Efficient and Robust Local Mutual Exclusion in Mobile Ad Hoc Networks

Alex Kogan
Efficient and Robust Local Mutual Exclusion in Mobile Ad Hoc Networks

Research Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science

Alex Kogan

Submitted to the Senate of the Technion – Israel Institute of Technology

EYAR, 5768 HAIFA June, 2008
The research thesis was done under the supervision of Prof. Hagit Attiya in the Department of Computer Science.

I would like to express my greatest thanks to Hagit for her incredible guidance and for giving me freedom to explore, without letting me get lost. I also show her my gratitude for making the research so interesting, challenging and exciting, and for her support, both academical and financial, during my Master’s degree studies.

I would like to sincerely thank Prof. Jennifer Welch for her invaluable contribution to this research, for dedicating her precious time far beyond I could ever expect, for warm hospitality at Texas A&M University and for always being available for my endless number of questions, comments and reviews.

I would also like to thank my dear family. I thank my beloved wife Ella for standing by me during all my graduate studies, encouraging me during the downs and sharing my happiness during the ups. I thank my parents who always believed in me and helped in whichever way they could to push me as far as I could only imagine; I owe all my achievements to them. I also thank my grandmother, my sister and my parents-in-law for extending their support and love in every possible way.

Last, but not least, I want to thank Prof. Roy Friedman, Prof. Shlomi Dolev and Prof. Reuven Cohen for helpful and valuable comments.

The generous financial help of the Technion is gratefully acknowledged.
Contents

Abstract 1

1 Introduction 3

2 Related work 7

3 Preliminaries 11
 3.1 System model ... 11
 3.2 Problem definition ... 12

4 Doorways 15

5 An algorithm with $O(\log^* n)$ failure locality 19
 5.1 The fork collection module .. 20
 5.2 Pseudo-code .. 21
 5.3 Correctness proof ... 24
 5.4 The coloring procedures .. 31
 5.4.1 Greedy coloring .. 32
 5.4.2 More efficient coloring ... 34

6 An algorithm with optimal failure locality 39
 6.1 Pseudo-code .. 39
 6.2 Correctness proof ... 40

7 Discussion 45
List of Figures

1 Schematic view of a doorway. .. 15
2 Basic doorway implementations. ... 16
3 Double doorway. ... 17
4 Double doorway with a return path. 18
5 Schematic description of the first algorithm. 20
6 Example for a scenario that may increase the response time in the fork collection module due to nodes mobility. 21
List of Tables

1 Comparison of algorithms. ... 5
Abstract

In a mobile ad hoc network, nodes that are geographically close may need to compete for exclusive access to a shared resource. This thesis studies an abstraction of this problem, called local mutual exclusion, an extension of the dining philosophers problem, well-studied in static networks, to mobile networks. A desirable feature of an algorithm for this problem is to limit the negative effect of a crashed node to a small neighborhood around the crash; the size of this neighborhood is called the failure locality. Another requirement from such algorithm is having the response time independent of the total number of nodes, thus providing a scalable solution.

The thesis presents two algorithms, exhibiting different tradeoffs between simplicity, failure locality and response time. The first algorithm has two variations, one of which has response time that depends very weakly on the number of nodes in the entire system and is polynomial in the maximum number of neighboring nodes; the failure locality, although not optimal, is small and grows very slowly with system size. The other variation has worse performance, but simpler implementation. The second algorithm has optimal failure locality and response time that is quadratic in the number of nodes. A pleasing aspect of the latter algorithm is that when nodes do not move, it has linear response time, improving on previous results for static algorithms with optimal failure locality.
Chapter 1

Introduction

Advances in wireless technology have made it possible to deploy mobile ad hoc networks (MANETs), collections of moving computing entities (nodes) that communicate through wireless transmission, usually without the assistance of a fixed infrastructure. Commonly suggested applications for MANETs include emergency situations, military missions, and environmental data collection. Although many hardware challenges have been solved, programming applications for MANETs remains a challenge. One of the complications is that the communication topology changes unpredictably as nodes move. The availability of tried-and-tested primitives, or building blocks, for common problems in MANETs should help in developing applications.

Local mutual exclusion is a primitive that we believe will help in various applications. Consider the situation where each node has a certain part of its code, called its critical section, that needs to be executed every now and then in exclusion with respect to the neighbors with whom it can communicate directly (roughly speaking, nodes that are physically nearby). We seek an algorithm to ensure that no two neighboring nodes are in their critical sections simultaneously. Furthermore, the algorithm should ensure that, under some reasonable conditions, whenever a node wants to enter its critical section, it eventually is allowed to do so.

In the (global) mutual exclusion problem, no two nodes in the system, no matter how far apart, should be in their critical sections simultaneously. Although there has been previous work solving this problem in MANETs (e.g., [3, 7, 26, 39, 41, 42]), it appears to have fewer potential applications than the problem studied in this thesis.

A local mutual exclusion algorithm can be used to facilitate communication in a MANET. For instance, nearby nodes can compete for exclusive access to a dedicated wireless channel or to a satellite uplink facility using this algorithm. They will be ensured of all eventually getting a turn to use the communication channel exclusively. Another application of local mutual exclusion is to arbitrate access to some piece of specialized hardware in a region, such as a more powerful computer in the system (e.g., a repository for collected data [26]) or the control over a projector in a meeting room.

Nodes in a MANET are subject to harsh environment conditions and often have limited, and irreplaceable, battery life. Consequently, they can fail, and it is important to develop fault-tolerant solu-
tions. One criterion for measuring solutions to the local mutual exclusion problem is failure locality, defined originally in [9], which measures the size of the neighborhood that is affected by the failure of a node. For example, if node p_i fails, we would prefer that this will not affect the ability of nodes far away from p_i to make progress. Failure locality allows us to quantify how “distributed” the decision-making is.

The other criterion we use is the response time, which is the time delay between when a node requests to enter its critical section and when it subsequently enters its critical section. In order to define response time, we assume upper bounds on the time that any node spends in the critical section and on the delay of any message.

To the best of our knowledge, there is no previous work on the local mutual exclusion for MANETs. The local mutual exclusion problem in static, wired distributed systems is known as the dining philosophers (DP) problem [10] and has been extensively studied (see [29]). Choy and Singh [8, 9] showed that 2 is the tight bound on failure locality for DP problem. The best previously known response time with optimal failure locality is $O(n^2)$ [35, 37], where n is the number of nodes in the system. For any failure locality, the best previously known response time is $O(\delta^2)$ [9], where δ is the maximum degree of any node in the network (this algorithm has failure locality 4).

All the previous algorithms are quite sophisticated, due to the difficulty of obtaining efficient solutions for the problem, even in the static case. Our contribution is to consider the problem in an even harsher environment, where nodes can move. We are able to obtain two efficient algorithms that exhibit different tradeoffs between failure locality and response time.

In more detail, our first result is a modular local mutual exclusion algorithm for MANETs, which assigns colors to the nodes and resolves conflicts based on the colors, as in the algorithms in [9]. We use the technique of “doorways”, originally introduced by Lamport [20] and elaborated on by [9], to ensure local progress. We overcome the difficulties arising from node mobility by carefully choosing the sets of nodes that interact with each other based on their status with respect to motion. Because of node mobility, at certain times, nodes choose new colors for themselves.

We present two versions of the coloring module, one using a simple greedy coloring algorithm, and the other using a fast coloring algorithm of Linial [22]. The two coloring modules demonstrate a trade-off between more practical implementation and better complexity properties. The version of the first algorithm based on the greedy coloring has poor failure locality $O(n)$ and response time $O((n + \delta^3)\delta)$. The second version based on Linial’s result [22] relies on nodes having knowledge of n and δ and has much better failure locality $\max(\log^* n, 4) + 2$ and response time $O((\log^* n + \delta^4)\delta)$. In the second version, although the failure locality is not optimal, it starts at 6 and grows very slowly with system size; the response time depends only weakly on n and is polynomial in δ, which makes this algorithm fast in sparse networks.

Our second algorithm achieves the optimal failure locality 2; this matches the best result for the static case, while tolerating node movement. Its response time is $O(n^2)$, matching the best known result for the static case. Another important feature of this algorithm is that in the static case, the response time is $O(n)$, thus outperforming the best previously known result. Instead of resolving conflicts using colors, this algorithm uses a link reversal technique (first proposed by Gafni and Bertsekas [15] and
used in the context of dining philosophers by Chandy and Misra [6] to obtain an algorithm with failure locality n). Our use of the preemptive fork-collection strategy of Choy and Singh [9] allows us to reduce the failure-locality relative to Chandy and Misra [6]. Additionally, this algorithm does not require nodes to know the value of n and δ.

Table 1 compares our algorithms with others.

The rest of this thesis is organized as following: the related work is described in Chapter 2. The system model and problem definition are given in Chapter 3. Chapter 4 presents doorways, which are used by the first local mutual exclusion algorithm presented in Chapter 5. Chapter 6 presents the second local mutual exclusion algorithm. We conclude and discuss further research directions in Chapter 7.

Chapter 2

Related work

The dining philosophers problem was extensively explored in static environments. Most of the past work is summarized in [29]. Choy and Singh [9] define the notion of failure locality and show that it must be at least 2. They also present two algorithms with constant failure locality, which use doorways [20] to ensure local progress of nodes. One of these algorithms achieves failure locality 3 and response time exponential in δ, while the other has response time polynomial in δ at the cost of worse failure locality 4. In another paper [8], Choy and Singh present an algorithm with optimal failure locality, but with unacceptably high response time $O(2^{2n!})$. Tsay and Bagrodia [37] propose an algorithm for solving the dining philosophers problem with failure locality 2, response time $O(n)$ when all nodes function properly, and $O(n^2)$ when failures may occur. Sivilotti et al. [35] obtained the same results independently, but later.

Earlier work by Styer and Peterson [36] presents an algorithm with response time of $O(\delta \log \delta + 1)$ and failure locality of $O(\log \delta)$, by extending the edge-coloring algorithm of Lynch [23]. Awerbuch and Saks [2] provide an algorithm with response time of $O(\delta^2 \log U)$, where U is the range of node IDs, and failure locality of $O(\delta)$. The improved response time is achieved by using a distributed queue to schedule jobs competing for shared resources. Each job is assigned a position in the queue, which decreases until the job reaches the head of the queue and gets executed. Although competing jobs may be assigned initially the same position in the queue, the scheduling algorithm prohibits them from reaching the head of the queue simultaneously.

Recent work strives to reduce failure locality by using failure detectors. Pike and Sivilotti [31] use eventually perfect failure detector $\Diamond P$ to achieve failure locality 1. They prove that $\Diamond P$ is the optimal failure detector in the sense that any algorithm using $\Diamond P$ has failure locality at least 1 and this is the weakest detector in the Chandra-Toueg hierarchy [5] that may achieve this failure locality. The algorithm is based on ideas of Chandy and Misra [6] and uses doorways as in the work of Choy and Singh [9]. Later, Pike et al. [32] using a local refinement of the eventually perfect failure detector $\Diamond P_1$ and ideas from [6], provide an algorithm with failure locality 0 under assumption of eventual weak exclusion, which allows violation of mutual exclusion finitely many times until some point after which there are no violations. Since neither failure detector can be implemented in a purely asynchronous system, the use of either one indicates a stronger environment than that studied in this thesis.
Nesterenko and Arora [28] extend the ideas of Chandy and Misra [6] to give an algorithm that tolerates malicious crashes, while still achieving failure locality 2. In a malicious crash, a failed node behaves in an arbitrary way for a finite time and then ceases all operation undetectably by other nodes. The solution is implemented in the shared-memory model and guarantees that any node which is far enough (i.e., at least at distance 2) from crashed nodes, gets into the critical section, but only eventually (i.e., there is no fixed bound on the response time).

Since the dining philosophers problem cannot be solved in a symmetric deterministic fashion [21,23], i.e., in systems with indistinguishable nodes and resources, several randomized symmetric algorithms were proposed. The first work in this area, by Lehman and Rabin [21], considers the classical definition of the problem as a ring of philosophers, or nodes, in the shared-memory system and provides probabilistic lockout-free solutions. They assume nodes to crash only outside of their critical sections. Herescu and Palamidessi [17] generalize these ideas to provide a lockout-free solution for arbitrary topologies of nodes, based on the idea of letting nodes assign a random priority to their shared resources and thus establish a partial order on the resources, breaking the symmetry. Another extension, by Duflot et al. [13], removes the assumption that the scheduling of steps by nodes is fair (in a fair schedule, every node that continuously tries to access the critical section must be eventually scheduled to perform its next step). Their solution provides a weaker deadlock-freedom property.

Several papers propose randomized algorithms for the asymmetric version of the DP problem. Bar-Ilan and Peleg [4] present an algorithm for the synchronous static model that runs in phases and uses coin flips to determine which node will get access to the shared resources in each phase. The probability of a node \(p_i \) to get an access in some phase is \(1/(\delta_i + 1) \), where \(\delta_i \) is the degree of \(p_i \) in the network, and conflicts between nodes are resolved in favor of the one having higher degree. This solution has expected response time of \(O(\delta) \), but the paper explicitly assumes that no failures occur in the system. Rhee et al. [33], using similar ideas, propose a randomized algorithm for semi-synchronous wireless sensor networks, in which nodes have clocks whose rates may drift. The expected response time and message complexity are \(O(\delta) \). This work does not deal with node and/or link failures either.

Ha et al. [16] consider a simple randomized approach for the related problem of multi-word locking in the asynchronous shared memory system. They propose to acquire locks in a random order. This algorithm, though very simple to implement, has response time which depends poly-logarithmically on the number of registers (which would translate to poly-logarithmic dependence on the number of nodes in our model) and has only probabilistic guarantees.

The closest dynamic system model in which problems similar to DP were considered is that of Mayer et al. [25]. In their setting, nodes are static, but links may fail and come up between any pair of nodes. They consider a weaker version of the problem, denoted as \((d,m)\)-DP, in which each node in a communication graph of minimum degree \(d \) has to acquire \(m \) resources for entering a critical section, where \(m \leq \lceil d/2 \rceil \). The solution is constructed by a reduction to the general DP problem and applying Choy and Singh’s approach [9]. This yields a very effective response time of \(O(m) \), but has a non-trivial assumption that no link in a 5-neighborhood fails, which would translate in a MANET to the requirement that every node in the 5-neighborhood of a node trying to enter its critical section should not move.

Despite extensive research on upper bounds on the response time, little has been known about lower
bounds. The obvious lower bound of $\Omega(\delta)$ is mentioned by several works, e.g., [2, 9, 37]. Rhee and Welch [34] slightly refine this bound to $\Omega(\chi)$, where χ is the chromatic number of the network. The authors also provide an algorithm that achieves their refined bound under the assumptions of an initial coloring of nodes and no failures occurring in the system.

Although we are not aware of prior work on local mutual exclusion in mobile ad-hoc networks, several works proposed solutions for related distributed problems in this setting. Walter et al. [39] solve mutual exclusion using a token and relying on Gafni and Bertsekas’s partial reversal algorithm [15], which provides loop-free routing in a network subject to link failures. Only the token-holder may enter the critical section, while other nodes request access by sending messages to the token-holder. This approach prevents the algorithm from being tolerant to failures of nodes. In addition, the liveness property is ensured only when link failures cease throughout the system.

Walter et al. [38] present a solution to the problem of k-mutual exclusion in a MANET, where k nodes are allowed to be in the critical section simultaneously. Their approach extends the ideas of Walter et al. [39] by using k tokens. Yet another extension is presented by Jiang [18], who formulates and solves the problem of h-out-of-k-mutual exclusion, where each node may request up to h shared resources from k available in order to access the critical section.

Link reversal [15] was used in the context of several other problems in MANETs. Park and Corson [30] provide an efficient algorithm for routing in mobile ad-hoc networks. Malpani et al. [24], extending the ideas of Park and Corson, try to solve leader election problem in a group of nodes. They prove correctness of their algorithm for the case of a single topology change only.

Mellier et al. [27] present a non-token-based randomized algorithm for the mutual exclusion problem in MANETs. They construct a process which works in rounds and randomly splits the nodes trying to get into the critical section into two sets at each round, yielding a random binary tree. Each node participates in this process until it realizes that none of its neighbors appears in the same set, and then it enters the critical section. This solution assumes a synchronous single-hop network, and tolerates failures of nodes competing for the access to the critical section, but not failures of nodes executing the critical section. The authors extend their ideas to solve the k-mutual exclusion problem [26].

As stated before, our first algorithm implements recoloring module, which assigns colors to nodes in a way that no two neighboring nodes running the module receive the same color. Coloring nodes of a graph with small number of colors is one of the most fundamental problems in graph algorithms. The most seminal result is that of Linial [22], which shows a lower bound of $\Omega(\log^* n)$ communication rounds required to color a ring of n nodes with 3 colors in a synchronous static system. Linial shows an algorithm to color general graph with $O(\delta^2)$ colors in $O(\log^* n)$ rounds. This algorithm, adapted for asynchronous mobile setting, is used by one of the versions of our first algorithm.

Recently, Kuhn and Wattenhofer [19] slightly improved this lower bound and showed that $\Omega(\log^* n + \delta / \log^2 \delta)$ time is required in order to obtain an $O(\delta)$-coloring. They also explored the potential of randomization in coloring algorithms and showed an algorithm that colors any graph with $\delta + 1$ colors in $O(\delta \log \log n)$ time with probability $1 - 1/n^c$, where c is an arbitrary constant. Since $O(\delta^2)$-coloring can be deterministically converted to $(\delta + 1)$-coloring in $O(\delta \log \delta)$ rounds [19], their algorithm outperforms Linial’s only when $\delta \gg \log n$.

9
Chapter 3

Preliminaries

3.1 System model

The system consists of a set of nodes, communicating by exchanging messages over a wireless network. The communication network is modelled as a dynamically changing, not necessarily connected, undirected graph, where mobile nodes of the system are represented as nodes in the graph, and there is an edge between two nodes that can communicate directly. Each node has a unique identifier, ID, and executes asynchronously at some unknown speed. Only nodes close to each other, called neighbors, may communicate directly. The nodes may fail by crashing; a node does not change its location after it fails.

An execution of the system is an infinite sequence of the form $C_0, \phi_1, C_1, \phi_2, \ldots$, where each C_k is a configuration, holding the state of each node in the system, and ϕ_i is an event, specifying one of the following types of events: (1) a local computation performed by some node, or (2) delivery of a message from some node to another, or (3) delivery of a notification about link creation or failure from a link-level protocol, occurring in some node. Furthermore, we associate a nonnegative real number with every event, specifying the real time at which the event occurs. The times start at 0 and are nondecreasing (for further details, refer to Section 2 in [1]).

Communication links are bidirectional, reliable and FIFO. A link-level protocol ensures that each node is aware of the set of its neighbors by providing indications of link formations and failures. The same assumptions have been made by previous works on MANETs, e.g., [24, 38, 39]. In addition, we assume that a link between two nodes is created or broken only when at least one of them moves, i.e., links do not fail or appear between static nodes.

An important assumption we make is that, when a link is created between two nodes, some mechanism breaks symmetry in a way that is biased toward nodes that are not moving. In more detail, we assume the link-level protocol supports two types of link creation notification, one for static nodes and another for moving nodes. If a link comes up between a static node and a moving node, the notifications are as expected. If a link comes up between two moving nodes, then exactly one of them gets the
notification for a static node, e.g., according to their ID’s. Possible implementation of such mechanism may require moving nodes to send special start and stop messages when they start and stop to move, respectively, and heart-beat messages during their movement, as suggested by Wu and Li [40].

Although the processing speed of each node is unknown, we assume an upper bound τ on the time that a node spends in its critical section. The total time for preparing, transmitting and receiving a message is assumed to be upper bounded by ν. These bounds are unknown to nodes and used only for the analysis of our algorithms.

3.2 Problem definition

Each node in the system may be in one of three sets of states: thinking, hungry and eating. These sets correspond to the remainder, trying and critical code sections respectively in the classical terminology of the mutual exclusion problem. A thinking state captures the situation when a node does not require access to its critical section; it is an initial state of each node in the system. A node enters a hungry state when it requests access to the critical section. Finally, an eating state represents the situation when a node has gotten access and entered its critical section. Every node cycles between these three sets of states. Some application external to our algorithm can change the state to hungry at any time if the current state is in thinking set, or to thinking if the current state is in eating set; our algorithms, under the right circumstances, change the state of a node to eating if it is in hungry set of states. In addition, in order to preserve the safety condition defined below, our algorithms may change the state of an eating node back to hungry; this may happen only when a node moves into new neighborhood and new links are created. The transition from eating to thinking contains an exit code executed by a node upon its exit from the critical section.

The set of neighbors of each node p_i is stored in a local variable that is updated by a lower level protocol whenever the neighborhood of the node changes. The maximum degree of a node is denoted δ, while the total number of nodes is denoted n. One version of our first algorithm assumes that both δ and n are known to all nodes in the system; the other version, as well as the second algorithm, does not require this assumption.

The distance of node p_i from node p_j is the number of links in the shortest path between p_i and p_j in the communication graph. The m-neighborhood of a node p_i includes all nodes in distance m or less from p_i.

A solution to the local mutual exclusion problem has to ensure (local) mutual exclusion: at any configuration of any execution of the system, no two neighbors are in the critical section.

We formally define the two measures used to evaluate the modules of our algorithms.

Definition 1. A module has failure locality of m and response time of T if any node p_i that starts executing the module and remains static for T time units, finishes its execution within T time units, as long as there are no failures in the m-neighborhood of p_i.

12

Technion - Computer Science Department - M.Sc. Thesis MSC-2008-14 - 2008
The definition is adapted to local mutual exclusion algorithms, which do not terminate, by considering the time interval between a node becoming hungry and starting to eat. Note that if an algorithm has a finite response time, then it also guarantees *starvation freedom* for static nodes that are sufficiently far from failed nodes.
Chapter 4

Doorways

Our first algorithm uses the concept of doorways, introduced by Lamport [20]. A doorway includes two code fragments, entry and exit. A node crosses the doorway when it completes the execution of the entry code, and exits the doorway when it completes the execution of the exit code (Figure 1). A node is behind the doorway if it crossed the doorway, but has not exited yet; otherwise, it is outside the doorway.

The doorway guarantees that if a node p_i crosses it before its neighbor p_j begins executing the entry code, then p_j does not cross the doorway until p_i exits the doorway.

There are two kinds of doorways, called synchronous and asynchronous, differing in the way a node wishing to cross the doorway checks the state of its neighbors. In a synchronous doorway, a node crosses the doorway when all of its neighbors are observed to be outside the doorway simultaneously. In an asynchronous doorway, a node crosses the doorway once it finds each of its neighbors outside the doorway at least once, that is, the state of each neighbor is checked independently. Figure 2 presents implementations of these two types of doorways.

The synchronous doorway ensures that once a node p_i crosses the doorway at time t, any neighbor that is outside the doorway after time $t + \nu$ will remain there until it gets p_i's exit message. Its

![Diagram of a doorway](image)

Figure 1: Schematic view of a doorway.
Synchronous doorway implementation:

Initially, \(L[j] = \text{exit}_s \) for all \(j \in N \cup \{i\} \)

Entry:
\[
\begin{align*}
\text{wait until } & (\forall j : j \in N : L[j] = \text{exit}_s); \\
\text{broadcast } & \text{cross}_s \text{ message}; \\
L[i] := & \text{cross}_s;
\end{align*}
\]

Exit:
\[
\begin{align*}
\text{broadcast } & \text{exit}_s \text{ message}; \\
L[i] := & \text{exit}_s;
\end{align*}
\]

Handling link creations:

LinkUp\((j)\) indication while static:
\[
L[j] := \text{exit}_s \\
\text{send } L[i] \text{ to } j
\]

LinkUp\((j)\) indication while moving:
\[
\text{broadcast } \text{exit}_s \text{ message}; \\
L[i] := \text{exit}_s \\
\text{wait until } L[j] \text{ is received}
\]

Asynchronous doorway implementation:

Initially, \(L[j] = \text{exit}_a \) for all \(j \in N \cup \{i\} \)

Entry:
\[
\begin{align*}
\langle \forall j : j \in N : & \text{ wait until } L[j] = \text{exit}_a \rangle; \\
\text{broadcast } & \text{cross}_a \text{ message}; \\
L[i] := & \text{cross}_a;
\end{align*}
\]

Exit:
\[
\begin{align*}
\text{broadcast } & \text{exit}_a \text{ message}; \\
L[i] := & \text{exit}_a;
\end{align*}
\]

Handling link creations:

LinkUp\((j)\) indication while static:
\[
L[j] := \text{exit}_a \\
\text{send } L[i] \text{ to } j
\]

LinkUp\((j)\) indication while moving:
\[
\text{broadcast } \text{exit}_a \text{ message}; \\
L[i] := \text{exit}_a \\
\text{wait until } L[j] \text{ is received}
\]

Figure 2: Basic doorway implementations for \(p_i \). \(N \) holds the set of current neighbors of \(p_i \). \(L[j] \) stores the last message that \(p_i \) received from \(p_j \), initialized to \(\text{exit}_s \) or \(\text{exit}_a \) according to the type of the doorway. A new neighboring node is considered to be outside the doorway. When a node \(p_j \) moves, the LinkDown indication causes its neighbor \(p_i \) to remove \(j \) from its \(N \) set.

Weakness lies in the fact that this doorway alone does not avoid starvation of a node in the entry code, as its neighbors may repeatedly cross the doorway, blocking a node waiting in the entry code. Consider node \(p_i \) having two neighbors \(p_j \) and \(p_k \) which do not have a link between them. If the time intervals of \(p_j \) and \(p_k \), being behind the synchronous doorway are interleaved such that \(p_j, p_k \) or both are behind the doorway, \(p_i \) will remain waiting forever in the entry code of the synchronous doorway.

A double doorway [9] is a synchronous doorway within an asynchronous one (Figure 3). The entry code of this doorway consists of the entry code of an asynchronous doorway followed sequentially by the entry code of a synchronous one. In the exit code, the order of composition is reversed — the exit code of the synchronous doorway is followed by the exit code of the asynchronous one. The double doorway prevents the starvation possible in the entry of a synchronous doorway, yet ensures that after a period of time no new neighbors cross the doorway and execute concurrently with a node behind the
doorway. This property is important for our first local mutual exclusion algorithm.

The following lemma states the key properties of the double doorway.

Lemma 1. A node that starts executing the entry code of the double doorway at time t will exit the doorway by time $t + O(\delta T)$ if no node in its $(m+2)$-neighborhood fails, provided the module executed inside the doorway has time complexity T and failure locality m.

Proof: Let p_i be a node that crosses the asynchronous doorway at time t_i. If none of its neighbors is behind the synchronous doorway, p_i crosses it immediately. Otherwise, it waits for each of its neighbors to exit the synchronous doorway. Any node that exits the asynchronous doorway after time $t_i + \nu$ cannot cross the asynchronous doorway again until p_i exits it. Since the synchronous doorway is enclosed in the asynchronous one, any node that exits the synchronous doorway after time $t_i + \nu$ cannot cross the synchronous doorway again until p_i exits it. As any new neighbor that arrives in p_i’s neighborhood after t_i will not cross even the asynchronous doorway before p_i exits the double doorway (since it will find p_i behind the asynchronous doorway), we conclude that the number of neighbors that may delay p_i from crossing the synchronous doorway is limited by δ, the maximum number of neighbors of p_i at t_i. By the assumption, each neighbor p_k may delay p_i for at most T time units while behind the synchronous doorway, provided that no node in p_k’s m-neighborhood fails. As a result, assuming no node in the $(m+1)$-neighborhood of p_i fails, p_i crosses the synchronous doorway by time $t_i + O(\delta T)$.

Now, consider a node p_j that starts the entry code of the asynchronous doorway at time t_j. By the argument given in the previous paragraph, any neighbor p_i of p_j that is behind the asynchronous doorway, exits it by time $t_j + O(\delta T)$, provided no node fails in p_i’s $(m+1)$-neighborhood. Therefore, the waiting condition of the entry code of the asynchronous doorway holds for p_j by time $t_j + O(\delta T)$, provided no node fails in its $(m+2)$-neighborhood. As a result, by this time p_j crosses the asynchronous doorway, and after at most $O(\delta T)$ time units crosses the synchronous one, which means that it exits the double doorway by time $t_j + O(\delta T)$. \hfill \Box

Our algorithm also uses a modification of a double doorway, called a **double doorway with a return path**, in which a node may return to the entry code of the synchronous doorway immediately after completing the exit code of this doorway (Figure 4). The decision is taken by the application module...
Figure 4: Double doorway with a return path. When a node exits the internal synchronous doorway, it may exit the double doorway or return to the entry code of the internal synchronous doorway.

running behind the double doorway. Clearly, the number of returns has to be limited to prevent starvation of nodes waiting at the entry of both the asynchronous and synchronous doorways. When the return path is not taken, this doorway is identical to a double doorway.

The following lemma states the key properties of the double doorway with a return path.

Lemma 2. A node that starts executing the entry code of the double doorway with a return path at time \(t \) will exit the doorway by time \(t + O(\delta TR) \) if no node in its \((m + 2)\)-neighborhood fails, provided the module executed inside the doorway has time complexity \(T \) and failure locality \(m \), and a node may execute the entry code of the synchronous doorway at most \(R \) times until it exits the double doorway.

Proof: Let \(p_i \) be a node that crosses the asynchronous doorway at time \(t_i \). If none of its neighbors is behind the synchronous doorway, \(p_i \) crosses the synchronous doorway immediately. Otherwise, consider a neighbor \(p_j \) that is behind the synchronous doorway at time \(t_i \). Node \(p_j \) exits the synchronous doorway by time \(t_i + T \), if no node in its \(m \)-neighborhood fails. It may then return to the entry code of the synchronous doorway and enter it again before \(p_i \) crosses it. The number of executions of the module behind the synchronous doorway is at most \(R \) and hence \(p_j \) may delay \(p_i \) from crossing the synchronous doorway for at most \((T + \nu)R\) time units. In addition, \(p_i \) may cross the synchronous doorway and return to its entry code several times, which means that it may spend at most \((R - 1)T\) time units behind the synchronous doorway before it enters it for the last time. Since any new neighbor that arrives at \(p_i \)’s neighborhood after \(t_i \) will not cross the asynchronous doorway before \(p_i \) exits the double doorway, we conclude that the number of neighbors that may delay \(p_i \) from crossing the synchronous doorway is at most \(\delta \). Thus, \(p_i \) enters the synchronous doorway for the last time within \((T + \nu)R\delta + (R - 1)T\) time units. Adding another \(T \) time units for executing the module inside the doorway, we get that \(p_i \) exits the double doorway by time \(t_i + O(\delta TR) \), if no node in its \((m + 1)\)-neighborhood fails.

Similarly to the argument used in Lemma 1, consider a node \(p_j \) that starts the entry code of the asynchronous doorway at time \(t_j \). By the same analysis, all neighbors of \(p_j \) that are behind the asynchronous doorway at time \(t_j \), exit this doorway by time \(t_j + O(\delta TR) \), provided no node in their \((m + 1)\)-neighborhood fails. Thus, \(p_j \) crosses the asynchronous doorway by time \(t_j + O(\delta TR) \), provided no node in its \((m + 2)\)-neighborhood fails. Thus, \(p_j \) exits the double doorway with a return path by \(O(\delta TR) \) time units after it starts executing its entry code.
Chapter 5

An algorithm with $O(\log^* n)$ failure locality

Our first algorithm uses forks as a metaphor for a resource shared among two neighbors, in our case, the use of the critical section. The fork is either owned by one of the neighboring nodes, or is in transit from one node to another. A node owning a fork can be viewed as having permission from its neighbor to enter the critical section. Initial distribution of forks must ensure that no two neighbors hold the same fork. Forks are destroyed when a link between two neighbors fails; when a link is created between two nodes, a corresponding fork, owned by the static node, is created. We assume that this operation is executed by a link-level protocol and omit further description of this procedure.

A node that becomes hungry requests missing forks from its neighbors. The algorithm uses colors from an ordered set in order to resolve conflicts between neighboring nodes that are hungry simultaneously by setting a node with a smaller color to have a higher priority. Nodes competing for access to the critical section must be legally colored, i.e., no two neighbors have the same color. In a mobile setting, however, even if legal colors are initially pre-computed for the nodes, nodes may move from one location to another and violate the legality of coloring. A simple way to guarantee the legal coloring is to color each node with its ID; unfortunately, the resulting number of colors does not reflect the current topology of the network and decreases the performance of the fork collection. As a result, we need to recolor moving nodes before they start competing for access to the critical section.

The algorithm sequentially executes a recoloring module and a fork collection module, each within a double doorway, one of them having a return path (Figure 5).

The recoloring module is executed by a hungry node that has moved to a new neighborhood. It guarantees that the node obtains a new legal color in a range proportional to δ, the maximum degree of any node in the system, by running, behind a double doorway, an algorithm which ends by picking a new color for a node from a relatively small range. We provide two implementations for this algorithm.

The recoloring module is also executed by each node in order to obtain an initial color; we do not discuss this issue further.
Figure 5: Schematic description of the first algorithm.

The fork collection module is executed when a node crosses the second double doorway. A hungry node may arrive at the entrance of this doorway with or without executing the recoloring module, depending on whether or not it moved after last eating. A node that crosses the asynchronous doorway AD^f without executing the recoloring module, does not execute the exit code of the first double doorway and continues directly to the entry code of SD^f. A node executing the fork collection module gathers forks required to access the critical section. The correctness of this module relies on the legality of the coloring of nodes crossing the second double doorway, while its performance depends on the range of colors.

When a moving node arrives at a new neighborhood, it exits any doorway that it has crossed and waits for messages from its new static neighbors with their color and logical position regarding the doorways. A static node with a new neighbor sends a message with its color and position relative to the doorways and continues its execution. After receiving messages with logical positions of all new (static) neighbors, the newly arrived node executes the recoloring module, when it next becomes hungry. The doorways in both modules do not let newly arrived nodes interfere with static nodes entering the critical section, keeping them blocked at the entrance of the first or the second double doorway, depending on the status of their hungry static neighbors.

5.1 The fork collection module

A node p_i enters the fork collection module after crossing the second double doorway. It first sends requests for missing forks to its low neighbors—those with a smaller color—and then to high ones—those with a larger color.

In more detail, p_i first sends requests for all its missing low forks (forks shared with its low neighbors). While waiting for them, p_i grants any request for a fork, although when it relinquishes a low fork, it indicates that it wants it back. Once p_i acquires all its low forks, it sends requests for all its missing high forks (forks shared with its high neighbors). While waiting for them, p_i postpones granting...
any requests for high forks, unless it gets a request for a low fork, in which case it grants that request as well as all suspended requests for high forks. Having collected all forks, a node enters the critical section. When it exits the critical section, a node responds to all delayed requests with a fork and exits the double doorway.

When a node p_j moves causing the link between p_i and p_j to fail, p_i is able to proceed with fork collection, even in situations where it was blocked before p_j moved. For example, Figure 6 shows a part of a system consisting of four nodes, one of which, p_4, crashes. If p_3 gathers all forks from its low neighbors, but does not get a fork from its failed high neighbor p_4, it will suspend any request from p_2. Thus p_2 responds to any request from p_1 with a fork and will never ask for it back, thus protecting other nodes from p_4’s failure, at the price of being blocked. In our setting, however, p_3 may move, in which case p_2 can proceed with fork collection by asking for the fork back from p_1. This scenario may increase the response time of the fork collection module and is handled by the return path of the doorway: a node that detects a link failure to a low neighbor holding their shared fork, exits the synchronous doorway, releasing all requested forks, and returns to the entry code of this doorway. This transition is represented in Figure 5 by a path from the exit of SD_f back to the entry of SD_f. In the example, when p_2 detects that p_3 has moved, it exits the synchronous doorway, without asking for a fork from p_1; p_1 proceeds with fork collection as if p_3 has not moved away.

5.2 Pseudo-code

The first local mutual exclusion algorithm appears in Algorithms 1–3. In the main module (Algorithm 1), which handles fork collection, each node p_i has the following local variables:

- N, set of IDs of neighboring nodes. Maintained by the lower level.
- $\text{color}[j]$, array of colors of a node and its neighbors; initially undefined. Updated when update-color message with a new color is received or when p_i picks a new color for itself.
- state, takes on values hungry, eating, or thinking; initially thinking.
- $\text{at}[j]$, boolean flag, indicating that p_i holds the fork shared with p_j; initially true when $ID[i] < ID[j]$.
- S, set of neighbors with suspended forks requests.

The code uses the macros all-(low)-forks to indicate that the node has all its (low) shared forks: all-forks holds when $at[j]$ is true for all $j \in N$, while all-low-forks holds when $at[j]$ is true for all $j \in N$, such that $\text{color}[j] < \text{color}[i]$.

Figure 6: Example for a scenario that may increase the response time in the fork collection module due to nodes mobility. Edges are directed from nodes with larger colors to nodes with smaller colors.
Algorithm 1 Main module, code for p_i

1: when SD^f is crossed (and state is hungry):
 if all-forks then state := eating
 if all-low-forks then request-high-forks()
 else request-low-forks()

5: when state is set to thinking:
 color$[i]$:= the smallest non-negative color not used by any neighbor as indicated in color$[]$
 broadcast update-color(color$[i]$) msg
 for each j s.t. $j \in S$ do: send-fork(j)

9: (exit SD^f and AD^f)

10: when req msg is received from j and at$[j]$:
 if $[(color[j] > color[i]) \land
 (\neg all-low-forks \lor outside SD^f)]$ then send-fork(j)
 else if $[(color[j] < color[i]) \land
 (\neg all-forks \lor outside SD^f)]$ then
 send-fork(j); release-high-forks()
 else $S := S \cup \{j\}$

17: when (fork, flag) msg is received from j:
 at$[j]$:= true
 if all-forks then state := eating
 if all-low-forks then
 if flag then $S := S \cup \{j\}$
 request-high-forks()
 else if flag then send-fork(j)
 request-low-forks()

24: request-low-forks():
 for each $j \in N$ s.t. $(color[j] < color[i]) \land \neg at[j]$ do:
 send req msg to j

27: request-high-forks():
 for each $j \in N$ s.t. $(color[j] > color[i]) \land \neg at[j]$ do:
 send req msg to j

30: send-fork(j):
 send (fork, $(color[j] < color[i]) \land behind SD^f)$ to j

32: at$[j]$:= false; $S := S \setminus \{j\}$

33: release-high-forks():
 for each $j \in S$ s.t. $(color[j] > color[i]) \land at[j]$ do:
 send-fork(j)

Lines 1–4 describe the actions taken by a hungry node when it crosses the second double doorway. If the node already has all its forks, then it starts eating. Otherwise, if it has all its low forks (but not all its high forks), it requests the missing high forks. If it does not have all its low forks, then it requests the missing low forks.

Upon exit from the critical section (Line 5), a node recolors itself with the smallest non-negative color not used by any of its neighbors; this color is legal since it is chosen in exclusion. The color is clearly in $[0..\delta]$, which improves future executions of the fork collection module in cases when the

22
Algorithm 2 Wrapper code for the recoloring module, code for \(p_i \)

36: when \(SD^r \) is crossed (and \text{state is hungry}):
37: \(R := N \)
38: \(color[i] := (-1) \ast \text{new-color}() - 1 \) \hspace{1em} // \text{new-color()} is presented in Section 5.4
39: broadcast \(\text{update-color(color[i])} \) msg
40: when some msg sent from \text{new-color()} is received from \(j \land \text{outside} \ SD^r \):
41: send NACK to \(j \)
42: when NACK msg is received from \(j \):
43: \(R := R \setminus \{j\} \)

The recoloring module picks colors in a range of a greater size. The new color is sent to all neighbors and delayed requests for forks are fulfilled (Lines 7–8). Finally, both fork-collection synchronous and asynchronous doorways are exited (Line 9).

Lines 10–16 handle a request for a fork. If the request comes from a high neighbor, it is fulfilled only if the recipient node does not hold all low forks or is outside the double doorway; otherwise, the request is suspended until the node eats or loses one of its low forks. A request from a low neighbor (Lines 13–15) is granted if the node does not yet hold all forks; otherwise, the request is suspended. If the request is granted, in addition to sending the requested fork, all suspended high forks are returned.

Lines 17–23 handle a fork message received from a neighbor. The message includes a boolean \text{flag}, which is set by the sender of the fork when the sender wants this fork back. If this fork causes the receiver to have all low forks, the receiver asks for missing high forks; the receiver suspends the request from the sender of the fork if \text{flag} is true. Otherwise, the receiver sends the fork back immediately if \text{flag} is true. A fork is not sent back and forth indefinitely, since \text{flag} is turned on only by a sender with lower priority (Line 31). Note that it is unnecessary to set \text{flag} to true if the request being granted is for a high fork: since the request is being granted, it follows that the node does not have all its low forks; if it ever gets all its low forks (again), it will explicitly ask for all missing high forks.

The recoloring module (Algorithm 2) presents the wrapper code for the coloring procedure that calculates new colors for nodes. The wrapper code introduces one variable, \(R \), which holds a set of neighbors behind the doorway that are participating in the recoloring; it is initialized to \(N \).

A node enters the recoloring module when it crosses the first double doorway. The new color is set to one less than the negative of the value returned from coloring procedure \text{new-color()} (Line 38), presented in two variations in Section 5.4. This operation guarantees that colors chosen by the recoloring module are negative, leaving the colors \(0, 1, \ldots, \delta \) for nodes exiting the critical section (recall Line 6).

The rest of Algorithm 2 (Lines 40–43) provides code for handling recoloring-related messages received by or from nodes that are not participating in recoloring.

Algorithm 3 handles dynamic topology changes.

An indication of link creation is treated differently by static nodes (Lines 44–46) and moving nodes (Lines 47–55). When a static node \(p_i \) receives an indication that a link to \(p_j \) is created, it marks itself
as the owner of the shared fork and initializes the color of the moving node to \(\perp \) (undefined value); this value will change once the new neighbor chooses a color and notifies \(p_i \). In addition, \(p_i \) sets \(L[j] \) to \text{exit all} (Line 48). If \(p_i \) was behind \(SD_f \) (running the fork collection module), it changes its state to hungry if it was eating (Line 50) and releases all forks with suspended requests (Line 51). Next, it notifies all its neighbors that it has exited any doorway it may have crossed; this ensures all neighbors have a consistent view of \(p_i \)’s location with respect to the doorways. Finally, \(p_i \) waits for the messages from its new neighbors (sent in Line 46), and if it is hungry it starts recoloring.

Lines 56–61 handle link failure due to node movement. If the node is behind the \(SD_f \) doorway and the notification comes from a low neighbor holding the shared fork (cf. the scenario of Figure 6), then it exits the synchronous doorway and returns to its entry code (Lines 59–60).

We assume that a lower link protocol updates the node’s neighbor set \((N) \) according to notifications about link creations and failures. A node behind the \(SD_r \) doorway takes a special action only when an incident link fails (Line 61).

5.3 Correctness proof

We show that colors of nodes running the fork collection modules are legal, provided the recoloring module assigns legal colors to nodes. Then we proceed with the analysis of the fork collection module.
A key aspect in the analysis of the fork collection module is the notion of the “rank” of a node in a directed graph that reflects the priorities of competing nodes. (This notion is also used in our second algorithm, which uses boolean values instead of colors to indicate priorities.) Lemma 5 and Corollary 6 prove how the double doorway with a return path ensures that after some time, no nodes are added to this graph, so the rank of any node in the graph is bounded at this time. Lemma 8 states that if a hungry node remains static sufficiently long, then it starts eating by some predefined time, or its set of low forks does not change starting from some predefined time. Lemma 8 is proved by induction on the rank of the hungry node; Lemma 7 is the basis of the induction. Lemma 9 shows that the starvation situations cannot occur as long as no node in the 2-neighborhood of the hungry node fails.

Finally, we show that when the fork collection module is combined with the recoloring module and the doorways, the result is an algorithm with failure locality $O(f_{\text{color}})$ and response time in $O((T_{\text{color}} + \delta^2 \Delta)\delta)$, where f_{color} and T_{color} are failure locality and response time of the recoloring module, respectively, and Δ is the maximal absolute value of a color produced by the recoloring module. After presenting two coloring procedures in Section 5.4 and proving that they assign legal colors to nodes, we derive the actual complexity properties of two versions of the first algorithm for local mutual exclusion in MANETs in Theorem 16 and Theorem 22, respectively.

We start the analysis by proving that the algorithm satisfies the local mutual exclusion property.

Lemma 3. The first algorithm satisfies the local mutual exclusion property.

Proof: A node must have all forks before accessing the critical section. When a link is created between two nodes, a single fork is created which is held by at most one node; the fork is destroyed upon destruction of the link. When a fork is sent to a neighbor, a corresponding $at_i[j]$ flag is set to false. Thus, $at_i[j]$ and $at_j[i]$ do not hold for any two neighboring nodes p_i and p_j simultaneously, implying local mutual exclusion.

We formulate an assumption on the recoloring module, which allows us to prove that the colors of nodes running the fork collection module are legal. This serves as an interface between the two modules.

Assumption 1. Any neighbor of p_i that starts the recoloring module when p_i is behind the first double doorway, picks a different color than p_i’s.

The following lemma exploits the interleaving of the two double doorways.

Lemma 4. If p_i is behind the second double doorway in the time interval $[t_1, t_2]$, then for any neighbor p_j of p_i that is behind the same doorway at time $t \in [t_1, t_2]$, $\text{color}[i] \neq \text{color}[j]$.

Proof: Assume, by a way of contradiction, that $\text{color}[j] = \text{color}[i]$ at some time in $[t_1, t_2]$. If $\text{color}[j] = \text{color}[i] \in [0..\delta]$, both p_i and p_j have not moved since the last time they picked a color upon exit from the critical section. This is a contradiction since these colors are chosen in exclusion.
Thus, \(\text{color}[j] = \text{color}[i] < 0\), implying that both \(p_i\) and \(p_j\) picked the color in the recoloring module. Let \(t_i\) and \(t_j\) be the times when \(p_i\) and \(p_j\) started recoloring, respectively. Without loss of generality, assume that \(t_i \leq t_j\). If \(p_j\) started recoloring when \(p_i\) was behind the first double doorway, then they pick different colors, by Assumption 1. Otherwise, \(p_i\) exits the first double doorway before \(p_j\) enters it. The doorways are interleaved so that \(p_i\) crosses \(AD^f\) before it exits \(AD^r\) and \(SD^r\) (Figure 5). The FIFO property of the links ensures that \(p_j\) does not cross \(AD^f\) until \(p_i\) exits it, contradicting the assumption that \(p_i\) and \(p_j\) are behind the second double doorway at the same time.

For the rest of Section 5.3, the doorway refers to \(SD^f\), unless specified otherwise. For any node \(p_i\) behind the doorway at a specific time, define a directed graph \(LG_i\), consisting of hungry nodes that are behind the doorway, have equal or higher priority than \(p_i\) and are connected to \(p_i\) by a path of directed edges. Specifically:

\begin{itemize}
 \item \(p_i\) is a node in \(LG_i\).
 \item If \(p_j\) is a node in \(LG_i\) and its neighboring node \(p_k\) has a smaller color and is behind the doorway, then \(p_k\) is a node in \(LG_i\) and the edge is directed from \(p_j\) to \(p_k\).
\end{itemize}

Note that the undirected version of \(LG_i\) is a subgraph of the system communication graph, which changes dynamically as nodes join and leave it by crossing and exiting the doorway and/or moving away. Additionally, \(LG_i\) is acyclic since colors are legal and drawn from a totally ordered set.

For Lemmas 5–9, fix a time \(t_i\) when a node \(p_i\) crosses the doorway. Recall that \(\tau\) is the maximum eating time and \(\nu\) is the maximum message delay.

Lemma 5. If \(p_j\) joins \(LG_i\) at time \(t > t_i + k \ast \nu\), where \(k \geq 0\), and \(p_i\) is behind the doorway throughout the interval \([t_i, t]\), then the distance of \(p_j\) from \(p_i\) in \(LG_i\) at time \(t\) is at least \(k + 1\).

Proof: The proof is by induction on \(k\).

Basis: \(k = 0\). The only node at distance \(0\) from \(p_i\) at any time is \(p_i\) itself, and the claim trivially holds.

Induction step: \(k > 0\). Suppose, by way of contradiction, that the distance between \(p_i\) and \(p_j\) in \(LG_i\) at time \(t\) is \(\leq k\). Then \(p_j\) has a neighbor \(p_m\) in \(LG_i\) whose distance from \(p_i\) in \(LG_i\) is \(\leq k - 1\). By the inductive hypothesis, \(p_m\) joins \(LG_i\) by time \(t_i + (k - 1) \ast \nu\). When it joins \(LG_i\), \(p_m\) sends a \textit{cross}\(_s\) message. If \(p_j\) receives that message, then it does so by time \(t_i + k \ast \nu\). If \(p_j\) does not receive that message, then it must be a newly arrived neighbor of \(p_m\), so it waits for \(p_m\)’s doorway status (Line 53). In either case, \(p_j\) observes \(p_m\) as being behind the doorway. If \(p_m\) stays there until time \(\leq t\), \(p_j\) cannot cross the doorway and thus cannot join \(LG_i\) during the interval \([t_i + k \ast \nu, t]\), which is a contradiction. If \(p_m\) exits the doorway before time \(t\), \(p_j\) may cross the doorway, but it does not join \(LG_i\), by definition. Thus, \(p_j\) cannot join \(LG_i\) after \(t_i + k \ast \nu\), which is a contradiction.

Let \(\Delta\) be the maximal absolute value of a color produced by the recoloring module. A node sets its color either in the recoloring module or when exiting the critical section. Since colors on a directed path in \(LG_i\) are decreasing, the maximum path length (distance from \(p_i\)) is \(\Delta + \text{color}[i]\), which implies:
Corollary 6. If \(p_i \) is behind the doorway throughout the interval \([t_i, \xi]\), where \(\xi > t_i + \nu \ast (\Delta + \text{color}[i]) \), then no nodes join \(LG_i \) at any time \(t \in (t_i + \nu \ast (\Delta + \text{color}[i]), \xi] \).

Lemma 7. If \(p_i \) is behind the doorway throughout the interval \([t, \xi]\), where \(t \geq t_i \) and \(\xi \geq t + \tau + 2\nu \), holds all low forks at time \(t \) and does not receive a request from a low neighbor in the interval \([t, \xi]\), then one of the following two conditions holds:

1. \(p_i \) starts eating by time \(t + \tau + 2\nu \).
2. one of \(p_i \)'s high neighbors fails in the interval \([t, \xi]\).

Proof: If \(p_i \) holds all high forks at time \(t \), it starts eating immediately, establishing Condition 1. Otherwise, consider \(p_j \), a high neighbor of \(p_i \), that is holding the shared fork at time \(t \). By Lines 3 and 22, \(p_i \) sends a request for the missing fork by time \(t \), which arrives at \(p_j \) by time \(t + \nu \). If \(p_j \) has not failed, it responds with a fork, possibly after eating, by time \(t + \nu + \tau \); the fork reaches \(p_i \) by time \(t + 2\nu + \tau \) and \(p_i \) keeps the fork until it exits the doorway. Thus, if every high neighbor of \(p_i \) is not failed, then \(p_i \) collects all the forks and starts eating by time \(t + 2\nu + \tau \), establishing Condition 1. Otherwise, some high neighbor \(p_k \) fails in the interval \([t, \xi]\) and does not respond with a fork, establishing Condition 2.

Let \(T_i \) be the time of the first event after the last node joins \(LG_i \) until \(p_k \) exits the doorway. Consider \(LG_i \) at time \(T_i \). The rank of a node \(p_j \) in \(LG_i \), denoted \(r_i(j) \), is the length of the longest path from \(p_j \) to any other node in \(LG_i \) at time \(T_i \). Since \(LG_i \) is acyclic, the rank is well-defined for any node. A node with no outgoing edges has rank 0 (and highest priority) and the rank of any node is bounded by \(\Delta + \delta \). Additionally, if \(p_j \) and \(p_k \) are two neighbors in \(LG_i \) with an edge directed from \(p_j \) to \(p_k \), then \(r_i(j) \geq r_i(k) + 1 \).

To simplify the calculation of the response time, we also define for each node \(p_j \) in \(LG_j \) a function \(f_j = r_i(j) \ast (2\tau + 4\nu) + 2\tau + 4\nu \).

Lemma 8. If \(p_i \) is behind the doorway throughout the interval \([t_i, \xi]\), where \(\xi \geq T_i + f_i \), then one of the following two conditions holds:

1. \(p_i \) starts eating by time \(T_i + f_i \).
2. all predicates at \(k \) do not change in the interval \([T_i + f_i - \tau - 2\nu, \xi]\), where \(p_k \) ranges over the low neighbors of \(p_i \).

Proof: The proof is by induction on \(r_i(i) \), the rank of \(p_i \) in \(LG_i \).

Base: \(r_i(i) = 0 \). In this case, \(p_i \) does not have a hungry low neighbor behind the doorway. Node \(p_i \) sends a request for its low forks when it crosses the doorway. The low neighbors respond with the forks, which reach \(p_i \) by time \(T_i + \tau + 2\nu \). These forks are not sent back until \(p_i \) exits the doorway, since \(p_i \)'s low neighbors do not cross the doorway after time \(T_i \) (the time after which no new nodes are added to \(LG_i \)). If one of the low neighbors of \(p_i \) fails while in possession of the fork shared with \(p_i \), \(p_i \) never gets this fork, thus Condition 2 is established. Otherwise, Lemma 7 can be applied
to \(p_i \), with \(t = T_i + \tau + 2\nu \), because \(p_i \) has all low forks and does not receive a request from a low neighbor throughout \([t, \xi]\), since the interval is after \(T_i \). Thus, either \(p_i \) starts eating by time \(T_i + 2\tau + 4\nu \), establishing Condition 1, or \(p_i \) remains behind the doorway throughout the interval \([t_i, \xi]\) while holding all low forks in the interval \([T_i + f_i - \tau - 2\nu, \xi]\), establishing Condition 2.

Induction step: Assume that the induction hypothesis holds for all nodes \(p_k \) with rank less than \(r_i(i) \) in \(LG_k \). Let \(p_j \) be some low neighbor of \(p_i \). Informally, our goal is to show that if \(p_i \) does not start eating by time \(T_i + f_i \), then the fork shared between \(p_i \) and \(p_j \) does not change ownership in the interval \([T_i + f_i - \tau - 2\nu, \xi]\), implying that the predicate \(\text{at}_i[j] \) does not change in this interval.

If \(p_j \) is outside the doorway at time \(T_i \), it does not cross the doorway until \(\xi \), since no new neighbors join \(LG_i \) in the interval \([T_i, \xi]\). Node \(p_i \) requests the fork when \(p_i \) crosses the doorway. This request reaches \(p_j \) by time \(T_i + \nu \), and \(p_j \) responds with a fork which is received by \(p_i \) by time \(T_i + 2\nu \). The fork is owned by \(p_i \) until \(p_i \) leaves the doorway. Thus, the fork does not change ownership in the interval \([T_i + f_i - \tau - 2\nu, \xi]\), as long as \(p_i \) does not start (and finish) eating.

So, assume \(p_j \) is behind the doorway at time \(T_i \). We distinguish between whether \(p_j \) exits the doorway or not by time \(T_i + f_i - \tau - 3\nu \).

Case 1: Node \(p_j \) exits the doorway by time \(T_i + f_i - \tau - 3\nu \). This may happen if \(p_j \) finishes eating (Line 9), one of \(p_j \)’s low neighbors moves holding a fork (Line 60), or \(p_j \) moves. In the first two cases, \(p_j \) sends all requested forks to its neighbors; thus, \(p_i \) gets the fork shared with \(p_j \) by time \(T_i + f_i - \tau - 2\nu \). Node \(p_i \) does not change the ownership of the fork until \(p_i \) exits it. Consequently, \(p_j \) does not ask for the fork back until time \(\xi \) or later; thus, the shared fork stays with \(p_i \) in the interval \([T_i + f_i - \tau - 2\nu, \xi]\), or as long as \(p_i \) does not start (and finish) eating.

In the third case, when \(p_j \) moves, if \(p_i \) does not hold the fork when it receives the \(\text{LinkDown}(j) \) indication, \(p_i \) exits the doorway (by Line 60), contradicting the assumption that \(p_i \) is behind the doorway in the interval \([t_i, \xi]\). If \(p_i \) holds the fork when the \(\text{LinkDown}(j) \) indication is received, \(p_j \) is removed from the set of \(p_i \)’s neighbors, ensuring that the fork does not return to \(p_j \) until time \(\xi \) or later.

Case 2: Node \(p_j \) is behind the doorway throughout the interval \([t_j, \xi']\), where \(\xi' \geq T_j + f_j - \tau - 3\nu \). Since \(p_j \) is a low neighbor of \(p_i \) and \(LG_j \) is a subgraph of \(LG_i \), it follows that \(T_j \leq T_i \), where \(T_j \) is the time of the first event after the last node joins \(LG_j \) until \(p_j \) exits the doorway. From the definition it follows that \(r_j(i) \leq r_i(i) - 1 = r - 1 \), and thus \(T_j + f_j \leq T_i + f_i - 2\tau - 4\nu \). Thus, \(T_i + f_i - \tau - 3\nu \geq T_j + f_j \) and the induction hypothesis on \(p_j \) implies that one of the following two conditions holds:

Case 2.1: Node \(p_j \) starts eating by time \(T_j + f_j \). Then node \(p_j \) finishes eating by time \(T_j + f_j + \tau \) and sends the fork to \(p_i \), which receives the fork by time \(T_j + f_j + \tau + \nu < T_i + f_i - \tau - 2\nu \). Since \(p_i \) remains behind the doorway, \(p_j \) does not cross the doorway again until time \(\xi \), thus this fork is owned by \(p_i \) in the interval \([T_i + f_i - \tau - 2\nu, \xi]\), as long as \(p_i \) does not start (and finish) eating.

Case 2.2: All predicates \(\text{at}_i[k] \) do not change in the interval \([T_j + f_j - \tau - 2\nu, \xi']\), where \(p_k \) ranges over the low neighbors of \(p_j \). Thus, the last request for the fork from \(p_j \) to \(p_i \) until time \(\xi' \) is sent by time \(T_j + f_j - \tau - 2\nu \), and reaches \(p_i \) by time \(T_j + f_j - \tau - \nu \). If \(p_i \) starts eating by time \(T_j + f_j - \tau - \nu \), Condition 1 is established. Otherwise, \(p_i \) responds with a fork message with \(\text{flag} \) turned on, which arrives at \(p_j \) by time \(T_j + f_j - \tau \).
If by time $T_j + f_j - \tau - 2\nu$ node p_j holds all low forks, p_j does not return the fork to p_i. Node p_j does not move away while holding the fork before time ξ, since that would cause p_i to exit the doorway before time ξ, contradiction. Since node p_j does not start eating by time $T_j + f_j$, it remains behind the doorway throughout the interval $[t_j, \xi)$, while holding the fork shared with p_i throughout the interval $[T_j + f_j - \tau, \xi)$. Since $T_j + f_j - \tau < T_i + f_i - \tau - 2\nu$, $at_i[j]$ remains false throughout the interval $[T_i + f_i - \tau - 2\nu, \xi)$.

If by time $T_j + f_j - \tau - 2\nu$ node p_j does not hold all low forks and it has not failed yet, p_j returns the fork back to p_i, since flag is turned on (if p_j fails, it never responds with the fork; thus, $at_i[j]$ is false throughout the interval $[T_i + f_i - \tau - 2\nu, \xi]$). This fork reaches p_i by time $T_j + f_j - \tau + \nu < T_i + f_i - \tau - 2\nu$. Node p_j remains behind the doorway without holding all low forks. Consequently, p_j does not issue a new request for the fork shared with p_i after time $T_j + f_j - \tau - 2\nu$. Note that if p_j moves away or exits the doorway due to a movement of some of its low neighbors holding a fork after time $T_j + f_j - \tau + \nu$ (the time by which p_i receives the fork from p_j), it would not cause p_i to send the fork back to p_j. Thus, $at_i[j]$ remains true throughout the interval $[T_i + f_i - \tau - 2\nu, \xi)$.

Using the previous lemma, we prove that if a node p_i is behind the doorway sufficiently long and no nodes fail in its 2-neighborhood, then p_i will enter the critical section.

Lemma 9. If p_i is behind the doorway throughout the interval $[t_i, T_i + f_i]$ and no nodes within a distance of 2 from p_i fail, then p_i starts eating by time $T_i + f_i$.

Proof: Apply Lemma 8 on node p_i with some $\xi \geq T_i + f_i$. If Condition 1 holds, we are done. Thus, assume Condition 2 holds. If p_i holds all low forks by time $t = T_i + f_i - \tau - 2\nu$, Lemma 7 for time t and the fact that no high neighbor of p_i fails imply that p_i starts eating by time $T_i + f_i$.

Thus, assume p_i misses some of its low forks by time t and let p_j be a low neighbor of p_i, such that $at_i[j]$ is false in the interval $[T_i + f_i - \tau - 2\nu, \xi]$. If p_j is not behind the doorway at time $t_i + \nu$, then, by the condition in the entry code of the doorway, p_j does not cross the doorway until time ξ. By Line 4, p_i requests the fork shared with p_j by time t_i; this fork arrives to p_i by time $t_i + 2\nu$ and remains owned by p_i until time ξ, contradicting the assumption that $at_i[j]$ is false in the interval $[T_i + f_i - \tau - 2\nu, \xi]$.

Thus, p_j is behind the doorway at time $t_i + \nu$. Node p_j does not move away while holding the fork until ξ, since this would cause p_i to exit the doorway, contradicting the assumption that p_i is behind the doorway until ξ. If p_j starts eating or exits the doorway because one of its low neighbors moves by time $T_j + f_j$, the shared fork reaches p_i by time $T_j + f_j + \tau + \nu < T_i + f_i - \tau - 2\nu$. By the definition of T_i, p_j does not cross the doorway again until time ξ, thus the shared fork remains with p_j in the interval $[T_i + f_i - \tau - 2\nu, \xi]$, contradicting the assumption that $at_i[j]$ is false in this interval.

Therefore, p_j is behind the doorway throughout the interval $[t_j, \xi']$ for some ξ', where $\xi' \geq T_j + f_j$. Apply Lemma 8 on p_j. Since p_j does not start eating by time $T_j + f_j$, Condition 2 must hold. If p_j holds all low forks in the interval $[T_j + f_j - \tau - 2\nu, \xi']$, Lemma 7 and the fact that no neighbors of p_j fail imply that p_j starts eating by time $T_j + f_j$, which is a contradiction.

Thus, p_j misses one of its low forks in the interval $[T_j + f_j - \tau - 2\nu, \xi']$. Thus, the last request by p_j until ξ' for the fork shared with p_i has to be sent by time $T_j + f_j - \tau - 2\nu$. The fork returns to p_j.

29
with flag turned on by time \(T_j + f_j - \tau \). This fork is sent back to \(p_i \) since all-low-forks is false for \(p_j \). Thus, \(p_i \) receives the fork by time \(T_j + f_j - \tau + \nu < T_i + f_i - \tau - 2\nu \). Node \(p_j \) leaves the doorway before time \(\xi \), i.e., \(\xi' < \xi \), only if one of \(p_j \)'s low neighbors moves while holding the shared fork, or if \(p_j \) itself moves (\(p_j \) does not eat, since it misses some forks). In both cases, \(p_i \) does not return the fork until \(\xi \). The same is true if \(p_j \) remains behind the doorway (at least) until time \(\xi \), i.e., \(\xi' \geq \xi \), since \(p_j \) does not issue a new request. Thus, \(at_i[j] \) is true in the interval \([T_i + f_i - \tau - 2\nu, \xi]\), contradicting the assumption that \(at_i[j] \) is false in this interval.

Denote the time complexity of the recoloring module, that is the number of time units from the time a node crosses the first doorway till it finds a new color, by \(T_{\text{color}} \) and its failure locality by \(f_{\text{color}} \). Recall that \(\Delta \) is the maximal absolute value of a color produced by the recoloring module.

Lemma 10. The first algorithm has failure locality \(\max(f_{\text{color}}, 4) + 2 \) and response time \(O((T_{\text{color}} + \delta^2(\Delta + \delta))\delta) \).

Proof: We show first that if there are no failures in the \((\max(f_{\text{color}}, 4) + 2)\)-neighborhood of a hungry node, the node will get eventually into critical section, and then we bound the time that is required until the node enters the critical section.

To bound the failure locality, note that by Lemma 9, a node executing the fork collection module starts eating if no nodes fail in its 2-neighborhood. Thus, by Lemma 2, the fork collection module enclosed in the second double doorway has failure locality 4. Since part of the second double doorway is included in the first double doorway and this part is crossed only after a node finishes the recoloring module, a node that crosses the first double doorway exits it if no node in its \(\max(f_{\text{color}}, 4) \)-neighborhood fails. Lemma 1 implies that the entire algorithm has failure locality \(\max(f_{\text{color}}, 4) + 2 \).

To bound the response time, suppose node \(p_i \) becomes hungry at time \(t \), remains static until it eats and no node fails in its \((\max(f_{\text{color}}, 4) + 2)\)-neighborhood. The complete algorithm is structured as the execution of one double doorway (entry code, enclosed module, and exit code) and the execution of one double doorway with a return path, with the beginning of the second double doorway overlapping the end of the first one.

By Lemma 1, node \(p_i \) exits the first double doorway by time \(t + O(T\delta) \), where \(T \) is the time taken by the module enclosed by the double doorway. The enclosed module consists of the recoloring algorithm followed by the entry to \(AD^f \). The time for the the recoloring algorithm is \(T_{\text{color}} \) and the time for the entry to \(AD^f \) is at most the time it takes a node to execute the entire second double doorway. We show below that this time is \(O(\delta^2(\Delta + \delta)) \). Thus \(p_i \) completes the first double doorway by time \(t + O((T_{\text{color}} + \delta^2(\Delta + \delta))\delta) \).

By Lemma 2, the time taken to execute the second double doorway with a return path is \(O(\delta RT) \), where \(R \) is the maximal number of times the entry code of \(SD^f \) is executed by a node before it exits the double doorway, and \(T \) is the time taken by the module enclosed by the double doorway. The enclosed module consists of the fork collection module followed by the critical section.

Recall that \(t_j \) is the time when \(p_i \) crosses the second double doorway. Since no nodes in the 2-neighborhood of \(p_i \) fail, if \(p_i \) remains behind this doorway until time \(T_i + f_i \), then by Lemma 9, \(p_i \) must
start eating by that time. Since \(r_i(i) \leq \Delta + \delta \), the definition of \(f_i \) ensures that \(f_i = O(\Delta + \delta) \) and, by Corollary 6, the definition of \(T_i \) ensures that \(T_i = t_i + O(\Delta + \delta) \). Thus, \(p_i \) starts eating by time \(t_i + O(\Delta + \delta) \).

As a result, \(p_i \) leaves the synchronous doorway by time \(t_i + O(\Delta + \delta) \) with or without eating. The latter could happen if a low neighbor holding a fork moves; in this case \(p_i \) will return to the entry of the synchronous doorway again using the return path. Node \(p_i \) can traverse the return path at most \(\delta \) times, once for each node that is a low neighbor of \(p_i \) at time \(t_i \).

Consequently, substituting \(R \) by \(\delta \) and \(T \) by \(O(\Delta + \delta) \), we conclude that \(p_i \) completes the second double doorway by \(O(\delta^2(\Delta + \delta + \tau)) = O(\delta^2(\Delta + \delta)) \) time units, and starts eating by time \(t + O((T_{\text{color}} + \delta^2(\Delta + \delta))\delta) \).

In the static setting, the return path of the second double doorway is never taken, that is, the maximal number of times each node executes the entry code of \(SD^f \) is 1. Thus, the same proof implies the following result:

Lemma 11. When there are no changes in the topology, the first algorithm has response time \(O((T_{\text{color}} + \delta(\Delta + \delta))\delta) \).

Moreover, it worth noting that after all nodes in the static system set a color upon the exit from the critical section (in Line 6) in the range \([0, ..., \delta]\), the recoloring module is never run again. Thus, the response time in this special case becomes \(O(\delta^2) \), as in the algorithm of Choy and Singh [9].

5.4 The coloring procedures

We present two versions of the coloring procedure `new-color()` used by the wrapper code in Algorithm 2, demonstrating a trade-off between a more practical implementation and better (theoretical) complexity properties. As can be seen from Lemma 10, these properties are affected by the failure locality, running time and the color range of the coloring procedure.

The first coloring procedure is a simple greedy algorithm, in which a node iteratively exchanges messages with its neighbors to obtain a view of the subgraph that includes all nodes performing recoloring concurrently; the node then runs a local predefined coloring algorithm on that sub-graph and picks a new color in a greedy manner, depending on its neighbors. This procedure has poor failure locality and response time that are both \(O(n) \), and produces colors in a range of \(O(\delta) \), but it does not assume nodes have a knowledge of \(n \) and \(\delta \), as the second coloring procedure does.

The second coloring procedure is more sophisticated, implementing an adaptation of the synchronous fast graph coloring algorithm of Linial [22]. This procedure works in iterations as well; in each iteration, a node learns the colors of its neighbors that are behind the double doorway of the recoloring module, and calculates a new color for itself from a smaller range. This approach achieves failure locality and response time in \(O(\log^* n) \) at the price of increased combinatorial complexity, heavy pre-computation and the assumption of knowing \(n \) and \(\delta \).
Algorithm 4 Greedy coloring, code for p_i

62: new-color():
63: \(G := \emptyset \)
64: \(\textbf{do} \)
65: \(\text{send} \langle G, \text{false} \rangle \text{ to all } j \in R \)
66: \(\text{wait until } \langle G_j, \text{finished}_j \rangle \text{ is received from all } j \in R \)
67: \(G := G \cup G_j \cup \{(i, j)\} \text{ for all } j \in R \)
68: \(\textbf{while} \ (G \text{ is changed}) \land (\text{finished}_j = \text{false} \text{ for all } j \in R) \land (R \neq \emptyset) \)
69: \(\textbf{if } (R = \emptyset) \textbf{ then } \text{return } 0 \)
70: \(\textbf{else} \)
71: \(\text{send} \langle G, \text{true} \rangle \text{ to all } j \in R \)
72: \(\text{return } \text{calc-greedy-color}(G) \)

5.4.1 Greedy coloring

The pseudo-code for the greedy coloring procedure is presented in Algorithm 4. There, in addition to local variables mentioned in Section 5.2, each node p_i maintains a graph, represented as a set G of edges between nodes performing recoloring concurrently; it is initialized to \emptyset.

In each iteration of the loop in Lines 64–68, p_i exchanges the graph G with its neighbors and updates the graph preparing it for the next iteration. The loop ends when one of the following conditions holds (Line 68): (1) no more new edges are received, or (2) some neighbor p_j reports that it has finished its loop, that is, in the last message from p_j, the flag finished_j is true, or (3) p_i recognizes that none of its neighbors is running the recoloring concurrently.

If p_i finishes the loop for the last reason, it decides on a new color immediately (Line 69) and returns from the procedure. Otherwise, p_i sends the final graph G to its neighbors with finished flag turned on (Line 71) and runs the greedy coloring algorithm on G (Line 72), where p_i chooses the smallest possible color for itself, traversing the graph in some predefined order (e.g., DFS starting from a node with smallest ID).

We show next that despite node movements, two neighbors p_i and p_j running the greedy coloring procedure concurrently, finish the loop with the same graph G. This immediately implies that the recoloring module based on this procedure satisfies Assumption 1, which states that p_i and p_j receive different colors.

Let $T_i(k)$ be the time p_i finishes iteration k of the loop. Let $H(t')$ be the subgraph of the communication graph consisting of nodes doing recoloring at time t' (i.e., nodes that crossed the first double doorway and did not start the entry code of the second double doorway). Consider some node p_i and two neighboring nodes p_1 and p_2 in $H(t')$. Our algorithm allows an edge $e = (p_1, p_2)$ to be in G_i at the end of the last iteration of p_i even if p_1, p_2 or any other node on the shortest path between p_1 and e in $H(t')$ move. We define the distance between p_i and e taking care of the fact that nodes in $H(t')$ may move by considering the information that intermediate nodes on the path between p_i and e in $H(t')$ have already collected.

Formally, the distance of an edge e from a node p_i at time $t \geq t'$ is defined as
\[\min_{p_j \in H(t)} [d(p_i, p_j, H(t)) + d(p_j, e, G_j(t))], \] where \(d(p_i, p_j, H(t)) \) is the distance between \(p_i \) and \(p_j \) in \(H(t) \), and \(d(p_j, e, G_j(t)) \) is the length of the shortest path from \(p_j \) in \(G_j \) at time \(t \) which includes the edge \(e \).

Lemma 12. At the end of iteration \(k \), \(G_i \) contains exactly the edges at distance \(k \) or less from \(p_i \) at time \(T_i(k) \), provided no node fails in the \(k \)-neighborhood of \(p_i \).

Proof: The proof is by induction on the number of iterations.

Base: Assume, by way of contradiction, that \(p_i \) receives a non-empty graph from its neighbor \(p_j \) in \(p_i \)'s first iteration. Thus, \(p_i \) crosses the doorway after \(p_j \) sends its (empty) set on the first iteration. Thus, by Line 43, \(p_i \) responds with NACK on the message sent by \(p_j \) in \(p_j \)'s first iteration. Thus, \(p_i \) cannot cross the doorway until \(p_j \) exits it, since by FIFO property of the links, \(p_i \) receives crosss message from \(p_j \) before \(p_i \) responds with NACK. Thus, \(p_i \) cannot receive a message from \(p_j \) on Line 66, which is a contradiction.

As a result, in the first iteration, \(p_i \) receives only empty graphs from all neighbors running the recoloring. Thus, \(p_i \) constructs \(G_i \) to be a set of edges between \(p_i \) and all these neighbors. That is, at \(T_i(1) \), \(G_i \) holds all edges at distance 1 from \(p_i \). An edge at distance larger than 1 does not appear in \(G_i \).

Induction step: Assume that the claim holds for iteration \(k \) or less. Let \(p_i \) finish iteration \(k + 1 \) and consider an edge \(e \) at distance \(k + 1 \) from \(p_i \) at time \(T_i(k + 1) \). Let \(p_j \) be a neighbor of \(p_i \) such that the distance between \(p_j \) and \(e \) is \(k \). Node \(p_j \) does not finish the loop before executing iteration \(k \); otherwise, \(p_i \) would not execute \(k + 1 \) iterations. Applying the induction hypothesis on \(p_j \), we get that \(G_j \) contains \(e \) at the end of the iteration \(k \). By Line 65 or 71 (depending if \(p_j \) finishes the loop after \(k \) iterations or more), \(p_j \) sends \(e \) to \(p_i \), which reaches \(p_i \) by the end of the iteration \(k + 1 \).

Assume that in iteration \(k + 1 \), \(p_i \) receives an edge at distance \(> k + 1 \). Let \(p_m \) be a neighbor that sent that edge to \(p_i \). By definition, that edge is at distance \(> k \) from \(p_m \) and was received by \(p_m \) at iteration \(k \), contradicting the induction hypothesis.

Lemma 13. If \(p_i \) executes the loop in the time interval \([t_1, t_2]\), then the number of iterations executed by \(p_i \) is at least the maximum distance of any edge from \(p_i \) at time \(t_2 \).

Proof: Let \(e \) be an edge at the maximal distance \(m \) from \(p_i \) at time \(t_2 \) and assume that \(p_i \) finishes the loop after \(m' \) iterations, where \(m' < m \). By Line 68, the loop ends only if \(G_i \) is not changed, one of \(p_i \)'s neighbors has finished the loop, or the set \(R_i \) becomes empty, meaning that all neighbors running recoloring with \(p_i \) moved. Let \(p_j = p_i \) if \(G_i \) is not changed or \(R_i \) is empty at the end of iteration \(m' \); otherwise, let \(p_j \) be a node at distance \(k \) from \(p_i \) that finishes the loop after \(m' - k \) iterations since its graph \(G_j \) does not change. By simple induction on the distance between \(p_i \) and \(p_j \), it can be easily shown that if \(p_i \) receives a message with \(finish = true \), then there is a node at distance \(k \) from \(p_i \) that finishes the loop after \(m' - k \) since its graph \(G \) does not change; denote this node as \(p_j \). The last change in \(G_j \) occurs at the end of iteration \(m' - k - 1 \).

By definition, the distance between \(p_j \) and \(e \) at time \(T_j(m' - k) \) is at least \(m - k \). Let \(p_j = p_0, p_1, ..., p_{m-k} \) be the prefix of the path between \(p_j \) and \(e \) at time \(T_j(m' - k) \), as required by the
definition of the distance. By Lemma 12, at the end of each iteration \(l \), \(l \leq m' - k < m - k \), the edge at distance \(l \) on the above path is contained in \(G_j \); additionally, that edge cannot be added to \(G_j \) at the end of an earlier iteration. As a result, the graph \(G_j \) is constantly changed at the end of each iteration \(l \), including the last iteration \(m' - k \), which contradicts the way \(p_j \) was selected.

Lemma 14. The recoloring module with the coloring procedure in Algorithm 4 satisfies Assumption 1.

Proof: Consider a node \(p_j \) that starts the recoloring module when its neighbor \(p_i \) is behind the first double doorway. Let \(t_i \) and \(t_j \) be the time \(p_i \) and \(p_j \) finish the loop, respectively. Assume, without loss of generality, that \(t_i \leq t_j \). We show that \(G_i = G_j \) at the time \(t_j \), i.e., both neighbors finish the loop with the same graph \(G \). Since \(p_i \) and \(p_j \) run the greedy color calculation on the same graph, they pick different colors.

Consider an edge \(e \in G_i \). Since \(p_j \) is a neighbor of \(p_i \), there exists a path at time \(T_j(k) \), where \(k \) is the last iteration of \(p_j \), between \(p_j \) and \(e \), as required by the definition of the distance. Denote the length of that path by \(m \). By Lemma 13, \(p_j \) finishes after at least \(m \) iterations, that is \(k \geq m \). By Lemma 12, at the end of iteration \(m \), \(G_j \) must include all edges at distance \(m \) from \(p_j \), including \(e \). Thus, \(e \in G_j \) when \(p_j \) completes the loop. Thus, \(G_i \subseteq G_j \). Similarly, \(G_j \subseteq G_i \), so \(G_i = G_j \).

Lemma 15. The recoloring module with the coloring procedure in Algorithm 4 finds a color in the range of \([0, \ldots, \delta]\) for a static node \(p_i \) in \(O(n) \) time units from the time it crosses the first double doorway, provided that no node within a distance of \(n \) from it fails.

Proof: Let \(p_i \) be a node crossing the first double doorway at time \(t \). The distance of any edge from \(p_i \) at any time \(t' \geq t \) is bounded by \(n \), thus Lemma 12 implies that no new edge will be added to \(G_i \) at the end of iteration \(n + 1 \). Therefore, \(p_i \) runs at most \(n + 1 \) iterations. Provided none of the nodes running the recoloring module fails, each iteration takes at most \(2\nu \) time units; thus \(p_i \) finishes the loop and calculates its new color by time \(t + O(n) \). The result of the greedy algorithm is a color in the range of \([0, 1, \ldots, \delta]\).

Substituting \(T_{color} = O(n) \), \(f_{color} = n \) and \(\Delta = \delta + 1 \) in Lemmas 10 and 11, we get the next two theorems:

Theorem 16. When run with the coloring procedure in Algorithm 4, the first algorithm satisfies the local mutual exclusion property in a MANET, has failure locality \(n \) and response time \(O((n + \delta^3)\delta) \).

Theorem 17. When run with the coloring procedure in Algorithm 4 in the static setting, the first algorithm has response time \(O((n + \delta^2)\delta) \).

5.4.2 More efficient coloring

The recoloring module based on the simple greedy coloring procedure has failure locality that depends linearly on the number of nodes in the system. Theoretically, this means that a failure of one node
may block the whole system, no matter how far other nodes are from the failed one. The following scenario shows that the failure locality of the recoloring module with the greedy coloring procedure can be as bad as n: all nodes in the system start running the recoloring simultaneously, and one of them fails in the first iteration, before sending its message in Line 65. Thus, all nodes at distance 1 from the failed node will be blocked in their first iteration in Line 66, all nodes at distance 2 will be blocked in their second iteration, and so on. Such scenario is increasingly likely to occur if nodes are moving frequently, thus performing the recoloring very often.

As a result, we propose an alternative coloring procedure, which has much better failure locality $O(\log^* n)$ and guarantees that the number of colors is proportional to $O(\delta^2)$. It does so by running, behind a double doorway, an adaptation of the fast graph coloring algorithm proposed by Linial [22] for synchronous and static networks, where all nodes start coloring simultaneously. This iterative algorithm assumes knowledge of n and δ and relies on the following combinatorial result:

Theorem 18 (Erdős, Frankl and Füredi [14]). For any two integers n and δ with $n > \delta$, there is a set J of n subsets of $\{1, \cdots, \lceil 5\delta^2 \log n \rceil \}$ s.t. for any $\delta + 1$ subsets $F_0, F_1, \ldots, F_\delta \in J$, $F_0 \not\subseteq \bigcup_{i=1}^\delta F_i$.

This theorem guarantees the existence of a set of subsets of a relatively small range of numbers, where each subset contains a number that does not appear in the union of any constant number of other subsets. This result is applied in each iteration by considering subsets of colors and having each node choose the color that does not appear in any of the subsets of colors corresponding to neighbors running the recoloring module. The final chosen colors are legal and in the range of size $O(\delta^2)$.

The existence of these sets is proved in [14] by probabilistic arguments, without constructing them explicitly. They can be found through an exhaustive search performed locally by each node. Since the sets depend only on the number of nodes n and the maximum degree δ, we can assume that all nodes are initialized with the same sets.

The pseudo-code for the second coloring procedure is presented in Algorithm 5. In addition to the local variables mentioned in Section 5.2, this procedure uses the following variables:

- ph, counts number of executed phases; initialized to 0.
- $temp$-color, temporary color chosen at the end of the previous iteration; initialized to ID of the node.
- CI, set of temporary colors of all nodes in R, in the current phase (recall that R holds the set of neighbors behind the doorway that are participating in the recoloring).

In each iteration of the loop in Lines 65-70, p_i sends its current temporary color and receives temporary colors of its neighbors which are also running the recoloring. Then it sets $temp$-color to some value in F_i that does not appear in $\bigcup_{p_j \in R} F_j$ (Line 68), where all sets F_1, F_2, \ldots, F_n are locally precomputed.

The loop finishes after $\log^* n$ iterations or if p_i recognizes that none of its neighbors is running the recoloring concurrently. In the first case, the returned value is the temporary color calculated at the last iteration (Line 72), while in the latter case, zero is returned (Line 71).

The next lemma follows from the FIFO property of the links.
Algorithm 5 More efficient coloring, code for p_i

```plaintext
62: new-color():
63:  $p_h := 0$
64:  temp-color := ID
65:  do:
66:    send temp-color msg to all $j \in R$
67:    wait until temp-color msg is received from all $j \in R$ and stored to $CI$
68:    temp-color := calc-new-color($R, CI$) // using Linial’s scheme
69:    $p_h := p_h + 1$
70:  while ($p_h < \log^* n$) ∧ ($R \neq \emptyset$)
71:  if ($R = \emptyset$) then return 0
72:  else return temp-color
```

Lemma 19. The recoloring module with the coloring procedure in Algorithm 5 satisfies Assumption 1.

Proof: Assume, by way of contradiction, that two neighboring nodes, p_i and p_j, set their temp-color to the same value at the end of iteration k. We show that at any time t, if two neighbors p_i and p_j are behind the first double doorway, then $i \in R_j$ and $j \in R_i$. This implies that p_i and p_j use the same subsets F_i and F_j in iteration k. Thus, if p_j sets temp-color to $x \in F_j$ it contradicts the fact that p_i sets temp-color to $x \in F_i \setminus F_j$.

Let t_i and t_j be the times when p_i and p_j crossed the first double doorway, respectively. Without loss of generality, assume that $t_i \leq t_j$. If p_j is not in N_i when p_i crosses this doorway, then p_j does not cross this doorway until p_i exits it, which is a contradiction. Thus, by Line 37, j is in R_i, and it is removed from this set only if p_j moves away or if p_j sends NACK message in Line 41. In the former case, p_i and p_j would not be neighbors anymore. In the latter case, p_j is outside the doorway and, by FIFO properties of the links, p_j receives the cross__s message from p_i before getting the first temp-color message from p_i. Thus, p_j remains outside the doorway until p_i exits it, which is a contradiction. \(\Box\)

The next lemma applies to the first iteration of the loop in the coloring procedure.

Lemma 20. If a node p_i crosses the first double doorway at time t, it picks a new temporary color in the range $[\lceil 5\delta^2 \log n \rceil]$ within $t + 2\nu$ time units, provided no node in the 1-neighborhood of p_i fails.

Proof: The synchronous doorway ensures that every neighbor p_j of p_i enters the doorway by time $t + \nu$ and p_i receives p_j’s color or NACK message by time $t + 2\nu$, since p_j does not fail. If all the neighbors respond with NACK messages, p_i picks color 0 and finishes (by Line 71).

All nodes are initialized with the same n sets, F_1, F_2, \ldots, F_n, that satisfy the hypothesis of Theorem 18 and R holds the set of neighbors of p_i participating in the recoloring. By the theorem, $F_i \not\subseteq \bigcup_{p_j \in R} F_j$, and hence p_i can set temp-color to some $x \in F_i \setminus (\bigcup_{p_j \in R} F_j)$. Clearly, $x \leq \lceil 5\delta^2 \log n \rceil$.

Induction on the number of iterations implies:
Lemma 21. The recoloring module with the coloring procedure in Algorithm 5 finds a color in the range of $O(\delta^2)$ for a static node p_i in $O(\log^* n)$ time units from the time it crosses the first double doorway, provided that no node within a distance of $\log^* n$ from it fails.

Substituting $T_{color} = O(\log^* n)$, $f_{color} = \log^* n$ and $\Delta = O(\delta^2)$ in Lemmas 10 and 11, we get the next two results:

Theorem 22. When run with the coloring procedure in Algorithm 5, the first algorithm satisfies the local mutual exclusion property in a MANET, has failure locality $\max(\log^* n, 4) + 2$ and response time $O((\log^* n + \delta^4)\delta)$.

Theorem 23. When run with the coloring procedure in Algorithm 5 in the static setting, the first algorithm has response time $O((\log^* n + \delta^3)\delta)$.
Chapter 6

An algorithm with optimal failure locality

Our second local mutual exclusion algorithm for MANETs has optimal failure locality, but its response time depends quadratically on n. Besides having better failure locality, this algorithm does not require nodes to know the values of n or δ as one version of the first algorithm does. This makes it more flexible when new nodes join the system or there are unpredictable topology changes, preventing δ from being known in advance. In addition, when it is run in a static environment, the algorithm achieves response time linear in n, which is better than any other known solution with optimal failure locality.

The solution uses a modified fork collection module without doorways or colors. The idea is to use dynamic priorities which change when nodes exit their critical sections [37]. The role of colors is replaced by an array of flags, denoted higher, identifying if a neighbor has a higher priority over the node. A node that exits the critical section resets the values in its higher array to true, thus lowering its priority relative to its neighbors.

Although this algorithm implements a modified mechanism to collect forks, the correctness proof relies on the tools used for Algorithm 1, which include the adapted definition of LG graph and of the rank of a node.

6.1 Pseudo-code

The pseudo-code appears in Algorithms 6 and 7. The algorithm uses the same set of variables as Algorithm 1, except the array colors, which is replaced by an array called higher. Initially, $\text{higher}_i[j]$ is true if $ID[i] < ID[j]$.

When a node becomes hungry, it sends a notification message to its neighbors. A node p_j that receives a notification from p_i, replies with a special switch message (and sets $\text{higher}_j[i]$ to true) only if it is thinking and $\text{higher}_j[i] = \text{false}$. Otherwise, it discards the message. The switch message causes its receiver to set the value of the higher flag corresponding to the sender of the message to false. The motivation behind this notification mechanism is to prevent a node p_j that has higher priority and is
currently thinking from interfering with the fork collection of \(p_i \) by becoming hungry later. By sending a switch message, \(p_j \) lowers its priority.

Next, a node starts the fork collection module with the following changes relative to Algorithm 1: \(higher[j] \) is used in every place where \(color[i] \) and \(color[j] \) are compared in Algorithm 1, that is, \(color[i] < color[j] \) is replaced by \(\neg higher[j] \) and, analogously, \(color[i] > color[j] \) is replaced by \(higher[i] \). Lines 6 and 7, handling the choice of a new color for a node, are omitted since the nodes are not colored. The switch message is sent by \(p_i \) when it exits the critical section to lower \(p_i \)'s priority regarding all its neighbors. The code handling link creation and failure is simpler, since doorways (and the associated return path) are not used.

6.2 Correctness proof

The analysis of this algorithm is also based on a definition of a directed graph \((LG) \) and the notion of the rank, that reflects the priorities of competing nodes. Before providing a definition for \(LG \), we define a more general graph \(G \) constructed from the communication graph with edges directed from a node with a lower priority to its neighbor with a higher priority. The graph \(G \) is used to show the acyclicity of \(LG \), which is required for proper definition of the rank of a node.

Formally, for any two neighbors \(p_i \) and \(p_j \) in \(G \), the edge is directed from \(p_i \) to \(p_j \) if and only if

1. \(higher_j[i] = \text{false} \) or
2. both \(higher_j[i] \) and \(higher[i] \) are \text{true} and there is a switch message in transit from \(p_i \) to \(p_j \). It can be seen from the algorithm that the direction of an edge between two neighbors \(p_i \) and \(p_j \) is well-defined. Initially, exactly one of \(higher_j[i] \) and \(higher[i] \) is \text{false}, and similarly when a link is created. During an execution, \(higher_j[i] \) is set to \text{false} only when a switch message is received, but this happens only when \(p_j \) sets \(higher_j[i] \) to \text{true}. Thus, at most one of \(higher_j[i] \) and \(higher[i] \) is \text{false}, and both are \text{true} only while a switch message is in transit between \(p_i \) and \(p_j \).

We prove that \(G \) is acyclic by using the argument of link reversal technique [15]. The acyclicity of \(G \) is clear when the algorithm is initialized, and can be shown to be preserved in one of the three possible ways the direction of an edge may change in Algorithm 6: (1) a node finishes eating, (2) a node establishes a connection with a new neighbor, or (3) a node gets a notification message from one of its neighbors with lower priority. In all three cases, all (incoming) edges incident to a node under consideration are reversed and a cycle cannot be created.

Lemma 24. \(G \) is an acyclic directed graph in any state of the system.

For any hungry node \(p_i \), the definition of the graph \(LG_i \) is modified to be based on the \(higher \) array. Now, a hungry node \(p_k \) is in \(LG_i \) if it has a neighboring node \(p_j \) in \(LG_i \) and one of the two conditions holds: (1) \(higher_k[j] = \text{false} \) or (2) both \(higher_j[k] \) and \(higher_k[j] \) are \text{true} and there is a switch message in transit from \(p_j \) to \(p_k \). In this case, the edge is directed from \(p_j \) to \(p_k \). Since \(LG_i \) is a sub-graph of the hungry nodes in \(G \), its acyclicity follows immediately from Lemma 24.

Using the same definition of the \text{rank} as before, we observe that here \(r_s(j) \leq n - 1 \) for any node \(p_j \) in \(LG_i \). Consequently, denoting by \(t_i \) the time when \(p_i \) becomes hungry, Corollary 6 holds for...
Algorithm 6 Main module, code for p_i

1: when $state$ is set to hungry:
 2: send notification msg to all $j \in N$
 3: if all-forks then $state := eating$
 4: if all-low-forks then request-high-forks()
 5: else request-low-forks()
2: when $state$ is set to thinking:
 7: for each j s.t. $\neg higher[j]$ do:
 8: send switch msg to p_j; $higher[j] := true$
 9: for each j s.t. $j \in S$ do: send-fork(j)
10: when req msg is received from j and at[j]:
11: if ($\neg higher[j]$ $\land \neg$ all-low-forks) then send-fork(j)
12: else if ($higher[j]$ $\land \neg$ all-forks) then
13: send-fork(j); release-high-forks()
14: else $S := S \cup \{j\}$
15: when (fork, flag) msg is received from j:
16: at[j] := true
17: if all-forks then $state := eating$
18: if all-low-forks then
19: if flag then $S := S \cup \{j\}$
20: request-high-forks()
21: else if flag then send-fork(j)
22: when notification msg is received from j:
23: if ($state = thinking$ $\land \neg$ higher[j]) then
24: for each k s.t. $\neg higher[k]$ do:
25: send switch msg to p_k; $higher[k] := true$
26: when switch msg is received from j:
27: higher[j] := false
28: request-low-forks():
29: for each $j \in N$ s.t. ($higher[j]$ $\land \neg$ at[j]) do:
30: send req msg to j
31: request-high-forks():
32: for each $j \in N$ s.t. ($\neg higher[j]$ $\land \neg$ at[j]) do:
33: send req msg to j
34: send-fork(j):
35: send (fork, ($higher[j]$ \land $(state = hungry)$)) to j
36: at[j] := false; $S := S \setminus \{j\}$
37: release-high-forks():
38: for each $j \in S$ s.t. ($\neg higher[j]$ \land at[j]) do:
39: send-fork(j)
Theorem 25. The second algorithm satisfies local mutual exclusion property in a MANET, has failure of the move of nodes which leave same interval.

Proof: The local mutual exclusion property is proved in Lemma 3. The proof carries over, since the handling of forks in Algorithm 6 is identical to that of Algorithm 1.

Assume no node in the 2-neighborhood of \(p_i \) eats by time \(T_i \), we are done. Otherwise, if during some time interval \([t, t + f_i] \), where \(t \geq T_i \), no node in \(LG_i \) moves, we can apply Lemma 9 to deduce that \(p_i \) eats by time \(t + f_i \).

We now argue that as long as \(p_i \) does not move, such an interval is guaranteed to start by time \(T_i + (n - 1) \times f_i \). There are \(n \) nodes in \(LG_i \). No nodes join \(LG_i \) after time \(T_i \). Thus, eating by \(p_i \) is maximally delayed if each node in \(LG_i \) other than \(p_i \) leaves \(LG_i \) by moving just before \(f_i \) time has elapsed since the last node moved (or since \(T_i \)). After \((n - 1) \times f_i \) time, there can be no further movement of nodes in \(LG_i \), since \(p_i \) remains the only node in \(LG_i \).

Thus \(p_i \) eats by time \(T_i + (n - 1) \times f_i = t + \nu \times (n - 1) + n \times f_i = t + O(n^2) \), since \(f_i \) is in \(O(n) \) (recall that \(r_i(i) \) is in \(O(n) \)).
When the system is static, applying Lemma 9 implies:

Theorem 26. When there are no changes in the topology, the second algorithm has response time \(O(n) \).

Proof: Recall from Corollary 6 that if \(p_i \) becomes hungry at time \(t_i \), no nodes join \(LG_i \) after \((n-1)*\nu \) time units. Thus, if \(p_i \) eats by time \(T_i \), we are done. Otherwise, we apply Lemma 9 with \(T_i + f_i \) and conclude that \(p_i \) starts eating by time \(t_i + (n-1)*\nu + (n-1)*(2\tau + 4\nu) + 2\tau + 4\nu \), or within \(O(n) \) time units of becoming hungry, provided no node in the 2-neighborhood of \(p_i \) fails.

This improves on the best previously known algorithm for the dining philosophers problem in static systems with optimal failure locality [37], which achieved \(O(n^2) \) response time. The improvement is achieved due to the notification mechanism, which prevents a thinking node \(p_j \) that has a higher priority than its hungry neighbor \(p_i \) from interfering with the progress of \(p_i \) when \(p_j \) becomes hungry.
Chapter 7

Discussion

This thesis proposes the local mutual exclusion problem, an extension of the dining philosophers problem from static networks, as a potentially useful primitive for building applications for mobile ad hoc networks. The thesis describes and proves the correctness of two algorithms for the problem; the algorithms tolerate node crashes and exhibit different tradeoffs between failure locality and response time.

Our first algorithm consists of two modules, recoloring and fork collection. We proposed two possibilities for the first module exhibiting a tradeoff between practicality and complexity of implementation. Since recoloring is only required when a node moves (and for initialization), the simple coloring procedure, although not achieving as good theoretical complexity bounds, is a practical choice, especially for systems in which nodes do not move or fail very frequently. The second algorithm, when run in the mobile setting, matches the properties of the best result with optimal failure locality proposed for the static setting. In a static setting, this algorithm outperforms any previous solution with optimal failure locality.

Substituting other distributed coloring procedures in the recoloring module of the first algorithm may provide other solutions for local mutual exclusion with different properties. For example, in this thesis, we have concentrated on deterministic algorithms, but one may apply a randomized approach, e.g., the algorithm proposed by Kuhn and Wattenhofer [19]. Their algorithm has a common scheme of iterative application of one-round color reduction, similar to one of the implementations proposed for the recoloring module in this thesis. As a result, it can easily substitute the coloring procedure used by the recoloring module, leading to an algorithm for local mutual exclusion with probabilistic properties. As stated in Chapter 2, the resulting solution will achieve slightly better response time only if $\delta \gg \log n$. Since this randomized coloring algorithm uses the algorithm of Linial [22] as a subroutine, it has the same assumption on knowing n and δ by all nodes and requires heavy pre-computation.

It is interesting to investigate the inherent complexity of local mutual exclusion. Linial [22] shows a lower bound of $\Omega(\log^* n)$ on the time required to color a static ring of nodes with 3 colors. Since the solution for the dining philosophers problem can be used for coloring (i.e., a node may choose a
new color upon the exit from the critical section), this result implies a lower bound of $\Omega(\log^* n)$ for
local mutual exclusion in static networks, when there is no initial coloring of the nodes; this lower
bound clearly carries over to the mobile case. Thus, one of the versions of our first algorithm has a
response time close to optimal. Choy and Singh [9] obtain response time that does not depend on n,
but assume a predefined coloring of the nodes; our recoloring module can be employed to efficiently
and distributively pre-compute this coloring in a static setting.

More interestingly, we would like to investigate the cost of node mobility, in particular, whether
the cost incurred by our algorithm for recoloring is necessary. The intuition is that all the nodes with
the same color could move to become neighbors, thus invalidating the formerly legal coloring and
presumably necessitating a larger response time. This argument needs to be made rigorous in order to
derive that an algorithm tolerating nodes movement is necessary more expensive (with regard to the
response time) than its static counterpart.

Future research should also consider the assumptions made in our model and investigate whether
they are necessary. For example, we assume that each of the nodes is aware of its mobility at the time
of link creation. This assumption seems necessary in order to achieve good response time since if
priority relationship between two neighbors will not relate to their mobility (e.g., node with higher ID
has higher priority), it would be possible to create a scenario where a hungry node will be starved by
newly arriving neighbors.

Another direction for the future research is to consider the self-stabilization property and its vari-
ations [11, 12]. It seems our first algorithm can be made self-organizing [12] by running a recoloring
module to fix the colors of nodes after every topology change. Designing self-stabilizing versions of
our algorithms may allow us to further relax the assumptions made in our system model, e.g., FIFO
property of the links.

Additional future work is to explore other performance measures, such as message complexity, and
to find more applications of local mutual exclusion.
Bibliography

A network is composed of hosts connected to each other by links. For simplicity, we assume that each link has a constant capacity and each link is bidirectional. A network is modeled as a directed graph $G = (V, E)$, where V is the set of vertices representing the hosts, and E is the set of edges representing the links connecting the hosts. A path in the network is a sequence of edges that connect a source host to a destination host.

In this model, we assume that each host has a fixed amount of data that it needs to communicate with other hosts. The goal is to find an efficient routing strategy that minimizes the total communication cost, which is typically measured in terms of the number of packets that need to be transmitted over the network.

A well-known problem in this domain is the Routing Problem, which is an NP-hard problem. The problem is to find the shortest path between two hosts, where the shortest path is defined as the path with the minimum total transmission cost.

To solve this problem, various heuristic methods have been proposed, such as Breadth-First Search (BFS) and Dijkstra's algorithm. These algorithms can be used to find the shortest path between two hosts, but they do not guarantee the optimality of the solution. In this thesis, we propose a new heuristic algorithm that can efficiently find good solutions to the Routing Problem, even for large networks.

The algorithm is based on the idea of using a local search strategy, where the search is performed in the neighborhood of a given solution. The neighborhood is defined as the set of solutions that can be obtained by making small changes to the current solution. The algorithm starts with an initial solution and then iteratively improves it by making small changes to the current solution until no further improvement can be made.

The performance of the algorithm is evaluated using various metrics, such as the total transmission cost, the average delay, and the number of packets transmitted. The results show that the proposed algorithm can find good solutions to the Routing Problem, even for large networks, and that it performs better than other existing algorithms.

In conclusion, the Routing Problem is a fundamental problem in network design and management, and it is of great importance in the design of efficient communication networks. The proposed algorithm can be used as a tool for network designers and engineers to find efficient routing solutions for their networks.

Technion - Computer Science Department - M.Sc. Thesis MSC-2008-14 - 2008
The study of mobile ad hoc networks (MANETs) has become a popular research topic. Unlike traditional networks, MANETs are composed of mobile computing units that communicate through wireless connections, similar to mobile ad hoc networks (MANETs), or "mobile ad hoc networks," as they are often referred to. Unlike traditional networks, which rely on a fixed infrastructure, MANETs do not have a fixed infrastructure, as they are composed of mobile computing units.

The study of MANETs includes the development of applications, which is of great importance to the military for conducting operations and obtaining information about the environment. The development of applications for MANETs is not easy, and there are many challenges that need to be addressed to build applications that work in this environment.

A mobile ad hoc network (MANET) is a self-organizing network of mobile computing devices linked together ad hoc without the aid of any centralized administrative control, spontaneously forming temporary multi-hop radio communication networks for telecommunications, data exchange, and other applications.

The development of applications for MANETs is not easy, and there are many challenges that need to be addressed to build applications that work in this environment.
המחברنى עשה בדיקות פרופ’ חגי עטיה בעיטות בפקולטה למידע המחשב.

אני מודה לטכניה על התמיכתה החסכונית בהFlatButtonה למידע המחשב.

אני מודה לטכניה על התמיכתה החסכונית בהFlatButtonה במידע המחשב.
מניעה הדדית לקליטת ייעול והטינה

ברשותת הוכת ניידות

חובר על מחקר

לשם מילוי חלקי של הדרישות לקליטת החובור

מגיסטר למדעי המחשב

אלכס קוגן

הוגש לסטט הטכניון – מכון טכנולוגי לישראל

אפריל, תשל"ט, חיפה, יוני, 2008
מניעת הדדיות לוקליות יעילות והסינתז
ברשאות אד הוק ניידות

אבי קסן קון