).

Proof. When executing line 43, \(R \)'s status is \(\text{InTable} \). Since all of \(R \)'s locked are obtained by the executing thread before executing line 43, by claim 61, \(R \)'s status at \(C_{j-1} \) is also \(\text{InTable} \).
Now, assume that an unsuccessful remove(val,i) operation was invoked at s_{j_{1}} and returned at s_{j_{2}} (0 < j_{1} < j_{2} \leq k). We want to set a linearization point C_{j} between the invocation and termination of the operation (j_{1} < j < j_{2}), for which there does not exist a record that can be removed by the operation (meaning, the operation failure is justified). An unsuccessful remove returns either in line 31, 38 or 44. We are going to set different linearization points, based on the line in which the operation returns.

If the operation returns in line 31, let R_{1} and R_{2} be the records for which pred \rightsquigarrow R_{1} and victim \rightsquigarrow R_{2} at C_{j_{2}−1}. In addition, let C_{j} be the linearization point of the find call, invoked in line 29. Obviously, j_{1} < j < j_{2}.

Claim 81. There does not exist a record R whose data[i] = val.

Proof. By claim 77, R_{1} is i-reachable and R_{2} is R_{1}’s i-successor at C_{j} (meaning, R_{2} is i-reachable at C_{j} as well). By claim 68, R_{1}.data[i] < val \leq R_{2}.data[i]. Now, assume by contradiction that there exists a record R which is logically in the table at C_{j} and for which R.data[i] = val. In particular, R is i-reachable at C_{j}.

If the operation returns because R_{2}.data[i] \neq val, then val < R_{2}.data[i]. By claim 59, either R i-follows R_{1} or R_{1} i-follows R at C_{j}. In addition, either R i-follows R_{2} or R_{2} i-follows R at C_{j}. By lemma 72, R i-follows R_{1} and R_{2} i-follows R at C_{j}. Since R_{2} is R_{1}’s i-successor at C_{j}, we get a contradiction.

Otherwise, if R_{2}.data[i] = val then the operation returns because R_{2}’s status at C_{j} is not InTable. By lemma 74, if R \neq R_{2} then R is not i-reachable at C_{j}. Therefore, R \neq R_{2}, meaning R’s status at C_{j} is not InTable - a contradiction.

Since every possible case derives a contradiction, there does not exist a record R which is logically in the table at C_{j} and for which R.data[i] = val. \quad \square

By claim 81, if the operation returns in line 31 then there does not exist a record that can be logically removed from the table at C_{j}. Therefore, C_{j} is the operation’s linearization point in this case.

Now, suppose the operation returns in line 38. Let R_{-1} be the record assigned into the pred_{m} local variable and let R_{0}, R_{1}, \ldots, R_{n} be the records assigned into the curr_{m} local variable during the last loop iteration (the one during which the operation returns in line 38). In addition, let C_{i_{0}} be the linearization point of the find(victim.data[m], m) execution, called in line 34 and let s_{t_{1}}, s_{t_{2}}, \ldots, s_{t_{n}} be the steps assigning R_{1}, R_{2}, \ldots, R_{n} into curr_{m}, respectively (j_{1} < t_{0} < t_{1} < \ldots < t_{n} < j_{2}). Finally, let R be the record for which victim \rightsquigarrow R.

Claim 82. There exists j_{1} < j \leq t_{n} for which R’s status is Removed and R is i-reachable at C_{j}.

Proof. Since the operation returns in line 38, the condition checked in line 30 holds for R. Therefore, there exists j_{1} < j’ < t_{0} for which R’s status is InTable at C_{j’}. By lemma 71, R is both i-reachable and m-reachable at C_{j’}.
Let s_j be the execution of line 30. Assume by contradiction that R’s status is InTable at C_j for every $j'' < j \leq t_n$. By lemma 71, R is m-reachable at C_j for every $t_0 \leq j \leq t_n$. In particular, it is m-reachable at C_{t_0}. By claim 77, both R_{-1} and R_0 are m-reachable and at C_{t_0}. In addition, by claim 68, $R_{-1}.data[m] < R.data[m] \leq R_0.data[m]$. Since R is also m-reachable at C_{t_0}, by claim 59 and lemma 72, it must m-follow R_{-1} at C_{t_0}. Since $R \neq R_0$ and R_0 is R_{-1}’s m-successor at C_{t_0}, R m-follows R_0 at C_{t_0} as well. By claim 69 (invariant 5), $R.data[m] = R_0.data[m]$ and thus, $n > 0$.

Let a be the minimal number among 0, 1, …, n for which R does not m-follows R_a at C_{t_a}. Notice that since R m-follows R_0 at C_{t_0}, $a > 0$. In addition, since $R_n.data[m] \neq R.data[m]$ and $R_{n-1}.data[m] = R.data[m]$, by lemma 72, $R_n.data[m] > R.data[m]$. Therefore, by claim 69 (invariant 5), R cannot m-follow R_n at C_{t_n} and thus, $a \leq n$.

Since R m-follows R_{a-1} at $C_{t_{a-1}}$ and R’s status at C_{t_a} is InTale, by claim 21 (invariant 6), R m-follows R_{a-1} at C_{t_a} as well. Since R does not m-follow R_a at C_{t_a} and R_a is R_{a-1}’s m-successor at C_{t_a}, we get a contradiction.

Therefore, there exists $j'' < j \leq t_n$ for which R’s status is not InTable at C_j. Let j be the minimal number among j'', $j'' + 1, \ldots, t_n$ for which it holds. Since R’s status at C_j is InTable, by claim 66, R’s status at C_j is Removed. By lemma 71, R is i-reachable at C_{j-1}. Since s_j only changes R’s status, R is also i-reachable at C_j. Therefore, there exists $j_1 < j \leq t_n$ for which R’s status is Removed and R is i-reachable at C_j.

By claim 82, if the operation returns in line 38, there exists $j_1 < j \leq t_n$ for which R’s status is Removed and R is i-reachable at C_j. Since $R.data[i] = val$, by lemma 74, there does not exist a record R' which is logically in the table at C_j and for which $R'.data[i] = val$. Therefore, C_j can serve as the operation’s linearization point in this case.

We still need to define the operation’s linearization point when it returns in line 44. In this case, let R be the record for which victim $\rightsquigarrow R$ throughout the execution. Then $R.data[i] = val$. In addition, since the operation returns in line 44, R’s status when executing line 30 is InTable and R’s status when executing line 43 is not InTable. By claim 66, R’s status when executing line 43 is Removed. Therefore, there exists $j_1 < j < j_2$ for which s_j changes R’s status from InTable to Removed. By lemma 71, R is i-reachable at C_{j-1}. Since s_j only changes R’s status, R is also i-reachable at C_j. Since $R.data[i] = val$, by lemma 74, there does not exist a record R' which is logically in the table at C_j and for which $R'.data[i] = val$. Therefore, C_j can serve as the operation’s linearization point in this case.

retrieve Assume a retrieve(val, i) execution, invoked at s_{j_1} and terminated at s_{j_2} (returning a set S of tuples). We want to set a linearization point C_j for which (1) $j_1 < j < j_2$, (2) for every record R satisfying $R.data[i] = val$, it holds that $R.data \in S$ if and only if R is logically in the table at C_j.

Here we also set different linearization points according to the last step executed
before the operation terminates. We start with the case when the operation returns in line 54. Let \(C_j \) be the linearization point of the \texttt{find}(\texttt{val}, \texttt{i}) execution, called in line 52 (obviously, \(j_1 < j < j_2 \)), and let \(R_0 \) and \(R_1 \) be the two records returned from this call (meaning, \(\texttt{pred} \leadsto R_0 \) and \(\texttt{curr} \leadsto R_1 \)). By claim 68, \(R_0.data[i] < \texttt{val} \leq R_1.data[i] \). Since the operation returns in line 54, \(\texttt{val} < R_1.data[i] \). By claim 77, \(R_0 \) is \(i \)-reachable and \(R_1 \) is \(R_0 \)'s \(i \)-successor at \(C_j \).

Assume by contradiction that there exists a record \(R \) which is logically in the table at \(C_j \) and for which \(R.data[i] = \texttt{val} \). In particular, \(R \) is \(i \)-reachable at \(C_j \). By claim 59 and claim 69 (invariant 11), \(R \) \(i \)-follows \(R_0 \) at \(C_j \). Since \(R.data[i] < R_1.data[i] \), by claim 69 (invariant 5), \(R \) does not \(i \)-follow \(R_1 \) at \(C_j \) - a contradiction.

Therefore, the empty set (returned in line 54) is indeed the set of all tuples \(R.data \) such that \(R \) is logically in the table at \(C_j \) and \(R.data[i] = \texttt{val} \). In the case when the operation returns in line 54, \(C_j \) (as described above) is its linearization point.

Now, suppose the operation returns in line 54, \(C_j \) (as described above) is its linearization point. We start with the case when the operation returns in line 59. We choose \(C_j \) to be the linearization point of the operation in this case. Obviously, \(j_1 < j < j_2 \).

\textbf{Claim 83.} Let \(R \) be a record for which \(R.data[i] = \texttt{val} \). Then \(R \) is logically in the table at \(C_j \) if and only if there exists \(1 \leq t \leq n - 1 \) such that \(R = R_t \).

\textbf{Proof.} First, we are going to show that for every \(1 \leq t \leq n - 1 \), \(R_t.data[i] = \texttt{val} \) and \(R_t \) is logically in the table at \(C_j \). Let \(1 \leq t \leq n - 1 \). The condition checked in line 60 does not hold for \(R_t \) and therefore. Since we obtain \(R_t \)'s \(i \)-th lock before checking its status, by claim 61, \(R_t \)'s status at \(C_j \) is InTable. By lemma 71, \(R_t \) is logically in the table at \(C_j \). In addition, since \(1 \leq t \leq n - 1 \), the condition checked in line 58 holds for \(R_t \) and thus, \(R_t.data[i] = \texttt{val} \).

Now, we are going to show that for every record \(R \) such that \(R.data[i] = \texttt{val} \), if there does not exist \(1 \leq t \leq n \) such that \(R = R_t \) then \(R \) is not logically in the table at \(C_j \). Assume by contradiction that there exists a record \(R \) such that \(R.data[i] = \texttt{val} \) and \(R \) is logically in the table at \(C_j \). In particular, \(R \) is \(i \)-reachable at \(C_j \) and by claim 59, either \(R \) \(i \)-follows \(R_1 \) or \(R_1 \) \(i \)-follows \(R \) at \(C_j \).

Since the condition checked in line 56 does not hold for \(R_0 \) and \(R_1 \), and since \(R_0 \)'s \(i \)-th lock is obtained before this condition is checked, by claims 61 and 64, \(R_0 \)'s status at \(C_j \) is InTable and \(R_1 \) is \(R_0 \)'s \(i \)-successor at \(C_j \). By lemma 71, \(R_0 \) is \(i \)-reachable at \(C_j \) as well. By claim 68, \(R_0.data[i] < \texttt{val} \) and thus, by claim 69 (invariant 5), \(R_0 \) cannot \(i \)-follow \(R \). Since \(R \neq R_1 \), \(R \) does not \(i \)-follow \(R_1 \) at \(C_j \).

Since either \(R \) \(i \)-follows \(R_1 \) or \(R_1 \) \(i \)-follows \(R \) at \(C_j \), \(R \) must \(i \)-follow \(R_1 \) at \(C_j \). Notice that for every \(1 \leq t \leq n - 1 \), \(R_t \)'s \(i \)-th lock is obtained in line 59 before we read its \(i \)-successor in line 63. Therefore, by claim 64, for every \(1 \leq t \leq n - 1 \), \(R_{t+1} \) is still \(R_t \)'s
We define a circular wait as a situation where a set of waiting threads, {t₁, t₂, . . . , tₙ}, such that t₁ is waiting for a lock held by t₂, t₂ is waiting for a lock held by t₃ and so on until tₙ is waiting for a lock held by t₁. We are going to show that a circular wait cannot occur during any legal execution.

In order to do so, we use a partial order <₁ of locks and make sure that lock l₁ is never acquired before a lock l₀ <₁ l₁ (unless l₁ is released before trying to acquire l₀).

We define <₁ by saying that R₀.locks[i₀] <₁ R₁.locks[i₁] if either i₀ < i₁, or i₀ = i₁ and R₀ <₁ R₁. Notice that since <₁ is a constant order (i.e., if R <₁ R′ then it will never reach a state where R′ <₁ R), <₁ is a constant order as well.

Notice that all acquired locks are released before returning from a table operation (lines 21, 27, 31, 38, 44, 48 and 64) or starting a new operation trial (lines 17, 22, 41, 57 and 61). Therefore, we only need to show that during an operation trial, locks are acquired according to <₁. Let α = C₀ · s₁ · C₁ · s₂ · C₂ · . . . · sₖ · Cₖ be a legal execution, let R₁ and R₂ be two records, let sⱼ₁ be the acquirement of R₁’s i₁-th lock and let sⱼ₂ be the acquirement of R₂’s i₂-th lock, by the same thread (0 < j₁ < j₂ ≤ k).

Claim 85. If sⱼ₁ and sⱼ₂ are executed during the same add trial then R₁.locks[i₁] <₁ R₂.locks[i₂].

Proof. Notice that locks are only acquired in lines 14-15. If sⱼ₁ and sⱼ₂ are executed during different loop iterations, then i₁ < i₂ and by definition, R₁.locks[i₁] <₁ R₂.locks[i₂]. Otherwise, i₁ = i₂, pred_i₁ ∼ R₁ and newRecord ∼ R₂. Since R₁ is the first output parameter, returned from the find(newRecord.data[i₁], i₁) call in line 13, by claim 68, R₁.data[i₁] < R₂.data[i₁]. By definition, R₁ <₁ R₂ and thus, R₁.locks[i₁] <₁ R₂.locks[i₂].
Claim 86. If \(s_{j_1} \) and \(s_{j_2} \) are executed during the same \textit{remove} trial then \(R_1.locks[i_1] \prec_i R_2.locks[i_2] \).

\textbf{Proof.} Notice that locks are only acquired in lines 39 and 42. If \(s_{j_1} \) and \(s_{j_2} \) are executed during different loop iterations, then \(i_1 \prec_i i_2 \) and by definition, \(R_1.locks[i_1] \prec_i R_2.locks[i_2] \). Otherwise, \(i_1 = i_2 \), \(\text{pred}_i \mapsto R_1 \) and \(\text{victim} \mapsto R_2 \). Since \(R_1 \) is the first output parameter, returned from the \textit{find} call (victim.data[i_1], i_1) in line 34, by claim 68, \(R_1.data[i_1] < R_2.data[i_1] \). By definition, \(R_1 \prec_i R_2 \) and thus, \(R_1.locks[i_1] \prec_i R_2.locks[i_2] \). \(\square \)

Claim 87. If \(s_{j_1} \) and \(s_{j_2} \) are executed during the same \textit{retrieve} trial then \(R_1.locks[i_1] \prec_i R_2.locks[i_2] \).

\textbf{Proof.} Notice that locks are only acquired in lines 55 and 59. In addition, it must hold that \(i_1 = i_2 \). If \(\text{pred} \mapsto R_1 \) then by claim 68, \(R_1.data[i_1] < \text{val} \). Since \(R_2 \)'s \(i_1 \)’s lock is acquired in line 59, \(R_2.data[i_1] = \text{val} \). By definition, \(R_1 \prec_i R_2 \) and thus, \(R_1.locks[i_1] \prec_i R_2.locks[i_2] \).

Otherwise, \(R_1 \) and \(R_2 \)'s \(i_1 \)-th locks are acquired in line 59. If \(R_1 \) is the second output parameter, returned from the \textit{find} called in line 52, then by claim 69 (invariant 3), \(R_1 \) is not an \(i_1 \)-infant at \(C_{j_2} \). Otherwise, \(R_1 \) has an \(i_1 \)-predecessor when assigned into the \textit{curr} local variable in line 63, and by claim 69 (invariant 2), \(R_1 \) is not an \(i_1 \)-infant at \(C_{j_2} \) in this case as well. From the same reason, \(R_2 \) is also not an \(i_1 \)-infant at \(C_{j_2} \). Therefore, by claim 67, either \(R_1 \prec_i R_2 \) or \(R_2 \prec_i R_1 \).

Assume by contradiction that \(R_1.locks[i_1] \prec_i R_2.locks[i_2] \) does not hold. By definition, \(R_1 \prec_i R_2 \) does not hold and thus, \(R_2 \prec_i R_1 \). Let \(R_{k_1}, \ldots, R_{k_n} \) be the records assigned into the \textit{curr} local variable during the execution trial, starting from \(R_1 \) and ending with \(R_2 \) (meaning, \(R_{k_0} = R_1 \) and \(R_{k_n} = R_2 \)). For every \(1 \leq t \leq n \), when \(R_{k_t} \) is assigned into the \textit{curr} local variable, \(R_{k_{t-1}} \)'s \(i_1 \)-th lock is already obtained and \(R_{k_t} \) is \(R_{k_{t-1}} \)'s \(i_1 \)-successor. Since all locks are still held when \(R_{k_t} \)'s \(i_1 \)-th lock is obtained, by claim 64, for every \(1 \leq t \leq n \), \(R_{k_t} \) is still \(R_{k_{t-1}} \)'s \(i_1 \)-successor at this point. Therefore, by definition, \(R_2 \) \(i_1 \)-follows \(R_1 \) at this point.

Using claim 69 (invariant 5), we get a contradiction to the fact that \(R_2 \prec_i R_1 \). Therefore, \(R_1 \prec_i R_2 \) and \(R_1.locks[i_1] \prec_i R_2.locks[i_2] \) in this case as well. \(\square \)

By claims 85, 86 and 87, during every table operation trial, locks are acquired according to \(\prec_i \). Since the \(\prec_i \) relation is anti-symmetric by definition, a deadlock situation can never occur. We end our deadlock-freedom proof with the following theorem:

\textbf{Theorem 88.} The implementation given in Figure 3.6, 3.7, 3.8 and 3.9 is a deadlock-free implementation of a lock-based table.
Chapter 5

Measurements

We compared the performance of our lock-free and lock-based table against each other, and against a global lock-based table (using coarse-grained locking) and an STM table (using software transactional memory as the synchronization tool). All implementations use the skip-list optimization of Section 3.4.

![Throughput graphs](image)

Figure 5.1: Throughput graphs. The x-axis is the number of threads. The y-axis is the throughput in 10^6 operations per second.

Methodology Each experiment consists of 10 trials. A trial is a run in which each thread executes randomly chosen operations drawn from the workload distribution, on a table consisting of two unique fields and three non-unique fields. We ran four experiments. In the first two experiments, unique fields were selected uniformly at random from the range $[0, 255]$, and in the last two experiments, from the range $[0, 10^6 - 1]$. For creating repetitions in the non-unique fields (which yields a realistic table content), they were
selected uniformly at random from the range $[0, 63]$ for the first two experiments, and
from the range $[0, 25 \cdot 10^4 - 1]$ for the last two experiments. The table was initiated
with 128 records in the first two experiments and with $5 \cdot 10^5$ records in the latter
two experiments. The graphs present the average throughput (operations executed per
millisecond) over all trials. We used two workloads distributions: one with 90% retrieve,
5% add and 5% remove operations, and the other with 50% retrieve, 25% add and 25%
remove operations. Missing points in Figure 5.1 represent inefficient executions that did
not complete within an hour.

We ran our experiments on a machine with 4 AMD Opteron(TM) 6376 2.3GHz
processors, each with 16-core processors (64 threads overall). All implementations
are in Java. We used Java’s AtomicMarkableReference for the lock-free variant and
Java’s ConcurrentSkipListSet (e.g. [JCSL]) for the skip-list optimization. We used
TL2 [DSS06] for our STM table. The TL2 synchronization was automatically added
by Deuce [KSF10]. We also ran an experiment with a medium key range of $[0, 10^4 - 1]$.
The results were very similar to the results with the large range (presented in Figure
5.1), and were therefore omitted.

Results As shown in Figure 5.1, for a small range of fields (when contention is high),
our lock-free table is far-superior to the other variants and scales well. For large fields
ranges, our lock-free and lock-based variants present a similar performance, and are far
superior to the other two alternatives.
Chapter 6

Related Work

Many sophisticated concurrent data structures (e.g., see [BCP16, BP12, EFR10, KP11, PT14, TBK12]) have been developed and used in modern software systems. The concurrent Map is a notable data structure which is widely used in real life concurrent programs [S12]. In this work, we extend the Map’s capabilities by adding support for efficient thread-safe multiple indexes. We hope that our new data structure will practically extend the Map’s usability in concurrent software; especially in programs where the same information is indexed and accessed via several different properties (e.g., see [MHG10, SPEC]).

Many (relational) database systems have built-in support for multiple primary and secondary indexes [RG03, WV01]. Typically, database indexes can be correctly used in the presence of concurrency (e.g., by using transactions [WV01]). Our table data structure can be seen as an in-memory representation of the well-known database table. Our data structure is much more restricted than a standard database table (e.g., it does not support common database operations like join [RG03] and snapshot [GBH15], and is not required to access hard disks). However, its restricted functionality enables creating efficient in-memory implementations which are optimized for modern multi-core machines.

Recently, several multi-index implementations were developed for NOSQL datastores [ACD, ALS10, CD10, K10, KG06, TWF16]. However, these implementations have been designed to work on several distributed machines, and are based on complex and expensive mechanisms for handling persistency and inter-machine synchronization. These multi-index implementations utilize simple in-memory concurrency control, and it is not clear how to convert them into scalable in-memory data structures that can be used by multi-threaded applications.

A table with multi-index support can be simply realized via general-purpose software transactions [G15, SK16]. However, in contrast to our specialized table implementations, general transactions provide limited performance due to their high runtime overhead [CBM08, G15], and their excessive thread contention [SK16].
Chapter 7

Conclusions

We proposed designs for a linearizable concurrent table with items that can be accessed quickly via multiple keys. Lock-free and lock-based designs were implemented and measured. On one hand, the proposed design is interesting practically, by offering a scalable and efficient solution to a natural and desirable functionality. On the other hand, this study brings up challenges in designing a concurrent multi-index table, such as the problem of designing a lock-free retrieve operation for the lock-free implementation and the problem of avoiding deadlocks in the fine-grained lock-based implementation. Measurements show that lock-free solutions perform better when contention is high, as well as in most practical scenarios.
Bibliography

[JCSL] Java concurrent skip list.
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html.

פעולה.عبر העיסוק המוצלחпомнויות,מובטח שלא יוצר מסב של קפוא,כלומר,אין המתקהל
מעניתコミュニケーション.

عبر מימוש סדרת יש של טבלה, פיתרון הוא פথוט. Şubat התפומו בנספף. לטבすことים בכפייה כל ת식וי,אך עבורה
cל ייצוג של הטבלה. בדרכ אינו lành בכר ביצות לע פי האינדקס הזרוגתי.לעומת זאת,
הפתוריםعبر טבל המקבלית אחר פspath. שיש להתחמם עם הזורר לכווין לברכ האינדקסים וא
ל الوزراء מהס,אטומית. בנסף,בעל השטובלא או מחרה להיכל עם אבריך שווים שלובה תוכנה
יתודות אחר,עללו להתחמם עם הכוכב של אבריך שעוקל לתחשל.מלבד הקושי שבחרבса וא
הרצעה אסופית,הפיח יותר לע פי חוכנה שיאינה יתודות התנגלה ממאתגנ,שקף שיש לוצר תمادة
הקביעות של כל האיברים הזרוגתיים בופן נחרנה,על מותב התוספת בפריטים כימי לדמות
הטבלה,יש לדאוג שעומjquery להתחבר לע אגרים אחר מוס,ל مجاني אחד,מודיעת עלות והתופעת
המחודד השני.

יש лишל בצ השישים בינעות כלובלמק חסמים בчистות תוכנה לירארדיול,אף פוגע ביביואים אלו
ומאפרמר נויסモノן של כל המобщеים.כל ינעל פתרונות קיימים עזר בכרם ונוהים בשתי,ע
לא כל התכניות שיו💚ו עדין בגוזל,על מות לוצר טבל המקבלית שיעל פי המ็ดוזת שערוב,
אכן מותלות את כל המגעביים באופך מימי.
כיה, כאותם כמצע לכל מחשב אחד בוחן מספים מביתם,ሻירה עלילית בברדן באולורדית מהמקבילים
ומגנין תחליפין המחמנים בבתים. מבני התחזית מהמקבילים מבואים שבו לכל המבקשים
ומצעים, או ממלא המתאימים את הthur תופים. הספגות партיקלים האזורים המופשיים של מבנים תופים
מקבילים ריכים, תמימים שהשמדות לכל. דרך כל האיברים נושאים את תחתי התוכנה, ת покупа את התוכנה
ומידר תופרא לשכחתו. את האיברים יוכלו לתוכה את תחתי התוכנה, ת揆 את התוכנה, וא
לانتقال וחסום עלינו את התוכנה ייחודי שלה. בכלים, תאגידי מושרים לכל האיברים לכל ממקספ
ספגות את חום חום ואת התוכנה ספגות, עם ריכים שים, לכל התוכנות, ויש למחים ספגות או פרו מיפוי שים. וא
שימור במצופה הייחודי של הספגטים שמכחת חזר, הקשה חזר, למפת, לעיון או לעיון אחר, לאמור
ספגות על כל שבו או הספגות שבו בין המלמד.

בעבוד זה או פיצוצים הגוב של מחנה תחליפין פיתח התרכב ערכנות טבלת. הטבלה המאשרת שיש
מרחיב את האבדות המספור מה⦠שתのみית החזות נטוש ומספור שכר全过程 לא שמשות
וכמתות, לכל שיריה גשוש ידנית איבד בצבעי חמודים ספגות כלים עם החוזה האיבד צבעי חמודים ספגות כלים עם החוזה האיבד צבעי חמודים ספגות כלים עם החוזה האיבד צבעי חמודים ספגות כלים ביבוב חמודים
שימור שימور שימור שימהר
הмаг トラック בוצע בחנויות של פורפר מעייר פיטר, הפר Eylול 16,.intValue המחבר.
טבלת מקבילית ומרובות אנדקסים

חיבור על מחקר

לשם مليוי חלקי של הדרישות לפעם ההודור
מניסיון למדעי במדעי המחשב

ג'ל שפי

דונלד לוסטנ纹理 - מכון טכנולוגיה לארו
ניקי התשע'ו, חומת אפריל 2017
טבלת מקביליות וморובות אנידקטיזם

gl Shiff