Minimum feedback vertex sets in circle graphs

Fanica Gavril
Computer Science Dept., Technion, Haifa 32000, Israel, gavril@cs.technion.ac.il

ABSTRACT: We describe a polynomial time algorithm to find a minimum feedback vertex set, or equivalently, a maximum induced forest, in a circle graph. The circle graphs are the overlap graphs of intervals on a line.

KEY WORDS: minimum feedback vertex set, maximum induced forest, circle graph

1. Introduction

We consider only finite graphs $G(V,E)$ with no parallel edges and no self-loops, where V is the set of vertices and E the set of edges. For $U \subseteq V$, $G(U)$ is the vertex subgraph induced by U. A tree is an acyclic connected graph. A forest is a collection of trees. A tree t is rooted if it is directed and has exactly one vertex of in-degree zero called root. A cocomparability graph is the complement of a transitively orientable graph [3].

A feedback vertex set of an undirected graph G is a vertex set whose deletion leaves an induced forest. The problem of finding a minimum feedback vertex set, or equivalently a maximum induced forest, of a graph G is NP-complete for bipartite and planar graphs, but polynomial for interval, cocomparability, AT-free and chordal graphs [1,8,11,13].

A graph G is an intersection graph of a family S of subsets of a set if there is a one-to-one correspondence between the vertices of G and the subsets in S such that two vertices are adjacent iff their corresponding subsets in S have a non-empty intersection. Interval graphs are intersection graphs of families of intervals on a line. Two intervals are said to overlap if they intersect and none is contained into the other. A graph G is called a circle graph or overlap graph if there exists a family I of intervals on a line and a one-to-one correspondence between the vertices of G and the intervals in I such that two vertices are adjacent iff their corresponding intervals in I overlap. Circle graphs [2,5], have polynomial time algorithms for recognition, maximum clique and maximum independent set, while their minimum coloring and minimum covering by cliques problems are NP-complete [4,5,7,12]. These graphs are of interest in computer science, genetics and ecology [9,10].
the present paper we describe a polynomial time algorithm to find a maximum induced forest, or equivalently a minimum feedback vertex set, in a circle graph.

In a Euclidean plane PL, consider a line L defined by $y=0$, drawn from left to right. On L, consider a family of closed intervals I. For an interval $[l,r] \in I$, we define an interval-curve c in PL as a continuous function $c:[l,r] \rightarrow \mathbb{R}^+$ having $c(l)=c(r)=0$: an interval-curve c starts and ends at the endpoints of $[l,r]$ and is delimited by them. Consider a family ff of interval-curves fulfilling that $\cup c \in ff$ is a continuous curve: $a=\cup_{c \in ff} c$ is called an interval-filament. An interval-filament is delimited in PL by its two extreme endpoints in L, hence, if two intervals are disjoint, their interval-filaments do not intersect. Clearly, the union of two intersecting interval-filaments is an interval-filament. Let $V=\{v\mid i(v) \in I\}$ be a vertex set. For each interval $i(v) \in I$ we consider an interval-filament $a(v)$ connecting the left and right endpoints $l_{i(v)}, r_{i(v)}$ of $i(v)$; $FI=\{a(v)\mid i(v) \in I\}$ is a family of interval-filaments and its intersection graph $G(V,E)$ is an interval-filament graph, as introduced in Gavril [6].

Consider a circle graph $G(V,E)$ represented as the overlap graph of a family $I=\{i(v)\mid v \in V\}$ of closed intervals on a line L; w.l.o.g. we assume that no two intervals have a common endpoint. We denote $l_v=l_{i(v)}, r_v=r_{i(v)}$ and $EP=\{x\mid x=l_v \text{ or } x=r_v, v \in V\}$. In the plane PL of L, above L, we connect the endpoints of each interval $i(v)$ by an interval-filament $a(v)$ consisting of a simple arc (Fig. 1a), such that if $i(u) \subset i(v)$, then the arcs $a(u), a(v)$ do not intersect. Clearly, G is the intersection graph of this family of interval-filaments, since $a(u)\cap a(v)\neq\emptyset$ iff $i(u)\cap i(v)\neq\emptyset$, $i(u)\subset i(v)$ and $i(v)\subset i(u)$.

In Section 2 we analyze the structure of a maximum induced forest in a circle graph, using the above representation by interval-filaments. In Section 3 we describe a polynomial time algorithm to find a maximum induced forest in a circle graph.

2. Analysis of maximum induced forests in circle graphs

Let $G(V,E)$ be a circle graph represented as an intersection graph of interval-filaments, each filament $a(v)$ being an arc connecting the endpoints of an interval $i(v) \in I$. Consider a maximum induced forest F_G of G (Fig. 1b, without the dashed edges). Let $t_1, t_2, ..., t_r$ denote the trees of F_G in order from left to right of the left endpoints of the intervals $i(t_j)$ delimiting the interval-filaments $\cup a(u) \cup_{u \in t_j}$. We take as root of t_1 a vertex v_1 having maximal interval $i(v_1)$. For every other tree t_j of F_G we take as root its vertex v_j whose interval has leftmost left endpoint, hence $i(v_j)$ is maximal for t_j. The interval-
filaments corresponding to two trees t_i, t_j of FG do not intersect and their intervals are either disjoint or are contained one into another. Note that if u is a successor of w in some t_j, then $i(w)\subseteq i(u)$, otherwise $i(v_j)\subseteq i(u)$ contradicting the maximality of $i(v_j)$. Let x be the endpoint of an interval-filament $a(u)$, $u \in t_1$, which is at the left of $i(v_2)$ and is closest to the left endpoint of $i(v_2)$. If $x=r_w$, we attach v_2 to u by a dashed edge as a dummy son denoted DR_u, and if $x=l_w$, we attach v_2 to u by a dashed edge as a dummy son denoted DL_u; in Fig. 1 $v_2=DR_u$, $v_3=DL_d$, $v_4=DR_w$. We assume now that t_1 includes t_2, and we continue recursively with t_3 and so on to t_r. In this way, FG becomes a tree rooted at v_1, called oriented form of FG. Note that every vertex u has at most two dummy sons, one DR_u and one DL_u, and there are no endpoints of intervals $i(v), v \in FG$, between r_u and l_{DR_u} and between l_u and l_{DL_u}. For the remaining of this Section we assume that FG is in oriented (tree) form rooted at v_1; we denote by $FG(u)$ the subtree containing u and its successors in FG.

The sons u of a vertex w in FG can be partitioned as follows, according to whether interval $i(u)$ contains the right or left endpoint of $i(w)$:

$$SR_w(FG) = \{ u \mid u \text{ son of } w, \ r_w \in i(u) \text{ and } l_w \notin i(u) \} \cup \{DR_w\},$$

$$SL_w(FG) = \{ u \mid u \text{ son of } w, \ l_w \in i(u) \text{ and } r_w \notin i(u) \} \cup \{DL_w\}. $$

In each of the sets $SR_w(FG)$ and $SL_w(FG)$, the interval-filaments corresponding to their vertices (Fig. 1a) form a sequence $a(u_1), a(u_2), \ldots, a(u_s)$ of non-intersecting interval-filaments having $i(u_1)\subseteq i(u_2)\subseteq \ldots \subseteq i(u_s)$; if w has a dummy son, then u_1 is the dummy son. In Fig. 1a, $SR_w(FG)=\{c,d,v_4\}$ and $i(v_4)\subseteq i(d)\subseteq i(c)$. Let u_{Rw}, u_{Lw} be the vertices with maximal intervals in $SR_w(FG)$, $SL_w(FG)$, respectively; we denote the intervals delimiting $FG(u_{Rw})$, $FG(u_{Lw})$ by $IR(w)=[x,y], IL(w)=[z,q]$, respectively. If $SR_w(FG)=\{DR_w\}$ or $SL_w(FG)=\{DL_w\}$, then $x=r_w, z=l_w$, respectively. If $SR_w(FG)=\emptyset$ or $SL_w(FG)=\emptyset$, then $x=y=r_w, z=q=l_w$, respectively. In Fig. 1, $u_{Rw}=c, u_{Lw}=u, IR(w)=[lg,rc]$ and $IL(w)=[lu,re]$. Clearly $z\leq l_w \leq r_w \leq y$ and the intervals $IR(w)=[x,y], IL(w)=[z,q]$ are disjoint. For every vertex w of FG, we denote the interval-filament formed by the arc $a(w)$ and the intervals $IR(w), IL(w)$ by $fil_w(FG)=a(w)\cup IR(w)\cup IL(w)$. For two brothers u,v, both in $SR_w(FG)$ or both in $SL_w(FG)$, $fil_u(FG)$ and $fil_v(FG)$ are non-intersecting and the intervals $i(fil_u(FG))$, $i(fil_v(FG))$ are contained one in the other. In Fig. 1a, $i(fil_u(FG))=[l_u,r_u] \subseteq [r_w,r_d]=[r_{IL(c)},l_{IR(c)}]$. For two brothers u,v, one in $SR_w(FG)$ the other in $SL_w(FG)$, $fil_u(FG)$ and $fil_v(FG)$ are non-intersecting and $i(fil_u(FG))$, $i(fil_v(FG))$ are disjoint. Each family $\{fil_v(FG) \mid v \in SR_w(FG)\}$, $\{fil_v(FG) \mid v \in SL_w(FG)\}$ and their union is a family of mutually non-intersecting interval-filaments.
Figure 1: Induced forest F_G in oriented form (b) and its representation (a) by intersections of interval-filaments; $fil_w(F_G) = a(w) \cup AR(w) \cup AL(w)$. For simplicity, an interval-filament $a(u)$ is denoted by u.

We now characterize the vertex sets of G which contain each subset of sons of w in F_G. The non-dummy sons of w are contained (since $z \leq l_w \leq q < x \leq r_w \leq y$) in

\[
VR_w[x,y] = \{ u | r_w \in i(u) \subseteq [x,y] \}, \quad VL_w[z,q] = \{ u | l_w \in i(u) \subseteq [z,q] \}.
\]

The unique dummy sons of w, and their successors, are contained in

\[
VDR_w(r_w,y) = \{ u | i(u) \subseteq (r_w,y) \}, \quad VDL_w(l_w,q) = \{ u | i(u) \subseteq (l_w,q) \}.
\]

We denote separately the subforests of $F_G(w)$ defined by w and its sons in $SR_w(F_G)$ and in $SL_w(F_G)$, respectively, by:

\[
FR(F_G(w),[x,y]) = \bigcup \{ FG(u) | u \in SR_w(F_G) \} \cup \{w\},
\]
\[
FL(F_G(w),[z,q]) = \bigcup \{ FG(u) | u \in SL_w(F_G) \} \cup \{w\}.
\]

We also denote $\text{weight}(fil_w(F_G)) = |FR(F_G(w),[x,y]) \cup FL(F_G(w),[z,q])|$.

Let $V_w[x,y] = \{ u | i(u) \subseteq [x,y] \} \cup \{w\}, V_w[z,q] = \{ u | i(u) \subseteq [z,q] \} \cup \{w\}$.

Lemma 1. The subgraphs $FR(F_G(w),[x,y]), FL(F_G(w),[z,q])$ of F_G are maximum induced forests in oriented form, rooted at w, in $G(V_w[x,y]), G(V_w[z,q])$, respectively.

Proof: If not, we can replace them by bigger forests, to obtain a bigger forest F_G.\[\]

For every vertex $v \in VR_w[x,y]$ and for every two disjoint intervals $[z',q'], [x',y']$, $z', q', x', y' \in EP$, such that $l_v \in [z',q'] \subseteq [x,r_w)$ and $r_v \in [x',y'] \subseteq (r_w,y]$, let $FR_v[x',y'], FL_v[z',q']$ be maximum induced forests in oriented form, rooted at v, in $G(V_v[x',y']), G(V_v[z',q'])$.

Observe that we use the notation FR in two distinct forms: one as $FR(F_G(w),[x,y])$ for the subforest defined by w and its $SR(F_G(w))$ sons in the specific maximum induced forest F_G.
of \(G \), and another \(FR_v(x',y') \) to denote any maximum induced forest of \(G \) rooted at \(v \) in \(G(V, [x', y']) \); same for \(FL \). We denote \(\text{fil}_v([z', q'], [x', y']) = a(v) \cup [z', q'] \cup [x', y'] \) and assign \(\text{weight}(\text{fil}_v([z', q'], [x', y'])) = |FR_v(x', y') \cup FL_v(z', q')| \).

For every \(y' \in (r_w, y] \), \(y' \in EP \), let \(FR_v(r_w, y'] \) be the maximum induced forest in oriented form, in \(G(VDR_w(r_w, y')] \). We assign \(\text{weight}(r_w, y'] = |FR(r_w, y']| \).

Let \(HR_w[x, y] \) be the weighted intersection graph of the family of weighted interval-filaments\(\{\text{fil}_v(FG) \mid v \in VR_w[x, y], z', q', x', y' \in EP\} \cup \{[r_w, y'] \mid r_w < y' \leq y, y' \in EP\} \) where \(l_v \in [z', q'] \subseteq [x, r_w) \) and \(r_v \in [x, y'] \subseteq (r_w, y] \).

Lemma 2. Every maximum weight independent set of \(HR_w[x, y] \), together with \(w \), defines an induced forest \(FR_w(x, y] \) which can replace \(FR(FG(w), [x, y]) \) in \(FG \) to obtain a maximum induced forest of \(G \). Thus, the vertex set corresponding to the family of filaments \(\{\text{fil}_v(FG) \mid v \in SR_w(FG)\} \) is a maximum weight independent set of \(HR_w[x, y] \).

Proof: Every maximum weight independent set of \(HR_w[x, y] \) defines a maximum induced forest \(FR_w[x, y] \) with interval-filaments delimited by \([x, y] \) and disjoint from any other interval-filament of \(FG - FR(FG(w), [x, y]) \); adding \(w \) to \(FR_w[x, y] \) \(-\{w\} \), we obtain a maximum induced forest \(FR_w[x, y] \) which can replace \(FR(FG(w), [x, y]) \) in \(FG \) to obtain a maximum induced forest of \(G \). \(\square \)

Lemma 3. \(HR_w[x, y] \) is a cocomparability graph.

Proof: The intervals of two non-intersecting filaments corresponding to vertices of \(HR_w[x, y] \) are contained one in another, since both contain \(r_w \). Hence, for every three filaments \(\text{fil}_1, \text{fil}_2, \text{fil}_3 \), if \(i(\text{fil}_1) \subseteq i(\text{fil}_2) \subseteq i(\text{fil}_3) \), \(\text{fil}_1 \cap \text{fil}_2 = \phi \) and \(\text{fil}_2 \cap \text{fil}_3 = \phi \), then \(\text{fil}_1 \cap \text{fil}_3 = \phi \). Thus the complement of \(HR_w[x, y] \) is transitively orientable. \(\square \)

We can find a maximum weight independent set in \(HR_w[x, y] \), or equivalently a maximum clique in its transitively oriented complement, by the greedy algorithm in [3]. Similarly for \(VL_w[z, q] \), \(\{\text{fil}_v(FG) \mid v \in SL_w(FG)\}, FL(FG(w), [z, q]) \) and \(HL_w[z, q] \).

3. Algorithm for maximum induced forests in circle graphs

Our purpose is to describe a dynamic programming algorithm to find a maximum induced forest \(F \) of \(G(V,E) \) in oriented form. We partition the vertex set \(V \) into a family of subsets as follows: denote by \(A_0 \) the set containing the vertices with minimal intervals in \(I \), delete \(A_0 \) from \(V \), denote by \(A_1 \) the set containing the vertices with minimal intervals in the
remaining set of intervals, and so on \(A_0, A_1, ..., A_k \); for every \(i \), denote \(V_i = A_0 \cup A_1 \cup \ldots \cup A_i \).

For \(w \in V_i \), we denote by \(VR_{w,i}[x,y] \), \(VL_{w,i}[z,q] \), \(VDR_{w,i}(r_w,y) \), \(VDL_{w,i}(l_w,q) \), \(V_w,i[x,y] \), \(V_w,i[z,q] \) the sets of the previous Section, defined on \(G(V_i) \).

For \(w \in V_i \), we denote by \(VR_{w,i}[x,y] \), \(VL_{w,i}[z,q] \), \(VDR_{w,i}(r_w,y) \), \(VDL_{w,i}(l_w,q) \), \(V_w,i[x,y] \), \(V_w,i[z,q] \) the sets of the previous Section, defined on \(G(V_i) \).

The algorithm works by dynamic programming on the levels \(i \). For every \(i \), \(0 \leq i \leq k \), for every \(w \in V_i \) and for every pair of disjoint intervals \([z,q],[x,y] \), fulfilling \(z,q,x,y \in EP \), \(l_w \in [z,q] \), \(r_w \in [x,y] \), the algorithm constructs two maximum induced subforests \(FL_{w,i}[z,q] \), \(FR_{w,i}[x,y] \), in oriented form, rooted at \(w \), in \(G(V_i[z,q]) \), \(G(V_i[x,y]) \).

At level \(i \) we assume that for every \(v \) in \(V_{i-1} \) and every pair of disjoint intervals \([z,q],[x,y] \), \(z,q,x,y \in EP \), \(l_v \in [z,q] \subseteq [x,r_w) \), \(r_v \in [x',y') \subseteq (r_w,y] \), we have maximum induced subforests \(FL_{v,i-1}[z,q] \), \(FR_{v,i-1}[x,y] \), in oriented form with \(v \) as root, including the cases \(z=l_v \), \(x=r_v \). Now, we evaluate them for every \(w \) in \(V_i \).

We go on \(L \) from right to left in order of right endpoints; assume that we are at some \(w \) in \(V_i \). For every \(y > r_w \), \(y \in EP \), we evaluate \(FR_{w,i}(r_w,y) \) as follows: For every vertex \(v \in VDR_{w,i}(r_w,y) \), we have, by recursion, the maximum induced forest \(FR_{v,i}[z,q'] \) in \(V_i \) with root \(v \) and \(IL(v) \subseteq [l_v,r_v) \), \(IR(v) \subseteq (l_v,y) \), \(IL(v) \cap IR(v) = \emptyset \), \(r_v \in IR(v) \); we take \(FR_{w,i}(r_w,y) \) to be the largest among these maximum induced forests and set \(weight([r_w,y]) \) to its size. Similarly, for every \(q \in EP \), \(l_w < q < r_w \), we evaluate \(FL_{w,i-1}(l_w,q) \) and \(weight([l_w,q]) \).

Now, for every interval \([x,y] \), \(l_w < x \leq r_w \leq y \), we evaluate the maximum induced forest \(FR_{w,i}[x,y] \), rooted at \(w \), in \(G(V_w,i[x,y]) \). The vertices \(v \in VR_{w,i}[x,y] \) have right endpoints at the right of \(r_w \) and for every two disjoint intervals \([z',q'],[x',y'] \), \(z',q',x',y' \in EP \), \(l_v \in [z',q'] \subseteq [x,r_w) \), \(r_v \in [x',y') \subseteq (r_w,y] \), we already have \(FR_{v,i}[x',y'],FL_{v,i-1}[z',q'] \); we assign
\[
weight(fil_v([z',q'],[x',y'])) = |FR_{v,i}[x',y'] \cup FL_{v,i-1}[z',q']|.
\]
By Lemma 3, the intersection graph \(HR_{w,i}([z',q'],[x',y']) \) of the family of interval-filaments \(\{ fil_v([z',q'],[x',y']) | v \in VR_{w,i}[x,y], z',q',x',y' \in EP \} \cup \{ [r_w,y'] | r_w < y' \leq y \} \) is a weighted cocomparability graph in which we can find a maximum weight independent set, which together with \(w \), gives us \(FR_{w,i}[x,y] \), by Lemma 2. When \(i=0 \), \(FR_{v,0}[x',y'] \) is a collection of induced paths starting with \(v \) having \(weight(fil_v([l_v,l_v],[x',y'])) = |FR_{v,0}[x',y']| \); \(FR_{w,0}[x,y] \) is obtained by taking \(FR_{v,0}[x',y'] \) for \(fil_v([l_v,l_v],[x',y']) \) of maximum weight and attaching \(v \) to \(w \).

When \(w \in V_i \), we also evaluate (as above) \(FL_{w,i-1}[z,q] \) using the already evaluated \(FR_{w,i}[x',y'], FL_{v,i-1}[z',q'] \) for every \(v \in VL_{w,i-1}[z,q] \) and every two disjoint intervals \([z',q'],[x',y'], z',q',x',y' \in EP \), \(l_v \in [z',q'] \subseteq [x,l_v) \), \(r_v \in [x',y') \subseteq (l_w,y] \). Similarly we evaluate \(FR_{w,i-1}[z,q] \).
Now, we go on from left to right in order of left endpoints; assume that we are at some w in V_i. For every interval $[z,q]$, $z \leq l_w < r_w$, we evaluate the maximum induced forest $FL_{w,[z,q]}$, rooted at w, in $G(V_{w,[z,q]})$. The vertices $v \in VL_{w,[z,q]}$ have left endpoints at the left of l_w and for every two disjoint intervals $[z',q'],[x',y']$, $z',q',x',y' \in EP$, $l_v \in [z',q'] \subseteq [z,l_w)$, $r_v \in [x',y'] \subseteq (l_w,q]$, we already evaluated $FR_{v,i-1}[x',y']$ and $FL_{v,i}[z',q']$; we assign
\[\text{weight}(fil_v([z',q'],[x',y'])) = |FR_{v,i-1}[x',y'] \cup FL_{v,i}[z',q']|. \]

By Lemma 3, the intersection graph $HL_{w,i}(z',q'] \cup [x',y'])$ of the family of interval-filaments is a weighted cocomparability graph in which we can find a maximum weight independent set, which together with w, gives us $FL_{w,[z,q]}$, by Lemma 2. When $i=0$, $FL_{0,[z',q']}$ is an induced path ending in v with $\text{weight}(fil_v([z',q'],[r_v,r_v])) = |FL_{v,0}[z',q']|$. $FL_{w,0}[z,q]$ is obtained by taking $FL_{v,0}[z',q']$ for maximum weight $fil_v([z',q'],[r_v,r_v])$ and attaching v to w.

Finally, we take $F_{w,i}(z,q],x,y] = FL_{w,i}[z,q] \cup FR_{w,i-1}[x,y]$ as maximum induced forest at stage i for w and the intervals $x,y]$. When $i=0$, $F_{w,0}(z,q],x,y]$ is a collection of induced paths containing w. We obtain:

Theorem 4. For every i, $0 \leq i \leq k$, every vertex w and every pair of disjoint intervals $[z,q], [x,y]$, $z,q,x,y \in EP$, $l_w \in [z,q]$, $r_w \in [x,y]$, $F_{w,i}(z,q],x,y]$ is a maximum induced forest, in oriented form in V_i, with w as root.

Proof: By induction on i and Lemma 2.□

The maximum induced forest of G is the maximum of the induced forests $F_{w,k}(z,q],x,y])$. Keeping track of the sinks in the transitive complements of the graphs $FR_{w,i-1}$, $FL_{w,i-1}$, in each interval $[x,y]$, $[z,q]$, when going from $i-1$ to i, the algorithm works in $O(|V|^4)$ time. If in the algorithm we do not include $FR_{w,i}(r_w,q]$ and $FL_{w,i}(l_w,y]$, i.e., we do not include dummy sons, then we obtain a maximum induced tree of G.

REFERENCES

