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Abstract

A coloring of a tree is convex if the vertices that pertain to any color induce a connected

subtree; a partial coloring (which assigns colors to some of the vertices) is convex if it can

be completed to a convex (total) coloring. Convex colorings of trees arise in areas such as

phylogenetics, linguistics, etc. e.g., a perfect phylogenetic tree is one in which the states of each

character induce a convex coloring of the tree.

When a coloring of a tree is not convex, it is desirable to know ”how far” it is from a convex

one, and what are the convex colorings which are ”closest” to it. In this paper we study a natural

definition of this distance - the recoloring distance, which is the minimal number of color changes

at the vertices needed to make the coloring convex. We show that finding this distance is NP-

hard even for a colored string (a path), and for some other interesting variants of the problem.

In the positive side, we present algorithms for computing the recoloring distance under some

natural generalizations of this concept: the first generalization is the uniform weighted model,

where each vertex has a weight which is the cost of changing its color. The other is the non-

uniform model, in which the cost of coloring a vertex v by a color d is an arbitrary nonnegative

number cost(v, d). Our first algorithms find optimal convex recolorings of strings and bounded

degree trees under the non-uniform model in time which, for any fixed number of colors, is linear

in the input size. Next we improve these algorithm for the uniform model to run in time which is

linear in the input size for a fixed number of bad colors, which are colors which violate convexity

in some natural sense. Finally, we generalize the above result to hold for trees of unbounded

degree.

∗A preliminary version of some of the results in this paper appeared in [15].
†Computer Science dept., Technion, Haifa 32000, Israel. moran@cs.technion.ac.il. This reserach was
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1 Introduction

A phylogenetic tree is a tree which represents the course of evolution for a given set of species. The

leaves of the tree are labelled with the given species. Internal vertices correspond to hypothesized,

extinct species. A character is a biological attribute shared among all the species under considera-

tion, although every species may exhibit a different character state. Mathematically, if X is the set

of species under consideration, a character on X is a function C from X into a set C of character

states. A character on a set of species can be viewed as a coloring of the species, where each color

represents one of the character’s states. A natural biological constraint is that the reconstructed

phylogeny have the property that each of the characters could have evolved without reverse or

convergent transitions: In a reverse transition some species regains a character state of some old

ancestor whilst its direct ancestor has lost this state. A convergent transition occurs if two species

posses the same character state, while their least common ancestor possesses a different state.

In graph theoretic terms, the lack of reverse and convergent transitions means that the character

is convex on the tree: for each state of this character, all species (extant and extinct) possessing that

state induce a single block, which is a maximal monochromatic subtree. Thus, the above discussion

implies that in a phylogenetic tree, each character is likely to be convex or ”almost convex”. This

make convexity a fundamental property in the context of phylogenetic trees to which a lot of

research has been dedicated throughout the years. The Perfect Phylogeny (PP) problem, whose

complexity was extensively studied (e.g. [10, 12, 1, 13, 4, 18]), receives a set of characters on a set

of species and seeks for a phylogenetic tree on these species, that is simultaneously convex on each

of the characters. Maximum parsimony (MP) [8, 16] is a very popular tree reconstruction method

that seeks for a tree which minimizes the parsimony score defined as the number of mutated

edges summed over all characters (therefore, PP is a special case of MP). [9] introduce another

criterion to estimate the distance of a phylogeny from convexity. They define the phylogenetic

number as the maximum number of connected components a single state induces on the given

phylogeny (obviously, phylogenetic number one corresponds to a perfect phylogeny). However,

both the parsimony score and the phylogenetic number of a tree do not specify a distance to some

concrete convex coloring of the given tree: there are colored trees with large phylogenetic numbers

(and large parsimony scores) that can be transformed to convex coloring by changing the color of

a single vertex, while other trees with smaller phylogenetic numbers can be transformed to convex

colorings only by changing the colors of many vertices.

Convexity is a desired property in other areas of classification, beside phylogenetics. For in-

stance, in [3, 2] a method called TNoM is used to classify genes, based on data from gene expression

extracted from two types of tumor tissues. The method finds a separator on a binary vector, which

minimizes the number of “1” in one side and “0” in the other, and thus defines a convex vector of

minimum Hamming distance to the given binary vector. Algorithms which finds this distance for

vectors with any number of letters, in order to handle more types of tumor tissues, are given by

the optimal string recoloring algorithms in this paper. In [11], distance from convexity is used (al-

though not explicitly) to show strong connection between strains of Tuberculosis and their human

carriers.

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

C
S-

20
04

-1
4 

- 
20

04



2

In this work we define and study a natural distance from a colored tree to a convex one: the

recoloring distance. In the simplest, unweighted model, this distance is the minimum number of

color changes at the vertices needed to make the given coloring convex (for strings this reduces

to Hamming distance from a closest convex coloring). This measure generalizes to a weighted

model, where changing the color of vertex v costs a nonnegative weight w(v). These weighted and

unweighted models are uniform, in the sense that the cost of changing the color of a vertex is

independent of the colors involved. The most general model we study is the non-uniform model,

where the cost of coloring vertex v by a color d is an arbitrary nonnegative number cost(v, d).

We show that finding the recoloring distance in the unweighted model is NP-hard even for

a string (a tree with two leaves), and also for the case where character states are given only at

the leaves (so that changes on extinct species are not counted); we also address a variant of the

problem, in which a block-recoloring is considered as an atomic operation. This operation changes

the color of all the vertices in a given input block. We show that finding the minimum number of

block-recolorings needed to obtain convexity is NP-Hard as well.

On the positive side, we present few algorithms for minimal convex recoloring of strings and

trees. The first algorithms solve the problem in the non-uniform model. The running time of

these algorithms for bounded degree trees is exponential in the number of colors, but for each fixed

number of colors is linear in the input size. Then we improve these algorithms for the uniform

model, so that the running time is exponential only in the number of bad colors, which are colors

that violate convexity (to be defined precisely). These algorithms are noted to be fixed parameter

tractable algorithms ([5]) for bounded degree trees, where the parameter is taken to be the recoloring

distance. Finally, we eliminate the dependence on the degree of the tree in both the non-uniform

and the uniform versions of the algorithms.

The rest of the paper is organized as follows. In the next section we present the notations used

and define the unweighted, weighted and non-uniform versions of the problem. In Section 3 we

show our NP-Hardness results and in Section 4 we present the algorithms. We conclude and point

out future research directions in Section 5.

2 Preliminaries

A colored tree is a pair (T, C) where T = (V, E) is a tree with vertex set V = {v1, . . . , vn}, and C

is a coloring of T , i.e. - a function from V onto a set of colors C. For a set U ⊆ V , C|U denotes

the restriction of C to the vertices of U , and C(U) denotes the set {C(u) : u ∈ U}. For a subtree

T ′ = (V (T ′), E(T ′)) of T , C(T ′) denotes the set C(V (T ′)). A block in a colored tree is a maximal

set of vertices which induces a monochromatic subtree. A d-block is a block of color d. The number

of d-blocks is denoted by nb(C, d), or nb(d) when C is clear from the context. A coloring C is said

to be convex if nb(C, d) = 1 for every color d ∈ C. The number of d-violations in the coloring C is

nb(C, d) − 1, and the total number of violations of C is
∑

c∈C(nb(C, d) − 1). Thus a coloring C is

convex iff the total number of violations of C is zero (in [7] the above sum, taken over all characters,

is used as a measure of the distance of a given phylogenetic tree from perfect phylogeny).

The definition of convex coloring is extended to partially colored trees, in which the coloring
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3

C assigns colors to some subset of vertices U ⊆ V , which is denoted by Domain(C). A partial

coloring is said to be convex if it can be extended to a total convex coloring (see [17]). Convexity of

partial and total coloring have simple characterization by the concept of carriers: For a subset U of

V , carrier(U) is the minimal subtree that contains U . for a colored tree (T, C) and a color d ∈ C,

carrierT (C, d) (or carrier(C, d) when T is clear) is the carrier of C−1(d). We say that C has the

disjointness property if for each pair of colors {d, d′} it holds that carrier(C, d)∩carrier(C, d′) = ∅.

It is easy to see that a total or partial coloring C is convex iff it satisfies the disjointness property

(in [6] convexity is actually defined by the disjointness property).

When some (total or partial) input coloring (C, T ) is given, any other coloring C ′ of T is viewed

as a recoloring of the input coloring C. We say that a recoloring C ′ of C retains (the color of) a

vertex v if C(v) = C ′(v), otherwise C ′ overwrites v. Specifically, a recoloring C ′ of C overwrites

a vertex v either by changing the color of v, or just by uncoloring v. We say that C ′ retains

(overwrites) a set of verices U if it retains (overwrites resp.) every vertex in U . For a recoloring C ′

of an input coloring C, XC(C ′) (or just X (C ′)) is the set of the vertices overwritten by C ′, i.e.

XC(C ′) = {v ∈ V : [v ∈ Domain(C)]
∧[

(v /∈ Domain(C ′) ) ∨ (C(v) 6= C ′(v) )
]
}.

With each recoloring C ′ of C we associate a cost, denoted as costC(C ′) (or cost(C ′) when C

is understood), which is the number of vertices overwritten by C ′, i.e. costC(C ′) = |XC(C ′)|.

A coloring C∗ is an optimal convex recoloring of C, or in short an optimal recoloring of C, and

costC(C∗) is denoted by OPT (T, C), if C∗ is a convex coloring of T , and costC(C∗) ≤ costC(C ′)

for any other convex coloring C ′ of C.

The above cost function naturally generalizes to the weighted version: the input is a triplet

(T, C, w), where w : V → R
+∪{0} is a weight function which assigns to each vertex v a nonnegative

weight w(v). For a set of vertices X, w(X) =
∑

v∈X w(v). The cost of a convex recoloring C ′ of C

is costC(C ′) = w(X (C ′)), and C ′ is an optimal convex recoloring if it minimizes this cost.

The above unweighted and weighted cost models are uniform, in the sense that the cost of a

recoloring is determined by the set of overwritten vertices, regardless the specific colors involved. A

yet further generalization allows non-uniform cost functions. This version, motivated by weighted

maximum parsimony [16], assumes that the cost of assigning color d to vertex v is given by an

arbitrary nonnegative number cost(v, d) (note that, formally, no initial coloring C is assumed in

this cost model). In this model cost(C ′) is defined only for a total recoloring C ′, and is given by the

sum
∑

v∈V cost(v, C ′(v)). The non-uniform cost model appears to be more subtle than the uniform

ones. Unless otherwise stated, our results assume the uniform, weighted and unweighted, models.

We complete this section with a definition and a simple observation which will be useful in the

sequel. Let (T, C) be a colored tree. A coloring C∗ is an expanding recoloring of C if in each block

of C∗ at least one vertex v is retained (i.e., C(v) = C∗(v)).

Observation 2.1 let (T, C) be a colored tree. Then there exists an expanding optimal convex

recoloring of C.

Proof. Let C ′ be an optimal recoloring of C which uses a minimum number of colors (i.e. |C ′(V )|

is minimized). We shall prove that C ′ is an expanding recoloring of C.
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4

If C ′ uses just one color d, then by the optimality of C ′, there must be a vertex v such that

C(v) = d and the claim is proved. Assume for contradiction that C ′ uses at least two colors, and

that for some color d used by C ′, there is no vertex v s.t. C(v) = C ′(v) = d. Then there must be

an edge (u, v) such that C ′(u) = d but C ′(v) = d′ 6= d. Therefore, in the uniform cost model, the

coloring C ′′ which is identical to C ′ except that all vertices colored d are now colored by d′ is an

optimal recoloring of C which uses a smaller number of colors - a contradiction.

3 NP-Hardness Results

The main result of this section is that unweighted minimum convex recoloring of strings is NP-Hard.

Then we use reductions from this problem to prove that the unweighted versions of minimal convex

recoloring of leaves, and a natural variant of the problem called minimal convex block recoloring,

in which an atomic operation changes the color of a complete block, are NP-Hard as well.

3.1 Minimal Convex Recoloring of Strings is NP-Hard

A string S = (v1, . . . , vn) is a simple tree with V = {v1, . . . , vn} and E = {(vi, vi+1)|i = 1, . . . , n−1}.

In a colored string (S, C), a d-block is simply a maximal sequence of consecutive vertices colored

by d. A nice property of optimal convex recoloring of strings is given below:

Claim 3.1 Let (S, C) be a colored string, and let C∗ be an optimal recoloring of C. Then each

block of C is either completely retained or completely overwritten by C∗.

Proof. Suppose, for contradiction, that B′ is a d-block in C that is partially overwritten by C∗.

Let C ′ be a recoloring identical to C∗ except that C ′ retains the block B′. Then C ′ is convex and

cost(C ′) < cost(C∗) - a contradiction.

We prove that the problem is NP-Hard by reducing the 3 satisfiability problem to the following

decision version of minimal convex recoloring:

Minimal Convex Recoloring of Strings:

Input: A colored string (S, C) and an integer k.

Question: Is there a convex recoloring C∗ of C such that costC(C∗) ≤ k.

Let formula F be an input to the 3 satisfiability problem, F = D1
∧

...
∧

Dm, where Di =

(li1 ∨ li2 ∨ li3) is a clause of three literals, each of which is either a variable xj or its negation ¬xj ,

1 ≤ j ≤ n. We describe below a polynomial time reduction of F to a colored string (S, C) and an

integer k, such that there is a convex coloring C∗ of C with costC(C∗) ≤ k iff F is satisfiable.

In the reduction we define block sizes using parameters A and B, where A and B are integers

satisfying A > m − 2 and B > 2mA. k is set to n(2m + 1)B + 2mA (e.g., possible values are

A = 3m, B = 9m2, and k = 3m2(6mn + 3n + 2)).

We describe the coloring C of S as a sequence of segments, where each segment consists of one

or more consecutive blocks. There will be 2n+m informative segments: one for each clause and one
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5

Figure 1: A Schematic view of the colored string corresponding to F . Informative segments appear

white (in the figure) where junk segments are longer and have distinct colors.

pattern 1 pattern 2

.   .   .

pattern m
ci, ℓ2ci, ℓ2 ci, ℓ3 ci, ℓ1 ci, ℓ2 ci, ℓ3 ci, ℓ1ci, ℓ1 ci, ℓ3

Figure 2: A clause segment. The literals are ℓ1, ℓ2 and ℓ3, and the clause of size 3A consists of A

repetitions of the corresponding triplet. Each block is a single vertex.

for each literal, and 2n + m− 1 junk segments separating the informative segments (see Figure 1).

Each junk segment consists of a unique block of k + 1 vertices colored by a distinct color, thus

2n + m − 1 colors are used for the junk segments. The informative segments will use additional n

variable colors d1, . . . , dn and 2nm literal colors {ci,xj
, ci,¬xj

|i = 1, . . . , m; j = 1, . . . n}.

For each clause Di = (l1 ∨ l2 ∨ l3) there is a clause segment SDi
of size 3A, obtained by A

repetitions of the pattern ci,ℓ1 , ci,ℓ2 , ci,ℓ3 (see Figure 2).

for each non-negated literal xj there is a literal segment Sxj
, which consists of 2m+1 consecutive

blocks of the same size B. All the m + 1 odd numbered blocks are dj-blocks, called variable blocks.

The m even numbered blocks are literal blocks, colored by ci,xj
, i = 1, . . . , m, see Figure 3. Similarly,

for each negated literal ¬xj we have a literal segments S¬xJ
, which is similar to Sxj

except that

the colors of the literal blocks are ci,¬xj
, i = 1, . . . , m (note that each of the literal segments Sxj

and S¬xj
contain m + 1 dj-blocks).

Theorem 3.2 Let (S, C) be the colored string defined by the above reduction. Then OPT (S, C) ≤ k

iff F is satisfiable.

Proof. ⇐= we need to prove that if the formula F is satisfiable, then there is a convex recoloring

C∗ of C such that costC(C∗) ≤ k.

Let f be a satisfying assignment of F . The coloring C∗ is defined for literal segments as follows:

For each variable xj s.t. f(xj) = 1, C∗ overwrites each of the dj-blocks in segment S¬xj
(there are

m + 1 such blocks); in the segment Sxj
, C∗ overwrites all the ci,xj

blocks, for i = 1, . . . , m (see

Figure 4). The coloring when f(xj) = 0 is obtained by interchanging the roles of Sxj
and S¬xj

.

.  .  .
cm,xj

c1,xj
djdjc2,xj

dj dj

Figure 3: Sxj
, the segment of the literal xj . m + 1 dj-blocks are interleaved by the m blocks ci,xj

,

i = 1, . . . , m.
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.  .  .

.  .  .
djdj dj dj

djdj c2,xj
dj djc1,xj

cm,xj

¬cm,xj
¬c2,xj

¬c1,xj

Figure 4: A recoloring of segments S¬xj
and Sxj

corresponding to a satisfying assignment.

This requires recoloring of (2m + 1)B vertices for each variable, so the total cost for all literal

segments is n(2m + 1)B.

We now define C∗ on clause segments. Since f is a satisfying assignment, in each clause there

is a literal which is set by f to 1. Assume without loss of generality that xj ∈ Di and f(xj) = 1.

By the written above, C∗ does not color any vertex in the literal segments by ci,xj
. Thus we can

transform segment Di to a ci,xj
-block by overwriting 2A out of the 3A vertices in this block (since

A vertices are originally colored by ci,xj
). Thus the total cost of coloring all the m clause segments

is 2mA.

=⇒ Now we have to prove that if OPT (S, C) ≤ k, then F is satisfiable. Let C∗ be an expanding

optimal recoloring of C (see Observation 2.1). Clearly, costC(C∗) ≤ k. The proof proceeds through

the following claims.

Claim 3.3 C∗ retains all the junk segments.

Proof. A junk segment, J , consists of a single block of k + 1 vertices. By Claim 3.1 C∗ either

completely overwrites J or completely retains it. Since C∗ overwrites at most k vertices altogether,

the latter possibility must hold.

Claim 3.4 The coloring C∗ satisfies the following for each pair of literal segments {Sxj
, S¬xJ

},

j ∈ {1, . . . , n}:

1. In exactly one of these segments, C∗ overwrites all the dj-blocks, and retains all the literal

blocks.

2. In the other segment, C∗ overwrites exactly m blocks.

In particular, C∗ overwrites exactly 2m + 1 blocks in these two segments.

Proof.

consider the substring containing segments Sxj
and S¬xj

. Then it contains exactly 2m + 1

dj-violation, since each of these segments contains m + 1 dj-blocks. For C∗ to be convex, it must

remove all these violations. Since by claim 3.3 all junk blocks retain their colors, C∗ must overwrite

all the dj-blocks in one of the above segments, and leave at most one dj-block in the other. The

former case clearly requires overwriting each of the m + 1 dj-blocks in the relevant segment, which
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7

leaves m + 1 dj-blocks and (hence) m dj-violations in the other segment, which must be removed.

Since overwriting any single block of C can reduce the number of dj-violations by at most one, at

least m such blocks must be overwritten.

So far we have shown that C∗ must overwrite at least m + 1 blocks in one segment and at

least m blocks in the other, a total of 2m + 1 blocks in each such pair of segments. To complete

the proof it suffices to show that C∗ does not overwrite any other block in the literal segments.

To this end we observe that if for some j at least 2m + 2 blocks are overwritten in the variable

segments Sxj
, S¬xj

, then C∗ overwrites at least n(2m + 1) + 1 blocks in the literal segments,

and since each such block has B vertices, the total number of overwritten vertices is at least

n(2m+1)B +B > n(2m+1)B +2mA = k (since B > 2mA), contradicting the assumption on C∗.

Using Claim 3.4 above, we can now define a truth assignment f which satisfies F , as follows: for

j = 1, . . . , n, f(xj) = 1 iff C∗ overwrites exactly m blocks in Sxj
(and hence exactly m + 1 blocks

in S¬xj
). To simplify notations, we assume in the rest of the proof that for all j, exactly m blocks

are overwritten in Sxj
, and hence f(xj) = 1, j = 1, . . . , n. We complete the proof by showing that

f indeed satisfies F .

Claim 3.5 C∗ overwrites at least 2A − 2 vertices at every clause segment.

Proof. Consider a clause segment, D, whose three literal colors are c1, c2 and c3. The claim

trivially holds if all the 3A vertices in D are overwritten, so assume that this is not the case. Since

all junk segments are retained by C∗, we may assume, using argument similar to the one in the

proof of Observation 2.1, that D ⊆ C∗−1({c1, c2, c3}), and thus C∗(D) consists of at most 3 blocks

of these colors. Let the lengths of the ci-block be li (li ≥ 0, l1 + l2 + l3 = 3A). Observe that out of

any 3 consecutive vertices within each such block, C∗ must overwrite exactly 2 vertices. Hence, for

each i the following holds: if li = 0(mod 3) then C∗ overwrites exactly 2
3 li vertices in the ci-block;

if li = 1(mod 3) then at least 2
3(li − 1) vertices are overwritten in that block, and if li = 2(mod 3)

then at least 2
3(li −2)+1 = 2

3(li +1) vertices are overwritten. Thus, for i = 1, 2, 3, at least 2
3(li −1)

vertices must be overwritten in the ci-block. Altogether at least 2
3(l1+l2+l3−3) = 2

3(3A−3) = 2A−2

vertices must be overwritten in D.

Claim 3.6 At every clause segment, at least one vertex is retained.

Proof. Seeking for contradiction, assume all the 3A vertices in some clause segment SDi
are

overwritten. Then by Claim 3.5, C∗ overwrites at least (m−1)(2A−2)+3A = 2mA+A−2m+2 >

2mA vertices in all clauses’ segments (the last inequality holds since A > 2m − 2 by definition).

Adding this to the n(2m + 1)B vertices overwritten in the variable segments, we get that C∗

overwrites more than n(2m + 1)B + 2mA = k vertices - a contradiction.

The proof of Theorem 3.2 is now completed by the following claim:

Claim 3.7 The function f (as defined before Claim 3.5) satisfies F .
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Proof. Since f(xj) = 1 for j = 1 . . . , n, we need to show that each clause Di in F contains an

unnegated variable.

By Claim 3.6, at least one vertex is retained in SDi
. The color of this vertex can be either ci,¬xj

or ci,xj
for some j. By Claim 3.4.1 C∗ retains all the ci,¬xj

-blocks in the literal segments, and hence

(by convexity) it cannot retain another such block in any clause segment. Thus the color of the

retained vertex must be of the form ci,xj
, meaning that the non negated literal xj is in clause Di.

3.2 NP Hardness of Minimal Convex Recoloring of Leaves

A leaf colored tree is a partially colored tree (T, C) in which the coloring C assigns colors only to

leaves of T . Such trees are common in phylogenetics, where the leaves present existing species, and

internal vertices present extinct ones. Now, given a certain character states on the existing species,

we wish to know what is the minimum number of color changes at colored vertices (leaves) needed

for transforming the input coloring to a convex coloring. The NP hardness result of the previous

section does not apply directly to this problem, and we show in this section that the corresponding

decision problem for the unweighted version of this problem is NP complete.

Minimal Unweighted Convex Recoloring of Leaves

Input: A leaf colored tree (T, C) and an integer k

Question: Is there a convex recoloring C ′ of C s.t. |XC(C ′)| ≤ k

Theorem 3.8 Minimal unweighted convex recoloring of leaves is NP-Complete.

Proof. We reduce the minimal convex string recoloring problem to a minimal convex leaves

recoloring problem. Given a colored string (S, C), we reduce it to a leaf colored tree as follows.

For a colored string (S, C) of length n and an integer l, dupl(S, C) = (S′, C ′) is a colored string

of length ln defined as follows: Let V (S) = {v1, . . . , vn}; then V (S′) = {vj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ ℓ}

and E(S′) = {(vj−1
i , vj

i ) : 1 ≤ i ≤ n,1 < j ≤ ℓ} ∪ {(vn
i−1, v

1
i ) : 1 ≤ i < n}. C ′(vj

i ) = C(vi), i =

1, . . . , n, j = 1, . . . , ℓ. Informally, dupl(S, C) is a duplication of every vertex v in (S, C) ℓ times,

obtaining an ℓn long colored string. The proof of the following observation follows easily from

Claim 3.1.

Observation 3.9 OPT (dupℓ(S, C)) = ℓ · OPT (S, C).

We now define a type of an unrooted binary tree. A caterpillar is a binary tree having at most

two vertices which are each adjacent to two leaves. A caterpillar is of length n if it has (a string of)

n internal vertices (see Figure 5). Given a (totally) colored string (S, C) of length n we construct a

leaf colored caterpillar of length n, cat(S, C) = (T, C ′) as follows: The internal vertices of T form a

string isomorphic to S, numbered 1 to n from left to right. The leftmost leaf (connected to internal

vertex 1) is colored with a distinct new color, as well as rightmost leaf (connected to internal vertex
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9

Figure 5: A caterpillar of length 5.

⇓

Figure 6: A reduction from a fully colored string to a leaf colored caterpillar. Two leaves in the

two ends are colored with two new colors. All other leaves are colored with the same color as the

corresponding vertex in the string.

n). Each other leaf connected to an internal vertex i inherits its color from vertex i in the colored

string (S, C) (see Figure 6).

Claim 3.10 Let (S, C) be a colored string, where C uses nc colors, and let (T, CT ) = cat(dupnc(S, C)).

Then,

(OPT (S, C) = k) ⇐⇒ (nck − nc < OPT ((T, CT )) ≤ nck) .

Proof. We assume first that OPT (S, C) = k and prove the two inequalities at the right hand

side.

Let (S′, C ′) = dupnc(S, C). By Observation 3.9, (S′, C ′) has a recoloring C∗ with cost nck. We

transform C∗ to a total convex coloring C∗
T of (T, CT ) as follows: C∗

T duplicates C∗ on the internal

vertices of T , and it colors the leaves of T with the color of their neighbors. C∗
T is convex, and

cost(C∗
T ) = cost(C∗)) = nck. This proves the right inequality.

To prove the other (strict) inequality, let C∗
T be an optimal expanding convex recoloring of

(T, CT ). First observe that C∗
T on the internal vertices of T induces a convex recoloring on S′,

which we will call C∗.

Since C∗
T uses at most nc colors, it has at most nc − 1 blocks of size one, hence the number of

leaves whose color under C∗
T is different than the color of their neighboring internal vertices is at

most nc − 1. Hence cost(C∗) < cost(C∗
T ) + nc. Thus we have

nck ≤ cost(C∗) < cost(C∗
T ) + nc = OPT ((T, CT )) + nc,

which implies the left inequality.
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10

⇓

Figure 7: A convex recoloring of the input caterpillar. All blue (triangle) and green (circles) blocks

were recolored, so a single vertex of each color can be retained without violating convexity.

The proof of the other direction is similar, and omitted.

By Claim 3.10 above a polynomial time solution for minimal convex recoloring of leaves will

imply such a solution for the minimal convex recoloring of strings, which completes the proof of

the theorem.

3.3 NP Hardness of Minimum Block-Recoloring

A block-recoloring corresponds to changing the colors of all the vertices in a block to a unique

different color. Such an operation seems a reasonable modelling of removing a mutation from a

phylogenetic tree. Indeed, mutation is an edge (u, v) such that C(u) 6= C(v), and the removal of

a mutation implies changing the color of a block at one end of the edge to the color of the block

at the other end. Note that a block-recoloring which corresponds in this way to the removal of

⇓

Figure 8: Removing the mutation at the left edge implies the removal of the one at the right

a given mutation can imply the elimination of other mutations, as depicted in Figure 8. Also, as

in Observation 2.1 we can show that allowing block-recoloring by arbitrary colors (i.e., not only

by colors of adjacent blocks) cannot reduce the minimum number of block-recoloring needed to

transform a given coloring to a convex one. Therefore we can model the problem of minimizing the

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

C
S-

20
04

-1
4 

- 
20

04



11

Sg

⇓

dsds ds ds dsds

Figure 9: The input string (S, C) and the corresponding informative segment in (Sz, Cz).

number of mutation removals as minimizing the number of block-recoloring needed to transform

the input coloring to a convex one.

By Claim 3.1, convex recoloring of unweighted strings can be reduced to the problem of convex

block recoloring of weighted strings, by collapsing each block B in the input string to a single vertex

whose weight is the number of vertices in B. Hence, by Theorem 3.2, convex block recoloring of

weighted strings is NP-Hard. In the rest of this section we show that the unweighted version of this

problem is NP-Hard as well. We actually prove the following stronger result: Let a Zebra string

be a colored string (S, C) in which for every edge (u, v) ∈ E it holds that C(u) 6= C(v) (i.e., every

block is a single vertex).

Theorem 3.11 Minimal unweighted convex recoloring of Zebra strings is NP-Hard.

Proof. The proof is by reduction from the minimum convex recoloring of strings. Let (S, C) be a

colored string of n vertices. We reduce it to a Zebra string (Sz, Cz) of length 16n such that (S, C)

has a recoloring C ′ with costC(S, C ′) = k iff (Sz, Cz) has a recoloring C ′
z with costCz

(Sz, C
′
z) =

5n+ k− 1. The Zebra string (Sz, Cz) consists of three neighboring segments: informative segment,

junk segment and a counter-weight segment, in this order. The segments are constructed as follows:

• Informative segment: A 2n − 1 long segment comprised of the input string in which a

spacer vertex, colored with a new color ds, is inserted between any neighboring vertices u and

v (See Figure 9).

• Junk segment A 6n long segment in which the vertices are colored by 6n new distinct colors,

used to separate between the informative segment and the counter-weight segment.

• Counter-weight segment A 8n + 1 long segment comprised of 2n consecutive quartets

[ds, d1, ds, d2] appended with a ds-vertex, where ds is the spacer color used in the informative

segment and d1 and d2 are new additional colors (See Figure 10).

we now show that (S, C) has a convex recoloring C ′ of cost k if and only if (Sz, Cz) has a convex

recoloring C ′
z of cost m = 5n + k − 1.

=⇒ Assume that (S, C) has a convex recoloring C ′ of cost k. The corresponding convex recoloring

C ′
z of Sz is defined as follows:
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12

In the informative segment, the n vertices corresponding to the input string (S, C) are colored

as defined by C ′, and then the n−1 remaining ds-vertices are overwritten by expanding the coloring

of their neighbors. Thus the cost of C ′
z in the informative segment is n + k − 1. In addition, the

4n vertices colored by d1 and d2 in the counter-weight segment are colored by ds.

The total cost of C ′
z is m, as required. It is easy to verify that C ′

z is a convex coloring of Sz.

⇐= Assume now that C ′
z is a convex recoloring of (Sz, Cz) of cost m. W.l.o.g. we may assume

that C ′
z is an expanding recoloring of Cz. We construct a recoloring C ′ of (S, C) of cost k, using

the following observations.

Observation 3.12 If C ′
z retains a ds-vertex in the counter-weight segment, then it overwrites all

the ds-vertices in the informative segment.

Proof. If C ′
z retains ds-vertices in both the informative and counter-weight segments, then it

must overwrite (by ds) all the 6n vertices in the junk segment, but 6n > m.

Observation 3.13 C ′
z retains a ds-vertex in the counter-weight segment.

Proof. Any convex recoloring of the counter-weight segment must overwrite either a d1-vertex or

a d2-vertex in 2n− 1 out of the 2n quartets in this segment. This sums to at least 2n− 1 vertices.

If C ′
z overwrites also all the 4n+1 ds-vertices in the counter-weight segment, then it overwrites (in

this segment) 6n > m vertices, a contradiction.

Observation 3.14 C ′
z overwrites at least 4n vertices in the counter-weight segment.

Proof. It is straightforward to show that the only optimal convex coloring of the counter-weight

segment is the one which transform it to a ds-block, and this coloring overwrites exactly 4n vertices.

Observation 3.14 implies that C ′
z overwrites at most m − 4n = n + k − 1 vertices in the

informative segment, and observations 3.12 and 3.13 imply that n− 1 of them must be ds-vertices.

The remaining k vertices in the informative segments which are overwritten by C ′
z belong to the

copy of (S, C), and define a convex recoloring of (S, C) of cost k.

Note: In a Zebra string, overwriting a single vertex is also a block recoloring. Thus Theorem

3.11 also implies that the problem of minimizing the total number of vertex recoloring and block

recoloring needed to transform a colored string to convex one is NP-Hard.

quartet 1 quartet 2 quartet 2n

... dsdsds dsds dsds

Figure 10: The counter-weight segment in Ss.
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4 Optimal Convex Recoloring Algorithms

In this section we present dynamic programming algorithms for optimal convex recoloring of totally

colored strings or trees. The input is either a totally colored string (S, C) or a totally colored tree

(T, C), which will be clear from the context. The optimal convex recolorings returned by the

algorithms will be either total or partial, as will be detailed.

The basic ingredient in all the algorithms is coloring with forbidden colors: A convex recoloring

of the whole tree is cunstructed by extending convex recolorings of smaller subtrees, and in order

to maintain convexity of the coloring, in each subtree certain colors cannot be used.

The computational costs of the algorithms depend either on nc, the total number of colors used,

or on n∗
c , the number of colors which violate convexity in the input tree, defined as follows: A color

d is a good color for a totally colored tree (T, C) if (T, C) contains a unique d-block. Else d is a bad

color. n∗
c denotes the number of bad colors in the input.

We start with basic algorithms which are valid for the general non-uniform cost model, and their

time complexity in bounded degree trees is Poly(n)Exp(nc). We then modify these algorithms to

run in time Poly(n)Exp(n∗
c) in the uniform weighted model. Finally, we remove the degree bound

and modify the algorithms to run in Poly(n)Exp(n∗
c) time for arbitrary trees.

4.1 Basic Algorithms for the Non-Uniform Cost Model

Our first algorithms find optimal convex recoloring of strings and trees in the non-uniform model,

where for each vertex v and each color d ∈ C, the cost of coloring v by d is an arbitrary nonnegative

number cost(v, d). The running times of both algorithms are governed by 2nc , the number of

subsets of the set of colors C. First we present an algorithm for colored strings, and then extend it

to colored trees.

4.1.1 Non-Uniform Optimal Convex Recoloring of Strings

Throughout this section (S, C) is a fixed, n-long input colored string, where S = (v1, . . . , vn). The

algorithm scans the string from left to right. After processing vertex vi, it keeps for each subset of

colors D ⊆ C, and for each color d /∈ D, the cost of the optimal coloring of the i leftmost vertices

v1, . . . , vi which does not use colors from D, and the rightmost vertex vi is colored by d. We define

this more formally now:

Definition 4.1 Let D ⊆ C be a set of colors and i ∈ {1, . . . , n}. A coloring C ′ is a (D, i)-coloring

(of the string S = (v1, . . . , vn)) if it is a convex coloring of (v1, . . . , vi), the i leftmost vertices of S,

such that C ′({v1, . . . , vi}) ∩ D = ∅. opt(D, i) is the cost of an optimal (D, i)-recoloring of (S, C).

It is easy to see that by the above definition, opt(∅, n) is the cost of an optimal convex recoloring

of (S, C).

Definition 4.2 For a set of colors D, a color d, and i ∈ {1, . . . , n}, a coloring C ′ is a (D, d, i)-

coloring if it is a (D, i)-coloring and C ′(vi) = d. opt(D, d, i) is the cost of an optimal (D, d, i)-

coloring. opt(D, d, i) = ∞ when no (D, d, i)-coloring exists (eg when d ∈ D).
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Observation 4.1 opt(D, i) = min
d∈C

opt(D, d, i).

For the recursive calculation of opt(D, d, i) we use the following function R, defined for a color

set D ⊆ C, a color d ∈ C and i ∈ {1, . . . , n}:

R(D, d, i) = min{opt(D ∪ {d}, i), opt(D \ {d}, d, i)}

That is, R(D, d, i) is the minimal cost of a convex recoloring of the leftmost i vertices, which

does not use colors from D \ {d}, and may use the color d only as the color of the last (rightmost)

block in (v1, . . . , vi). By convention, opt(D, d, 0) = 0 for all D ⊆ C and d /∈ D. Note that

R(D, d, i) = R(D ∪ {d}, d, i) = R(D \ {d}, d, i); we will usually use this function when d /∈ D.

Theorem 4.2 For a color set D, a color d /∈ D and i ∈ {1, . . . , n}:

opt(D, d, i) = cost(vi, d) + R(D, d, i − 1)

Proof. Let C ′ be an optimal (D, d, i)-coloring. Then, since C ′ is convex and C ′(vi) = d, the

restriction of C ′ to (v1, . . . , vi−1) is either a (D, d, i − 1)-coloring or a (D ∪ {d}, i − 1)-coloring.

Hence the cost of this restriction is at least R(D, d, i − 1). This proves that opt(D, d, i) is at

least the righthand side of the equation. Conversely, let C ′ be a coloring of (v1, . . . , vi−1) of cost

R(D, d, i−1) which does not use colors from D, and uses color d only if C(vi) = d. Then by setting

C ′(vi) to d we get a (D, d, i)-coloring whose cost is the righthand side of the equation. Therefore

this cost is at least the cost of an optimal (D, d, i)-coloring.

Theorem 4.2 yields the following dynamic programming algorithm for the minimal convex string

recoloring:

Non-Uniform Optimal Convex String Recoloring

1. for every D ⊆ C and for every d /∈ D, opt(D, d, 0) ← 0

2. for i = 1 to n

for every D ⊆ C

(a) for every d /∈ D, opt(D, d, i) ← cost(vi, d) + R(D, d, i − 1)

(b) opt(D, i) ← min
d

opt(D, d, i).

3. return opt(∅, n)

Each of the n iterations of the algorithms requires O(nc · 2
nc) time. So the running time of the

above algorithm is O (n · nc2
nc).

4.1.2 Non-uniform Optimal Convex Recoloring of Trees

We extend the algorithm of the previous section for optimal convex recoloring of trees. First, we

root the tree at some vertex r. For each vertex v ∈ V , Tv is the subtree rooted at v. A convex
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recoloring of Tv denotes a convex recoloring of the colored subtree (Tv, C|V (Tv)). We extend the

definitions of the previous section to handle trees:

Definition 4.3 Let D ⊆ C be a set of colors and v ∈ V . Then a coloring C ′ is a (D, Tv)-coloring if

it is a recoloring of Tv s.t. C ′(V (Tv))∩D = ∅. opt(D, Tv) is the cost of an optimal (D, Tv)-coloring.

Again, a (D, Tv)-coloring is a (convex) coloring on Tv that does not use any color of D. Thus

opt(∅, Tr) is the cost of an optimal coloring of T = Tr.

Definition 4.4 For a set of colors D ⊆ C, a color d ∈ V and v ∈ V , a coloring C ′ is a (D, d, Tv)-

coloring if it is a (D, Tv)-coloring such that C ′(v) = d. opt(D, d, Tv) is the cost of an optimal

(D, d, Tv)-coloring; in particular, if d ∈ D then opt(D, d, Tv) = ∞.

If v is a leaf and d /∈ D, then opt(D, d, Tv) = cost(v, d). For the recursive calculation of opt(D, d, Tv)

at internal vertices we need the following generalization of the function R used for the string

algorithm:

R(D, d, Tv) = min{opt(D ∪ {d}, Tv), opt(D \ {d}, d, Tv)}

That is, R(D, d, Tv) is the minimal cost of a convex recoloring of Tv, which uses no colors from

D \ {d} and does not include a d-block which is disjoint from the root v.

The calculation of opt(D, d, Tv) at an internal vertex with k children v1, . . . , vk uses the notion

of k-ordered partition of a set S, which is a k-tuple (S1, . . . , Sk), where each Si is a (possibly empty)

subset of S, s.t. Si ∩ Sj = ∅ for i 6= j and ∪k
i=1Si = S. The set of k|S| k-ordered partitions of a set

S is denoted by PART k(S).

Theorem 4.3 Let v be an internal vertex with children v1, . . . , vk. Then, for a color set D and a

color d /∈ D:

opt(D, d, Tv) = cost(v, d) + min
(E1,...,Ek)∈PART k(C\(D∪{d})

k∑
i=1

R(C \ Ei, d, Tvi
)

Proof.

≥: Let C ′ be an optimal (D, d, Tv)-coloring. Then cost(C ′) = opt(D, d, Tv). For i = 1, . . . , k, let

E ′
i = C ′(Tvi

)\{d}, that is: E ′
i is the set of colors different from d which C ′ uses in coloring Tvi

. Since

C ′ is convex and C ′(v) = d, we must have that, for i 6= j, E ′
i ∩ E ′

j = ∅. Since E ′
i cannot contain a

color from D∪{d}, we have that
k⋃

i=1
E ′

i ⊆ C \ (D∪{d}). If
k⋃

i=1
E ′

i is strictly included in C \ (D∪{d}),

then replace E ′
1 by a larger set which includes all the missing colors from C \ (D ∪ {d}). With this

modification, (E ′
1, . . . , E

′
k) is an ordered partition of C \ (D ∪ {d}), and for each i, C ′|Tvi

is a convex

recoloring of Tvi
which uses only colors from E ′

i ∪ {d}, and if it uses d then C ′(vi) = d. Therefore,

for every 1 ≤ i ≤ k, cost(C ′|Tvi
) ≥ R(C \ Ei, d, Tvi

). Hence cost(C ′) is at least the righthand side of

the equation.

≤: Let (E1, . . . , Ek) be an ordered partition which minimizes the righthand side of the equation,

and let C ′
i be the coloring of Tvi

attaining the cost R(C \ Ei, d, Tvi
) (i = 1, . . . , k). Let C ′ be the
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coloring of Tv defined by C ′|Tvi
= C ′

i and C ′(v) = d. Then cost(C ′) equals the righthand side of

the equation. Also, by the construction, C ′ is a convex recoloring of Tv which does not use colors

from D and C ′(v) = d. Hence cost(C ′) is at least opt(D, d, Tv).

Theorem 4.3 above leads to a straightforward dynamic programming algorithm. In order to

compute opt(D, d, Tv) for each D ⊆ C and d /∈ D, we only need the corresponding values at v’s

children. This can be achieved by a post order visit of the vertices, starting at r. To evaluate the

complexity of the algorithm, we first note that each subset of colors D and a k-ordered partition

(E1, . . . , Ek) of C \ (D ∪ {d}) corresponds to the (k + 1)-ordered partition (D, E1, . . . , Ek) of C \ {d}.

For each such ordered partition, O(k) computation step are needed. As there are nc colors, the

total time for the computation at vertex v with k children is O(knc(k + 1)nc−1). Since k ≤ ∆ − 1,

the time complexity of the algorithm for trees with bounded degree ∆ is O(n · nc · ∆
nc).

We conclude this section by presenting a simpler linear time algorithm for optimal recoloring

of a tree by two colors d1, d2. For this, we compute for i = 1, 2 the minimal cost convex recoloring

Ci which sets the color of the root to di (i.e. Ci(r) = di). The required optimal convex recoloring

is either C1 or C2. The computation of C1 can be done as follows:

Compute for each vertex v 6= r a cost defined by

cost(v) =
∑

v′∈Tv

cost(v′, d2) +
∑

v′ 6∈Tv

cost(v′, d1))

This can be done by one post order traversal of the tree. Then, select the vertex v0 which minimizes

this cost, and set C1(w) = d2 for each w ∈ Tv0
, and C1(w) = d1 otherwise.

4.2 Enhanced Algorithms for the Uniform Cost Model

The running times of the algorithms in Section 4.1 do not improve even when the input coloring is

convex. However, for the uniform cost model, we can modify these algorithms so that their running

time on convex or nearly convex input (string or tree) is substantially smaller. The new algorithms,

instead of returning a total coloring, return a convex partial coloring, in which some of the new

colors assigned to the vertices are unspecified. For the presentation of the algorithms we need the

notion of convex cover which we define next.

A set of vertices X is a convex cover (or just a cover) for a colored tree (T, C) if the (partial)

coloring CX = C|[V \X] is convex (i.e., C can be transformed to a convex coloring by overwriting

the vertices in X). Thus, if C ′ is a convex recoloring of (T, C), then XC(C ′), the set of vertices

overwritten by C ′, is a cover for (T, C). Moreover, deciding whether a subset X ⊆ V is a cover

for (T, C), and constructing a total convex recoloring C ′ of C such that X (C ′) ⊆ X in case it

is, can be done in O(n · nc) time. Also, in the uniform cost model, the cost of a recoloring C ′ is

w(X (C ′)). Therefore, in this model, finding an optimal convex total recoloring of C is polynomially

equivalent to finding an optimal cover X, or equivalently a partial convex recoloring C ′ of C so

that w(X (C ′)) = w(X) is minimized.
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⇓
Ĉ

C

Figure 11: All good colors are replaced by a the new color d̂, represented by ⋆.

4.2.1 Optimal String recoloring via Relaxed Convex Recoloring

The enhanced algorithm for the string, makes use of the fact that partially colored strings can be

characterized by the following property of “local convexity”:

Definition 4.5 A color d is locally convex for a partially colored tree (T, C) iff C(carrier(C, d)) =

{d}, that is carrier(C, d) does not contain a vertex of color different from d.

Observation 4.4 A partially colored string (S, C) is convex iff it is locally convex for each color

d ∈ C.

Note that Observation 4.4 does not hold for partially colored trees, since every leaf-colored tree is

locally convex for each of its colors.

Given a colored string (S, C) and a color d, (S, C) is a d-relaxed convex coloring if it can be

completed to total coloring such that for every color d′ 6= d there is a unique d′-block.

Observation 4.5 C is a d-relaxed convex coloring of a string S if and only if each color d′ 6= d is

locally convex for (S, C).

Given a colored string (S, C), we transform C to a coloring Ĉ as follows:

For every vertex v ∈ V (S):

Ĉ(v) =

{
d̂ if C(v) is a good color

C(v) otherwsise.

where d̂ is a new color. Figure 11 illustrates such a transformation.

A set of vertices X ⊆ V is a d-relaxed cover of (S, C) if the partial coloring C|V \X , denoted CX ,

is a d-relaxed convex coloring of (S, C).

Theorem 4.6 Let (S, C) and Ĉ be as above. Then X ⊆ V is a cover for (S, C) if and only if X

is a d̂-relaxed cover for (S, Ĉ).
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⇓
Ĉ

C

Figure 12: A cover of C implies a relaxed cover of Ĉ (color d̂ is represented by ⋆).

⇓

Ĉ

C

Figure 13: A relaxed cover of Ĉ implies a cover of C

Proof. Assume that X is a cover for (S, C). Then clearly all colors are locally convex for CX ,

which implies that every color d′ 6= d̂ is locally convex for ĈX . Hence, by Observation 4.5, ĈX is

a d̂-relaxed convex cover. The converse is also true: If each color d′ 6= d̂ is locally convex for ĈX ,

then each bad color (for C) is locally convex for ĈX , and hence also for CX . Each good color for C

is trivially locally convex for CX . Thus by observation 4.4, CX is convex. The theorem follows.

Figures 12, 13 depict Theorem 4.6 above.

Theorem 4.6 implies that an optimal convex cover (and hence an optimal convex recoloring)

of (S, C) can be obtained as follows: transform C to Ĉ, and then compute an optimal d̂-relaxed

convex recoloring, C ′, for (S, Ĉ). The d̂-relaxed cover defined by C ′ is an optimal cover of (S, C).

An optimal convex recoloring of (S, Ĉ) can be obtained by replacing step 2(a)of the non-uniform

string recoloring algorithm of Section 4.1.1 by:

opt(D, d, i) ← w(v)δC(vi),d +

{
opt(D, i − 1) if d = d̂

R(D, d, i − 1) otherwise.
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v

Figure 14: {v} is not a cover, but as ¥ is a good color, {v} is a relaxed cover.

where R is defined in Section 4.1.1, and where δd,d′ is the complement of Kronecker delta:

δd,d′ =

{
1 if d 6= d′

0 otherwise

The improved algorithm has running time of O
(
n∗

cn2n∗
c

)
. In particular, for each fixed value of

n∗
c the running time is polynomial in the input size.

4.2.2 Extension for Trees

The technique of getting convex recoloring by treating all good colors as a special color d̂ and then

finding a d̂-relaxed cover does not apply to trees, as can be seen in Figure 14: {v} is a d-relaxed

cover for (T, Ĉ), but it is not a cover for (T, C) (this figure also demonstrates that Observation 4.5

is not valid for trees).

Let (T = (V, E), C) be a colored tree. For a vertex v ∈ V , let C∗
v = C∗ ∪ {C(v)} (note that if

C(v) ∈ C∗ then C∗
v = C∗). Assume that the children of v are v1, . . . , vk. The crucial observation for

our improved algorithm for convex recoloring of trees is that only colors from C∗
v may appear in

more than one subtree Tvi
of Tv. This observation enables us to modify the recursive calculation

of the algorithm of Section 4.1.2 so that instead of computing opt(D, d, Tv) for all subsets D of C

and each d /∈ D, it computes similar values only for subsets D ⊆ C∗
v and d ∈ C∗

v \ D, and thus to

reduce the exponential factor in the complexity bound from 2nc to 2n∗
c .

To enable the bookkeeping needed for the algorithm, it considers only optimal partial recolorings

of (T, C), which use good colors in a very restricted way: no vertex is overwritten by a good color

(ie vertices are either retained, or uncolored, or overwritten by bad colors), and good colors are

either retained or overwritten (by bad colors), but are never uncolored. The formal definition is

given below.

Definition 4.6 A partial convex recoloring C ′ of the input coloring C is conservative if it satisfies

the following:

1. If C ′(v) 6= C(v) then C ′(v) ∈ C∗ (a color can be overwritten only by a bad color).

2. If C(v) /∈ C∗ then v ∈ Domain(C ′) and C ′(v) ∈ {C(v)} ∪ C∗ (a good color is either retained

or overwritten by a bad color, but not uncolored).

3. For every d ∈ C, C
′−1(d) is connected (if a vertex is left uncolored then it does not belong to

any carrier of C ′).
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d′ =d =

X

u

v

Figure 15: u is the first vertex on the path from v to carrier(CX , d), which belongs to carrier of

another color.

The fact that a conservative recoloring of minimum possible cost is an optimal convex recoloring

follows from the following lemma, which seems to be of independent interest:

Lemma 4.7 Let X be a convex cover of a colored tree (T, C). Then there is a convex total recoloring

Ĉ of (T, C) so that X (Ĉ) ⊆ X and for each vertex v for which C(v) /∈ C∗, Ĉ(v) = C(v) or Ĉ(v) ∈ C∗

(that is, Ĉ does not overwrite a good color by another good color). In particular, there is an optimal

total recoloring Ĉ of (T, C) which never overwrites a good color by another good color.

Proof. The proof is by induction on |X|. If |X| = 0 (i.e. C is convex) then let Ĉ = C. Assume

correctness for k ≥ 0, and let |X| = k + 1. If X contains a convex cover X ′ of cardinality ≤ k then

by induction there is a convex recoloring Ĉ which does not overwrite a good color by another good

color and X (Ĉ) ⊆ X ′ ⊂ X, and the lemma holds. So assume that no proper subset X ′ of X is a

convex cover (i.e., X is a minimal convex cover). Let CX = C|V \X be the partial (convex) coloring

defined by X. If C(X) ⊆ C∗ then the lemma holds for each convex recoloring Ĉ with X (Ĉ) = X,

so assume that C(u) /∈ C∗ for some u ∈ X. This implies, by the minimality of X, that there is a

vertex v ∈ X such that C(v) = d for some good color d /∈ C∗, and v is a leaf in the unique d-block

of C. Let X ′ = X \ {v}. By the minimality of X, X ′ is not a convex cover. Let CX′ = C|V \X′ be

the (non-convex) partial coloring defined by X ′.

By assumption CX′ is not convex, and the only color whose carrier under CX′ is different

from its carrier under CX is d. Hence, there is a color d′ 6= d s.t. carrier(CX′ , d) (which is

carrier(C−1
X (d)∪{v})) intersects with carrier(CX , d′). Since carriers of good colors do not intersect,

each such color d′ is a bad color. Hence either v ∈ carrier(CX , d′) for some d′ ∈ C∗, or there

is a vertex u which is the first vertex on the path from v to carrier(CX , d) which belongs to

carrier(CX , d′) for some d′ ∈ C∗ (see Figure 15; note that all vertices on the path from v to u must

be in X).

Let C ′ be the total coloring which is identical to C except that C ′(v) = d′ (see Figure 16).

Then C ′ and C use the same colors, and every color which is good for C is good also for C ′ (this is
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u

v

Figure 16: C ′ is obtained from C by changing the color of v from N to •.

trivial for good colors other than d, and also for d since v is a leaf in the unique d-block of C). Let

C ′
X′ = C ′|V \X′ . Then for any color d′′ 6= d′, carrier(C ′

X′ , d′′) = carrier(CX , d′′), and by the way

d′ was selected, also carrier(C ′
X′ , d′) ∩ carrier(C ′

X′ , d′ = ∅. Hence all color carriers in C ′|X′ are

disjoint, meaning that X ′ is a convex cover for (T, C ′) with |X ′| = k. By applying the induction

hypothesis on C ′ and X ′, there is a convex recoloring Ĉ of C ′ so that XC′(Ĉ) ⊆ X ′ and no good

color (of C ′, and hence also of C) is overwritten by another good color. Consider now Ĉ as a

recoloring of C. Then Ĉ still satisfies the above, and since XC′(C) ⊆ X ′, we have that XC(Ĉ) ⊆ X,

and the lemma is proved.

Let Ĉ be a convex total recoloring satisfying Lemma 4.7. Then it can be easily verified that

the partial coloring obtained from Ĉ by uncoloring all the vertices v for which Ĉ(v) 6= C(v) and

Ĉ(v) /∈ C∗, is a conservative recoloring. Hence a conservative recoloring of minimum possible cost

is an optimal convex recoloring.

For our algorithm we need variants of the functions opt and R, adapted for conservative re-

colorings, which we define next. A coloring C ′ is a (D, Tv)-conservative recoloring if it is a con-

servative recoloring of Tv which does not use colors from D. If in addition C ′(v) = d, then C ′ is

a (D, d, Tv)-conservative recoloring; a (D, Tv)-conservative recoloring in which v is uncolored is a

(D, ∗, Tv)-conservative recoloring. Note that for certain combinations of D ⊆ C, f ∈ (C \ D) ∪ {∗},

and v ∈ V , no (D, f, Tv)-conservative recoloring exists (eg, when C(v) and f are two distinct good

colors).

For f ∈ C ∪ {∗}, a set of colors D ⊆ C and v ∈ V , ôpt(D, f, Tv) is the cost of an optimal

(D, f, Tv)-conservative recoloring (ôpt(D, f, Tv) = ∞ if no (D, f, Tv)-conservative recoloring exists).

ôpt(D, Tv), the optimal cost of a conservative recoloring of Tv which does not use colors from D,

is given by minf ôpt(D, f, Tv). By Lemma 4.7, the cost of an optimal recoloring of a colored tree

(T, C) is given by ôpt(Tr, ∅), where r is the root of T . The recursive computation of this value uses

the function R̂, given by

R̂(D, d, Tv) = min{ôpt(D ∪ {d}, Tv), ôpt(D \ {d}, d, Tv)}

Recall that C∗
v = C∗ ∪{C(v)}. Rather than computing the functions ôpt (and R̂) at each vertex

v for all subsets D of C, our algorithm computes ôpt(D, f, Tv) at a vertex v only for subsets of C∗
v .

The correctness and complexity of the algorithm follows from following two lemmas.
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Lemma 4.8 For a vertex v with children v1, . . . , vk, a set of colors D ⊆ C∗
v , and a color d ∈ C∗

v :

1. If d ∈ D then ôpt(D, d, Tv) = ∞. If d ∈ C∗
v \ D then:

ôpt(D, d, Tv) = w(v)δC(v),d + min
(E1,...,Ek)∈PART k(C∗

v\(D∪{d}))

k∑

i=1

R̂(C∗
v \ Ei, d, Tvi

)

2. If C(v) /∈ C∗ then ôpt(D, ∗, Tv) = ∞. Else (ie C(v) ∈ C∗ and C∗
v = C∗):

ôpt(D, ∗, Tv) = w(v) + min
(E1,...,Ek)∈PART k(C∗

v\D)

k∑

i=1

ôpt(C∗
v \ Ei, Tvi

)

Proof.

1. ≥: If d ∈ D then there is no (D, d, Tv)-conservative recoloring. Otherwise the proof goes along

the same lines of the proof of Theorem 4.3, only that this time we consider only colors from C∗
v .

Let C ′ be an optimal (D, d, Tv)-conservative recoloring. By the same arguments of the proof

of Theorem 4.3, C ′ induces an ordered partition (E ′
1, . . . , E

′
k) on C∗

v \ (D ∪ {d}), such that, for

i = 1, . . . , k, C ′|Tvi
overwrites all the colors in C∗

v \E
′
i. Now, since C ′(v) = d, and C ′ is convex,

for each i either C ′(vi) = d or d /∈ C ′(Tvi
). Also, w(v) is added to the cost iff C(v) 6= d.

Hence, the cost of C ′ is at least w(v)δC(v),d +
∑k

i=1 R̂(C∗
v \E

′
i, d, Tvi

), which is at least as large

as the minimum of this sum over all ordered partitions in PART k(C
∗
v \ (D ∪ {d}).

≤: Let (E1, . . . , Ek) be an ordered partition of C∗
v \ (D ∪ {d}) which minimizes the sum

at the righthand side of the equation, and for i = 1, . . . , k let C ′
i be the corresponding

conservative recoloring of Tvi
, with cost(C ′

i) = R̂(C∗
v \ Ei, d, Tvi

). Then, since the colorings C ′
i

are conservative, for each color d′ /∈ C∗
v there is at most one i s.t. d′ ∈ C ′(Tvi

). Hence, for

i 6= j, C ′
i(Tvi

) ∩C ′
j(Tvj

) ⊆ {d}, and d is used by C ′
i only if C ′

i(vi) = d. Let C ′ be the coloring

which equals C ′
i on Tvi

(i = 1, . . . , k), and C ′(v) = d. Then C ′ is a (D, d, Tv)-conservative

recoloring. Hence the cost of an optimal conservative recoloring is at most the cost of C ′,

which is given in the righthand side.

2. If C(v) /∈ C∗ then there is no (D, ∗, Tv)-conservative coloring. The proof for the case that

C(v) ∈ C∗ is similar to that of the previous item but simpler, and is omitted.

Lemma 4.8 implies a dynamic programming algorithm similar to the one presented in Sec-

tion 4.1.2. The algorithm computes for each vertex v, for each subset of colors D ⊆ C∗
v and for each

f ∈ (C∗
v \ D) ∪ {∗}, the values of ôpt(D, d, Tv). when v is a leaf, this value for each D ⊆ C∗

v and

each d ∈ D is given by ôpt(D, d, Tv) = w(v)δC(v),d, and the value of ôpt(D, ∗, Tv) when C(v) ∈ C∗ is

w(v). So it remains to show that these values can be computed at internal vertices, assuming they

were previously computed at their children.

For an internal vertex v with children v1, . . . , vk, the algorithm uses Lemma 4.8(1) to compute

the values ôpt(D, d, Tv) for each D ⊆ C∗
v and for each d ∈ C∗

v \ D. If C(v) ∈ C∗, then Lemma 4.8(2)
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is used to compute the value of ôpt(D, ∗, Tv). There is however a subtle point in the realization

of this algorithm, which stems from the fact that the sets C∗
v which define the values computed at

each vertex v may vary from vertex to vertex. The following claim guarantees that all the values

needed for the calculations at an internal vertex v are calculated by its children v1, . . . , vk.

Lemma 4.9 Let v be an internal vertex with children v1, . . . , vk, and assume that v is visited by the

algorithm after its children. Then for each subset of colors D ⊆ C∗
v and each f ∈ C∗

v ∪ {∗}, all the

values required for computing ôpt(D, f, Tv) by Lemma 4.8 (1) and (2) are computed by v1, . . . , vk.

Proof. By our assumption, for each i = 1, . . . , k, for each D ⊆ C∗
vi

and for each f ∈ C∗
vi
∪ {∗}, the

value of ôpt(D, f, Tvi
) is computed by vi. We have to prove that these values suffice to compute

the formulas at (1) and (2) of Lemma 4.8.

Consider first the formula at (1). To compute the function R̂(C∗
v \Ei, d, Tvi

), we need to compute

ôpt(C∗
v \ Ei, Tvi

) and ôpt(C∗
v \ (Ei ∪ {d}), d, Tvi

). Since d must be a member of C∗
v , and Ei a subset

of C∗
v \ {d}, these values can be computed if we can compute ôpt(D′, f, Tvi

) for all D′ ⊆ C∗
v and

f ∈ C∗
v ∪ {∗}.

By our assumption, the values of ôpt(D′, f, Tvi
) are computed at vi whenever D′ ⊆ C∗

vi
and

f ∈ C∗
vi
∪{∗}, so we only need to consider the cases where D′ 6⊆ C∗

vi
or f /∈ C∗

vi
∪{∗}. If f /∈ C∗

vi
∪{∗}

then there is no (D′, f, Tvi
)-conservative coloring, and hence ôpt(D′, f, Tvi

) = ∞. Thus we are left

with the case that D′ 6⊆ C∗
vi

and f ∈ C∗
vi
∪ {∗}.

Since C∗
v \ C∗

vi
⊆ {C(v)} and D′ ⊆ C∗

v , in this case we must have that D′ \ C∗
vi

= {C(v)}. That

is: C(v) is a good color and C(v) /∈ C(Tvi
). Hence, in this case we have that every (D′, d, Tvi

)-

conservative recoloring of Tvi
is also a (D′ \ {C(v)}, d, Tvi

)-conservative recoloring of Tvi
, and vice

versa. Therefore, ôpt(D′, d, Tvi
) = ôpt(D′ \ {C(v)}, d, Tvi

), and since D′ \ {C(v)} ⊆ C∗
vi

, the value of

ôpt(D′ \ {C(v)}, d, Tvi
) is computed at vi.

Consider now the formula at (2) of Lemma 4.8. The values needed at v here are ôpt(Di, Tvi
)

for all Di ⊆ C∗
v . Since in this case C(v) ∈ C∗, we have that C∗

v = C∗ ⊆ C∗
vi

, and hence these values

are computed at vi’s as well.

Combining the results so far, we have

Theorem 4.10 Optimal convex recoloring of totally colored trees with n vertices can be computed

is O(n · n∗
c∆

n∗
c+2) time, where n∗

c is the number of bad colors and ∆ is the maximum degree of

vertices in T .

Proof. The correctness of the algorithm follows from Lemma 4.8. The complexity analysis is

similar to the one after Theorem 4.3: By Lemma 4.9, the computation at each vertex v with k

children can be done by using the formulas of Lemma 4.8, in time which is proportional to k < ∆

for each k+1-ordered partition of C∗
v and color d. As |C∗

v | ≤ n∗
c +1, the number of ordered partitions

of C∗
v , is at most ∆n∗

c+1. The theorem follows.T
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4.3 Fixed Parameter Tractable Recoloring Algorithms

A fixed parameter tractable algorithm for the unweighted convex recoloring problem is one which

computes the optimal solution for an input of size n in time which is bounded by poly(n)f(k),

where f is an arbitrary function and k is the value of the optimal solution, namely the minimum

number of overwrites needed to make the coloring convex (see [5]). As n∗
c , the number of bad colors,

provides a lower bound on the number of overwrites, (effectively, the number of overwrites is at least
n∗

c

2 ), the algorithm of the previous section is a fixed parameter tractable algorithm for each class of

trees of bounded degree. In this section we remove the degree bound from this result. For this, we

sketch below a modification of the algorithm that replaces the need to inspect ordered-partitions

by inspecting unordered partitions of C∗. The running time is improved to Poly(n)Bell(n∗
c), where

Bell(n) is the number of (unordered) partitions of n elements to any number of nonempty subsets1.

The algorithm, which is based on minumum weight perfect matching algorithms, is presented for

the calculation of ôpt(D, d, Tv), but it can easily be adapted for the calculation of ôpt(D, ∗, Tv).

Let v be an internal vertex with children v1, v2, . . . , vk. Let D ⊆ C∗
v and let d ∈ C∗

v \ D. Rather

than calculating ôpt(D, d, Tv) by considering all the k-ordered partitions of C∗
v\(D∪{d}), we consider

only unordered partitions to at most k subsets. For each such partition {E1 . . . Eℓ} we construct a

complete weighted bipartite graph (V1, V2, E), where V1 = {vi : 1 ≤ i ≤ k} contains a vertex for

each child of v, and V2 = {Ej : 1 ≤ j ≤ ℓ} ∪ {φj : ℓ + 1 ≤ j ≤ k} contains a vertex for each of the ℓ

nonempty subsets Ei, and additional k − ℓ vertices that represent ”copies” of the empty set. The

weight function of each edge is the corresponding value of R̂, that is w(vi, Ej) = R̂(C∗
v \ Ej , d, Tvi

),

and w(vi, φj) = R̂(C∗
v , d, Tvi

).

A perfect matching on the above graph, outputs the minimum cost recoloring out of all the

k-ordered partitions of C∗
v \ (D ∪ {d}) in which the non empty sets are {E1, . . . , Eℓ}. The same

task requires in the original algorithm to consider
(
k
ℓ

)
ℓ! distinct ordered partitions. Using the

Hungarian algorithm for minimum weighted perfect matching in a bipartite graph [14], yields an

O(n4n∗
cBell(n∗

c))-time algorithm, which is an O(n4)-time algorithm for any fixed number of bad

colors n∗
c .

5 Discussion and Future Work

In this work we studied the complexity of computing the distance from a given coloring of a tree

or string to a convex coloring, motivated by the scenario of introducing a new character to an

existing phylogenetic tree. We considered few natural definitions for that distance, along with few

model variants of the problem, and proved that the problem is NP-Hard in each of them. We

then presented exact algorithms to solve the problem under the non-uniform and the uniform cost

models.

Few interesting research directions which suggest themselves are:

• Similarly to the generalization of the small parsimony question to the general one: Given a

set of characters (colorings) such that the number of colors of each character is is bounded

1Bell(n) is asymptotically smaller than
(

n
ln n

)n
. More on Bell numbers can be found, eg, in [19]
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by a fixed small constant, is there an efficient algorithm which computes a phylogenetic tree

of minimum distance from a perfect phylogeny, where the distance is taken as the number of

color changes needed to achieve perfect phylogeny? Note that, as in maximum parsimony,

this problem is trivial for one character.

• Similarly to the above, but rather then bounding the number of colors, the bound now is on

the number of color changes, which is the recoloring distance from convexity. The goal is to

decide whether there is a tree within this distance from a perfect phylogeny over the given

set of characters. This corresponds to a fixed parameter tractable algorithm for constructing

an optimal tree.

• Can our results for the uniform cost model from Section 4.2 be extended for the non-uniform

cost model.

• Phylogenetic network are accumulating popularity as a model for describing evolutionary

history. This trend, motivates the extension of our problem to more generic cases such are

directed acyclic graphs or general graphs. It would be interesting to explore the properties of

convexity on these types of graphs.
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