Approximation Algorithms for Hard Cut Problems

Research Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

Julia Chuzhoy

Submitted to the Senate of the Technion — Israel Institute of Technology

Elul 5760 Haifa September 2000
The research thesis was done under the supervision of Dr. Yuval Rabani in the faculty of computer science.

I would like to thank Yuval Rabani for his devoted guidance throughout the course of this research.

I would like to thank my husband Leonid for his support and encouragement.

The generous financial help of the Technion is gratefully acknowledged.
Contents

1 Introduction .. 3
 1.1 Introduction .. 3
 1.2 Related Problems 4
 1.2.1 Metric labeling problem 4
 1.2.2 Multiway cut 5
 1.3 Work Overview and Main Methods 6
 1.3.1 Integer Programming and Linear Programming 6
 1.3.2 Work Overview 8

2 The Restricted Multiway Cut Problem 9
 2.1 Problem Definition 9
 2.2 Linear Program for the Restricted Multiway Cut Problem 10
 2.3 Integrality Gap of the Relaxation 12

3 Upper Bounds for the Restricted Multiway Cut Problem 14
 3.1 Some Useful Observations 15
 3.2 Upper Bound for $k = 3$ 18
 3.3 Upper Bound for $k = 4$ 20

4 Upper Bounds for the Uniform Labeling Problem 26
List of Figures

3.1 The rounding algorithm for $k = 3$ 19
Abstract

The uniform labeling problem is defined in the following way: We are given an undirected graph $G = (V, E)$ with a set $T = \{t_1, \ldots, t_k\} \subset V$ of special vertices called terminals, and non-negative weights w_e, for every $e \in E$. Additionally, for every $v \in V$ and for every $t \in T$, the assignment cost $c(v, t)$ is specified. We need to find an assignment function $f: V \setminus T \rightarrow T$ which assigns each non-terminal vertex to some terminal. Each such assignment function has a cost, and we need to find the assignment function of minimum cost. A cost of an assignment function consists of two parts:

1. Vertex assignment cost, which is $\sum_{v \in V} c(v, f(v))$.
2. Edge separation cost: $\sum_{(u, v) \in E \atop f(u) \neq f(v)} w_{(u, v)}$.

The total cost of an assignment function is the sum of the vertex assignment cost and the edge stretch cost.

The problem can be viewed as a labeling problem, where the non-terminal vertices represent the objects we want to label and the terminals represent the labels. The assignment function f actually assigns to each object some label. The vertex assignment costs $c(v, t)$ reflect our initial estimation of how likely it is that the object corresponding to v should get a label corresponding to t. Finally, there is an edge between two vertices if it is likely that the two corresponding objects should get the same label, and the higher the edge weight is, the more likely it is that the two objects should get the same label.

For the special case of $k = 2$ the problem can be easily transformed to the s-t cut problem, and can be solved in polynomial time. For all $k \geq 3$, the problem is NP-hard and also Max SNP-hard. Therefore, unless $P = NP$, there is no polynomial time approximation scheme for the problem. Kleinberg and Tardos showed a 2-approximation algorithm for the problem. In this work we concentrate on two special cases of the problem. For the special case of $k = 3$, we show a factor $\frac{4}{3}$ approximation algorithm, which matches the integrality gap of the relaxation we use. For $k = 4$, we show a factor $\frac{3\sqrt{5}-1}{2} \approx 1.5934187$ approximation algorithm, while the integrality gap of the relaxation we use is at least 1.5.
Notations and Abbreviations

\(\Delta_k \) — the \((k-1)\)-simplex, which is a convex polytope in \(\mathbb{R}^k \),
given by: \(\Delta_k = \{ x \in \mathbb{R}^k \mid x \geq 0 \text{ and } \Sigma_{i=1}^k x_i = 1 \} \)

\(\| x \| \) — For \(x \in \mathbb{R}^k \), \(\| x \| \) is its \(L_1 \) norm: \(\| x \| = \Sigma_{i=1}^k |x_i| \).

\(e^i \) — a unit vector with \(e^i_i = 1 \) and \(e^i_j = 0 \) for all \(j \neq i \).

\(|e| \) — for a graph edge \(e = (u, v) \), \(|e| = \frac{1}{2} \| x^u - x^v \| \)
Chapter 1

Introduction

1.1 Introduction

The uniform labeling problem is defined in the following way: we are given an undirected graph \(G = (V, E) \), with nonnegative edge weights \(w_e \) for each \(e \in E \) and a set \(T = \{t_1, \ldots, t_k\} \subseteq V \) of special vertices called terminals. For each vertex \(v \in V \setminus T \) and for each terminal \(t \in T \), \(c(v, t) \geq 0 \) denotes the cost of assigning \(v \) to \(t \). We need to find a function \(f : V \setminus T \rightarrow T \), which assigns each vertex to some terminal. The cost of an assignment is divided into two parts:

1. Vertex assignment cost: the cost we pay for the assignment of the vertices, which is \(\Sigma_{v \in V} c(v, f(v)) \)

2. Edge separation cost: for each edge whose endpoints are assigned to different terminals we pay the weight of the edge, the total being

\[
\Sigma_{(u,v) \in E \atop f(u) \neq f(v)} w_{(u,v)}
\]

The total cost of an assignment is the sum of the vertex assignment cost and the edge stretch cost. We are looking for the assignment with minimum assignment cost.
Intuitively, the non-terminal vertices of the graph can be viewed as objects, and the terminals as labels. The assignment of the non-terminal vertices to the terminals can be viewed as labeling the objects. Edges between vertices denote that the corresponding objects are related, and the bigger the edge cost is, the more likely it is that the corresponding objects should get the same label. Finally, the assignment costs show how likely it is that a certain object gets a certain label. The higher the cost \(c(v, t_i) \) is, the less likely it is that the object \(v \) should get the label \(t_i \).

For \(k = 2 \), the problem can be easily transformed to the undirected version of the s-t cut problem of Ford and Fulkerson [4]. The transformation is as follows: We denote by \(s \) and \(t \) the two terminals. For each vertex \(v \in V \) we add two new edges to the graph: \((v, t)\) with the weight \(w(v, t) = c(v, s) \) and \((v, s)\) with the weight \(w(v, s) = c(v, t) \). The two new edges will "pay" the assignment cost of the vertex \(v \). For example, if \(v \) is assigned to \(t \), the edge \((v, s)\) is cut, and the stretch cost this edge pays is exactly \(w(v, s) = c(v, t) \) — the cost of assigning \(v \) to \(t \).

For \(k \geq 3 \) the problem is NP-hard and also Max SNP-hard. Therefore, unless \(P = NP \), there is no polynomial time approximation scheme for this problem. Kleinberg and Tardos [8] give a polynomial time 2-approximation algorithm, and this is the best approximation ratio previously known for this problem.

We considered two special cases of this problem: For \(k = 3 \), we show a \(\frac{4}{3} \)-approximation algorithm, which matches the integrality gap of the relaxation we use. For \(k = 4 \), we show a \(\frac{3e^3 - 1}{2} \approx 1.5934187 \)-approximation algorithm, while the integrality gap of the relaxation we use is at least 1.5.

1.2 Related Problems

1.2.1 Metric labeling problem

The Metric labeling problem is a generalization of the uniform labeling problem, where a metric distance function \(d(\cdot, \cdot) \) on the terminals is defined. The
vertex assignment cost remains the same, and the edge stretch cost becomes $\sum_{(u,v) \in E} w_{(u,v)} \cdot d(f(u), f(v))$. Intuitively, the distances between the terminals show how far the corresponding labels are. Kleinberg and Tardos [8] gave a factor $O(\log k \log \log k)$-approximation algorithm for this problem (k is the number of the terminals).

Gupta and Tardos [5] considered a special case of the metric labeling problem, where the metric is the truncated linear metric. They give a 4-approximation algorithm for this problem.

1.2.2 Multiway cut

In the multiway cut problem we are given an undirected graph G with non-negative edge weights, and a set of terminals. We need to assign each vertex to some terminal, so as to minimize the total weight of the edges whose endpoints are assigned to different terminals.

The problem can be viewed as a special case of the uniform labeling problem, with 0 assignment costs. Dahlhaus, Johnson, Papadimitriou, Seymour and Yannakakis [3] proved that multiway cut is Max SNP-hard. Therefore, unless P=NP, there is no polynomial-time approximation scheme for multiway cut, and hence for the uniform labeling problem as well. The first constant factor approximation algorithm for this problem is due to Dahlhaus, Johnson, Papadimitriou, Seymour and Yannakakis [3], who gave a $2 - \frac{1}{k}$-approximation algorithm for this problem (k is the number of the terminals). The algorithm is based on computing the minimum isolating cut C_i for each terminal t_i (a cut that isolates t_i from all the other terminals). Let C_m denote the maximum weight cut between C_1, \ldots, C_k. The multiway cut is the union of all the isolating cuts C_i, except for C_m. Recently Călinescu, Karloff and Rabani [1] found a $(\frac{3}{2} - \frac{1}{k})$ approximation algorithm, using a new geometric relaxation of multiway cut. This result was improved by Karger, Klein, Stein, Thorup and Young [6], which give a $(1.3438 - \varepsilon_k)$ approximation algorithm for each k, using the same relaxation. For $k = 3$, Cunningham and Tang [2] and Karger et al. [6] give a $\frac{12}{11}$ approximation algorithm using the same relaxation and also prove that $\frac{12}{11}$ is the integrality gap for this relaxation. A similar relaxation was used by Kleinberg and Tardos [8] for their 2-approximation
algorithm for the uniform labeling problem. We use the same relaxation to achieve the approximation algorithms for the uniform labeling problem.

Dahlhaus, Johnson, Papadimitriou, Seymour and Yannakakis studied in [3] the special case of the multiway cut problem where the graph is a planar graph. They showed polynomial time algorithms for this problem for all fixed values of \(k \). For \(k \) part of an input, they showed that the problem is \(NP \)-hard.

1.3 Work Overview and Main Methods

1.3.1 Integer Programming and Linear Programming

A general form of an integer program is as follows:

\[
\begin{align*}
\text{minimize} & \quad cx \\
\text{s.t.} & \quad Ax \geq b \\
& \quad x_i \in \{0,1\} \quad \forall i \in \{1,\ldots,n\}
\end{align*}
\]

(1.1) (1.2)

Where \(c \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \) and \(A \in \mathbb{R}^{m \times n} \). Finding an optimal solution to an integer program is an \(NP \)-hard problem.

A linear program (in canonical form) is the following:

\[
\begin{align*}
\text{minimize} & \quad cx \\
\text{s.t.} & \quad Ax \geq b,
\end{align*}
\]

(1.3)

where \(c \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \) and \(A \in \mathbb{R}^{m \times n} \). Linear programs can be solved in polynomial time, for example, using Karmarkar’s algorithm [7].

A widely used technique (which we also use in this work) for obtaining a factor \(\alpha \) approximation algorithms for combinatorial problems, is as follows: First,
we express the combinatorial problem as an integer program. The entries of A, b and c and the parameters n and m may depend on the instance of the combinatorial problem. We denote the integer program by (IP). By relaxing the integrality constraints (1.2), we get a linear program (LP), which is a relaxation of (IP). Note that given any instance S of the combinatorial problem, we can solve the corresponding instance of (LP) in polynomial time. The solution we obtain is called an optimal fractional solution, and it does not necessarily meet the integrality constraints (1.2) of the integer program. To obtain a solution to the integer program, we must round the optimal fractional solution.

So we try to construct a rounding algorithm A, which, given a fractional solution of cost c outputs an integer solution of cost $\leq \alpha c$. If we succeed in constructing such an algorithm, we can compute α-approximation for any instance S of the combinatorial problem, by first solving the corresponding instance of the linear program, and then applying A to the optimal fractional solution. Given any problem instance S, we denote by $OPT_{IP}(S)$ and $OPT_{LP}(S)$ the costs of the optimal integer and the optimal fractional solutions for S, respectively, and we denote by $C_{IP}(S)$ the cost of the solution A outputs when it is given an optimal fractional solution for S as input. Since any feasible solution of the integer program is also a feasible solution of the linear program, we know that $OPT_{LP}(S) \leq OPT_{IP}(S)$. Therefore, $C_{IP}(S) \leq \alpha \cdot OPT_{LP}(S) \leq \alpha \cdot OPT_{IP}(S)$, and so we get a factor α approximation.

A general way to compute a lower bound on the approximation factor which can be achieved using the technique described above is to compute a lower bound on the integrality gap of the relaxation.

Suppose we have an integer program (IP) and its linear relaxation (LP) for some combinatorial problem. Let S be some instance of this problem. Let $OPT_{LP}(S)$ be the cost of the optimal fractional solution for this instance and $OPT_{IP}(S)$ be the cost of the optimal integer solution for this instance. Then the integrality gap of the relaxation is the maximum of $\frac{OPT_{IP}(S)}{OPT_{LP}(S)}$ over all possible instances S of the problem. If we can show a problem instance S with $\frac{OPT_{IP}(S)}{OPT_{LP}(S)} \geq \beta$, then we cannot achieve approximation factor $< \beta$ using the technique described above, since no rounding algorithm A which achieves
factor $< \beta$ exist: No rounding algorithm A, given the optimal fractional solution to S of cost $OPT_{LP(S)}$ can output an integer solution to S of cost $< \beta OPT_{LP(S)}$, since $OPT_{IP(S)} \geq \beta OPT_{LP(S)}$.

1.3.2 Work Overview

In chapter 2 we define the restricted multiway cut problem. This problem is a special case of the uniform labeling problem. We write an integer program for this problem and its relaxation — a linear program. We show that the integrality gap of the relaxation is at least $2 - \frac{2}{k}$ (k is the number of the terminals). In chapter 3 we show two rounding algorithms for this linear program. The first algorithm works for the special case of $k = 3$ and achieves an approximation factor of $\frac{4}{3}$, which matches the integrality gap for $k = 3$. The second algorithm works for the special case of $k = 4$ and achieves approximation factor $\frac{3e+1}{2} \approx 1.5934187$, while the integrality gap for $k = 4$ is at least 1.5.

In chapter 4 we write an integer program and its linear relaxation for the uniform labeling problem and show that the two rounding algorithms for the restricted multiway cut problem can be used to round fractional solutions of the uniform labeling problem (for the same values of k), achieving the same approximation ratios.
Chapter 2

The Restricted Multiway Cut Problem

We next define the restricted multiway cut problem, which is a special case of the uniform labeling problem.

In the next chapter we show approximation algorithms for this problem, which is simpler and easier to deal with than the uniform labeling problem. In chapter 4 we show that these algorithms can also be used as approximation algorithms for the uniform labeling problem, achieving the same approximation ratios.

2.1 Problem Definition

In the restricted multiway cut problem, we are given an undirected graph, $G = (V, E)$ with non-negative edge weights w_e for each $(u, v) \in E$, and a set of special vertices $T = \{t_1, \ldots, t_k\} \subseteq V$ called terminals. For each vertex $v \in V \setminus T$ a list $l_v \subseteq T$ of possible assignments to the terminals is specified. We need to assign each non-terminal graph vertex $v \in V$ to some terminal $t \in l_v$. The cost of the assignment is the sum of the weights of edges, whose endpoints are assigned to different terminals.
This problem can be viewed as a special case of the uniform labeling problem, where the assignment costs are restricted only to 0 and M, where M is a large integer ($M > \Sigma_{e \in E} w_e$ is enough): for each $v \in V$, $c(v, t) = 0$ if $t \in l_v$, and $c(v, t) = M$ otherwise. Indeed if there is a feasible solution to the restricted multiway cut problem, its cost must be smaller than M. So the optimal solution to the problem we obtained after the transformation must also have a cost smaller than M and thus it is a feasible solution to the restricted multiway cut problem.

2.2 Linear Program for the Restricted Multiway Cut Problem

Notation: We use Δ_k to denote the $(k-1)$-simplex, which is a convex polytope in \mathbb{R}^k, given by: $\Delta_k = \{ x \in \mathbb{R}^k | x \geq 0 \text{ and } \Sigma_{i=1}^{k} x_i = 1 \}$

For $x \in \mathbb{R}^k$, $\|x\|$ is its L_1 norm: $\|x\| = \Sigma_{i=1}^{k} |x_i|$.

Finally, we use e^i for a unit vector with $e^i_i = 1$ and $e^i_j = 0$ for all $j \neq i$.

The linear program: We represent each graph node v by a vector $x^v \in \mathbb{R}^k$. The vector x^v has $x^v_i = 1$ if v is assigned to the terminal t_i. Otherwise, $x^v_i = 0$. This can be viewed as placing all the terminals on the vertices of a $(k-1)$-simplex, and then assigning the graph nodes to the terminals by placing them on the corresponding simplex vertices. We also introduce a vector variable $z^{(u,v)} \in \mathbb{R}^k$ for each $(u,v) \in E$, and its value is $z^{(u,v)} = |x^u - x^v|$.

\[
(MIP) \quad \text{Min } \frac{1}{2} \Sigma_{(u,v) \in E} w_{(u,v)} \cdot (\Sigma_{i=1}^{k} z^{(u,v)}_i)
\]

s.t.

\begin{align*}
\Sigma_{i=1}^{k} x^v_i &= 1 & \forall v \in V & (2.2) \\
x^v_i &= 0 & \forall v \in V, \forall i : t_i \notin l_v & (2.3)
\end{align*}
\[z_i^{(u,v)} \geq x_i^v - x_i^u \quad \forall (u,v) \in E, \; i = 1, \ldots, k \] (2.4)
\[z_i^{(u,v)} \geq x_i^u - x_i^v \quad \forall (u,v) \in E, \; i = 1, \ldots, k \] (2.5)
\[x_i^v \in \{0,1\} \quad \forall v \in V, \; i = 1, \ldots, k \] (2.6)

The constraints (2.4), (2.5) ensure that \(z_i^{(u,v)} \geq |x_i^v - x_i^u| \). Since in the objective function we want to minimize \(z_i^{(u,v)} \), it is clear that in the optimal solution, for each \((u,v) \in E\) and \(i \in \{1, \ldots, k\}\), \(z_i^{(u,v)} = |x_i^v - x_i^u| \) holds. Thus the objective function is actually:

\[
\text{Min} \; \frac{1}{2} \sum_{(u,v) \in E} w_{(u,v)} \cdot \|x^u - x^v\|.
\]

In this paper we define the length of an edge \(e = (u,v) \) to be half the \(L_1 \) distance in between \(x^u \) and \(x^v \): \(|e| = \frac{1}{2} \|x^u - x^v\| \), and thus the objective function of the integer program is:

\[
\text{Min} \; \frac{1}{2} \sum_{e \in E} w_e \cdot |e|.
\]

Clearly, any feasible solution for \((MIP)\) places all the graph nodes in the simplex vertices, which can be viewed as assigning the graph nodes to the corresponding terminals. The constraints (2.3) ensure that each vertex \(v \) can be placed only on the simplex vertices which correspond to the terminals from \(L_v \). For each \((u,v) \in E\), \(\frac{1}{2} \|x^u - x^v\| = 0 \) if \(u,v \) are assigned to the same simplex vertex, and \(\frac{1}{2} \|x^u - x^v\| = 1 \) otherwise. Thus, we pay \(w_{u,v} \) for an edge \((u,v)\) if \(u \) and \(v \) are assigned to different terminals. Thus, any feasible solution to \((MIP)\) gives us a solution to the restricted multiway cut problem of the same or smaller cost. (The cost may be smaller if for some \((u,v) \in E\) and \(i \in \{1, \ldots, k\}\), the value \(z_i^{(u,v)} \) is > \(|x_i^v - x_i^u| \).)

Note also that given any solution to the restricted multiway cut problem, we can construct a feasible solution of the same cost to the \((MIP)\), by placing all the graph nodes on the simplex vertices together with the terminals they are assigned to (i.e. we set \(x^v = e^i \), where \(i \) is the index of the terminal \(v \) is assigned to), and setting \(z^{(u,v)} = |x^u - x^v| \) for each \((u,v) \in E\). Thus, \((MIP)\) and the restricted multiway cut problem are equivalent.
We denote by \((MLP)\) the linear program obtained from \((MIP)\) by replacing the integrality constraints \((2.6)\) with

\[
x_i^v \geq 0 \quad \forall v \in V, \; i = 1, \ldots, k
\]

(2.7)

This linear program can be solved in polynomial time, giving us a fractional solution to the restricted multiway cut problem, where each graph node \(v\) is placed on the simplex, on the facet spanned by the terminals from \(l_v\). We will try to round this solution by placing all the nodes on simplex vertices, while trying to increase the cost of the solution by as little as possible. Note that we must make sure that if some vertex \(v\) is on the facet spanned by some terminals, it will be assigned to one of these terminals. For example, if \(x_i^v = 0\), then \(v\) will not be assigned to \(t_i\) (because it is possible that \(t_i \in l_v\)).

2.3 Integrality Gap of the Relaxation

Kleinberg and Tardos proved in [8] that the integrality gap of the relaxation, which they used for the uniform labeling problem, and which we use later in this work, is \(\geq 2 - \frac{2}{k}\). The proof of the integrality gap of our relaxation for the restricted multiway cut problem easily follows from the proof given in [8].

We show that for each \(k\), the integrality gap of the relaxation \((MLP)\) is \(\geq 2 - \frac{2}{k}\). To show this, we first show an instance of the restricted multiway cut problem and give a fractional solution for this instance of cost \(\frac{k}{2}\). We then show that the cost of the optimal integer solution for this instance is \(k - 1\). Since the cost of the optimal fractional solution for this instance is \(\leq \frac{k}{2}\), the integrality gap is \(\geq \frac{k-1}{k} = 2 - \frac{2}{k}\).

Consider the following instance of the restricted multiway cut problem: \(G = (V, E), V = \{v_1, \ldots, v_k\} \cup \{t_1, \ldots, t_k\}, T = \{t_1, \ldots, t_k\}, E = \{(v_i, v_j) | 1 \leq i, j \leq k, i \neq j\}\). For each \(e \in E, w_e = 1\). For each \(i \in \{1, \ldots, k\}, l_{v_i} = T \setminus \{t_i\}\)

The fractional solution we propose is as follows: For each \(i \in \{1, \ldots, k\}\), the \(i\)-th coordinate of \(x^v\) is 0, and all the other coordinates are \(\frac{1}{k-1}\). There are
\binom{k}{2} \) edges in the graph, each one of length \(\frac{1}{k-1} \) and weight 1. Thus the cost of the fractional solution is \(\binom{k}{2} \cdot \frac{1}{k-1} = \frac{k}{2} \).

In an integer solution, we cannot assign all the vertices to one terminal, since for each \(i \in \{1, \ldots, k\} \), \(t_i \notin l_i \). So the best thing we can do is to assign all the vertices to two terminals. It is not hard to see that the optimal integer solution is achieved, for example, by assigning \(v_2 \ldots v_k \) to \(t_1 \), and \(v_1 \) to \(t_2 \). The cost of this solution is \(k - 1 \), and so the integrality gap is \(\geq \frac{k-1}{\frac{k}{2}} = 2 - \frac{2}{k} \).
edges in the graph, each one of length \(\frac{1}{k-1} \) and weight 1. Thus the cost of the fractional solution is \(\binom{k}{2} \cdot \frac{1}{k-1} = \frac{k}{2} \).

In an integer solution, we cannot assign all the vertices to one terminal, since for each \(i \in \{1, \ldots, k\} \), \(t_i \not\in l_u \). So the best thing we can do is to assign all the vertices to two terminals. It is not hard to see that the optimal integer solution is achieved, for example, by assigning \(v_2 \ldots v_k \) to \(t_1 \), and \(v_1 \) to \(t_2 \). The cost of this solution is \(k - 1 \), and so the integrality gap is \(\geq \frac{k-1}{2} = 2 - \frac{2}{k} \).
Chapter 3

Upper Bounds for the Restricted Multiway Cut Problem

We are looking for algorithms of the following form:

Alg.:

1. Choose a random permutation σ of $\{1 \ldots k\}$, and let σ_i denote the i-th number in this permutation.

2. For $i = 1 \ldots k - 1$
 - Choose $\rho_i \in (0, 1)$ with some distribution
 - Assign to t_{σ_i} all the vertices $v \in V$ with $x_{\sigma_i}^v \geq \rho_i$ that were not assigned previously.

3. Assign to t_{σ_k} all the vertices that are not assigned yet.

In order for such a solution to work, we need that $\Sigma_{i=1}^{k-1} \rho_i \leq 1$. Otherwise it is possible that there will be some vertex v on the facet spanned by $T \setminus \{t_{\sigma_k}\}$ (with $x_{\sigma_k}^v = 0$), which will not be assigned in step 2, and thus will be assigned to t_{σ_k}. This can give an infeasible solution, because it is possible that $t_{\sigma_k} \notin I_v$.

14
Lemma 1 Any solution obtained by any rounding algorithm of the form Alg., where $\Sigma_{i=1}^{k-1} \rho_i \leq 1$ is a feasible solution for the restricted multiway cut problem.

Proof:

We must make sure that if for some vertex v and for some $q \in \{1 \ldots k\}$, $x_q^v = 0$, then v is never assigned to t_q.

Let $v \in V$ be some vertex, and suppose $x_q^v = 0$ for some $q \in \{1 \ldots k\}$, and suppose $q = \sigma_j$, $j \in \{1 \ldots k\}$.

If $j \neq k$, v can only be assigned to t_q if $\rho_j \leq x_q^v = 0$, which is impossible since $\rho_j > 0$.

Now suppose that $j = k$. Then v can be assigned to t_{σ_k} only if v was not assigned to any of the t_{σ_i} : $i < k$. This means that for each $i < k$, $x_{\sigma_i}^v < \rho_i$, and thus $\Sigma_{i=1}^{k-1} x_{\sigma_i} < \Sigma_{i=1}^{k-1} \rho_i \leq 1$. This is impossible, because $\Sigma_{i=1}^{k-1} x_{\sigma_i} = 1$.

\square

3.1 Some Useful Observations

The next lemma states that given a fractional solution to the restricted multiway cut problem, we can assume that each graph edge is parallel to some simplex edge, i.e., for each graph edge, its two endpoints differ in at most 2 coordinates. The lemma was proved in [1]. We include it here for the sake of completeness.

Lemma 2 Given a fractional solution S to the restricted multiway cut problem of cost c, one can obtain from it another solution, S', to the restricted multiway cut problem, of cost $c' \leq c$, in which for each edge $(u,v) \in E$, x_u^v and x_v^u differ in at most two coordinates.

Proof: While there exists an edge $(v,u) \in E$, such that x_u^v and x_v^u differ in more than two coordinates, we perform the following procedure:
Let q be the number of coordinates in which x^u and x^v differ, and let i be the coordinate in which the two nodes differ, which minimizes $d_i = |x^v_i - x^u_i|$. We assume without loss of generality, that $x^v_i < x^u_i$. Since $\sum_{i=1}^{k} x^v_i = \sum_{i=1}^{k} x^u_i = 1$, there exists an index j, such that $x^v_j > x^u_j$. Note that $d_j = x^v_j - x^u_j \geq d_i$.

We add a new vertex v' to the graph, with $l_{v'} = T$, and set $x^{v'}$ in the following way: for each $r \neq i, r \neq j$, $x^{v'}_r = x^v_r$, $x^{v'}_i = x^v_i + d_i = x^u_i$, and $x^{v'}_j = x^v_j - d_i$.

We remove the edge (v, u) from the graph and add instead two new edges (v, v') and (v', u), with $w_{(v,v')} = w_{(v',u)} = w_{(u,v)}$.

Note that x^u and $x^{v'}$ differ in two coordinates, so the number of "bad" edges did not increase. Note also that x^u and $x^{v'}$ differ in at most $q-1$ coordinates. So we need to repeat this procedure at most $(k-2)|E|$ times.

Finally, we show that the cost of the solution did not increase. The only change in the cost concerns the edge costs of (v, u), (v, v') and (v', u).

Before the transformation we paid $\frac{1}{2} \|x^v - x^u\| w_{(v,u)}$. After the transformation, we pay $\frac{1}{2} w_{(v,u)} (\|x^v - x^{v'}\| + \|x^{v'} - x^u\|)$. Note that $\|x^v - x^{v'}\| = 2d_i$.

\[
\begin{align*}
\|x^v - x^{v'}\| &= \|x^v - x^u\| - (|x^v_i - x^u_i| + |x^v_j - x^u_j|) + \\
&\quad + (|x^v_i - x^u_i| + |x^v_j - d_i - x^u_j|) = \\
\|x^v - x^u\| - d_i - (x^v_j - x^u_j) + x^v_j - d_i - x^u_j = \\
\|x^v - x^u\| - 2d_i,
\end{align*}
\]

(Since we know that $x^v_j > x^u_j$ and $x^v_j - x^u_j \geq d_i$.)

Thus $\frac{1}{2} w_{(v,u)} (\|x^v - x^u\| + \|x^{v'} - x^u\|) = \frac{1}{2} w_{(v,u)} \|x^v - x^u\|$, and the cost of the solution did not increase. \(\square\)

Note that now, given an integer solution to S', we can easily transform it to an integer solution to S of the same or even smaller cost, by removing the additional vertices and edges we added during the transformation, and restoring the edges from the original graph.

Thus we can assume now that in a fractional solution to the restricted multiway cut problem all the graph edges are parallel to the simplex edges — a
simplifying assumption which we use in our algorithms.

Lemma 3 Suppose we are given $\Delta > 0$ and a fractional solution S of (MLP) where the endpoints of each edge differ in at most two coordinates. We can obtain from it another solution, S', for which the following condition holds:

For each edge $e = (u, v)$, for each $i \in \{1, \ldots, k\}$, either both x^v_i and x^u_i are $\geq \Delta$, or they are both $\leq \Delta$.

Proof: While there exists an edge which violates this condition, let $e = (u, v)$ be such an edge. We denote its length by ϵ. We assume, without loss of generality, that the edge’s endpoints differ in the first two coordinates, and that $x^v_1 > x^u_1$. Thus, $x^v_1 - x^u_1 = x^v_2 - x^u_2 = \epsilon$.

We can only have problems with the first two coordinates of the edge’s endpoints, since all the other coordinates are equal in both endpoints.

We must take care of three cases:

1. $x^v_1 > \Delta > x^u_1$, but x^v_2 and x^u_2 are both either $\geq \Delta$ or $\leq \Delta$.

 We add a new vertex v' to the graph, with $x^v_1 = \Delta$, $x^v_2 = x^u_2 - x^v_1 - \Delta$, and for each $2 < i \leq k$, $x^v_i = x^u_i$. We set $l_{v'} = T$. We replace the edge (v, u) by two new edges: (v, v') and (v', u) with $w_{(v, v')} = w_{(v', u)} = w_{(v, u)}$. Note that the cost of the solution remains the same:

 $$\|x^v - x^{v'}\| = 2(x^v_1 - \Delta)$$

 $$\|x^{v'} - x^u\| =$$

 $$|\Delta - x^v_1| + |x^v_2 - x^v_1 - x^u_1 + \Delta| =$$

 $$|\Delta - x^v_1| + |x^u_2 - x^v_1 - x^u_1 + \Delta| =$$

 $$2(\Delta - x^v_1)$$

 Thus,
\[
\frac{1}{2}w(v,v')\|x^v - x^{v'}\| + \frac{1}{2}w(u,v)\|x^u - x^v\| = w(u,v)(x^u - x^v) = \frac{1}{2}w(u,v)\|x^v - x^u\|
\]

Note that \(x^u_1 \geq x^v_1 = \Delta, x^u_1 < x^v_1 = \Delta\). Also \(x^v_2, x^u_2, x^v_2\) are all either \(\geq \Delta\) or \(\leq \Delta\). This is because \(x^u_2 \leq x^v_2 \leq x^u_2\).

2. \(x^u_2 > \Delta > x^v_2\), but \(x^u_1\) and \(x^v_1\) are both either \(\geq \Delta\) or \(\leq \Delta\). In this case we can exchange the first coordinate with second, \(v\) with \(u\) and get exactly the first case. So we can proceed like in the previous case.

3. \(x^v_1 \geq \Delta > x^u_1\) and \(x^u_2 > \Delta > x^v_2\). In this case we can first "fix" the first coordinate, as in case 1. As the result we will get two new edges, \((v,v')\) and \((u,v')\), with \(x^v_1, x^v_1 \geq \Delta, x^u_1, x^u_1 \leq \Delta,\) and \(x^u_2 \geq x^v_2 \geq x^u_2\). It is possible that either \(x^u_2 > \Delta > x^v_2\) or \(x^v_2 > \Delta > x^u_2\), but not both. In this case we have to fix the second coordinate of the problematic edge, like in case 2.

We must perform this procedure at most once for each edge.

\(\square\)

Again, given an integer solution to \(S'\) we can obtain an integer solution to \(S\) of smaller or equal cost by removing all the additional edges and vertices we have added to the graph and restoring the original edges.

3.2 Upper Bound for \(k = 3\)

For \(k = 3\) we show the upper bound of \(\frac{4}{3}\), which matches the lower bound on the integrality gap.

The Rounding Algorithm: We use an algorithm of the form Alg. for \(k = 3\).

The parameter \(\rho_1\) is distributed uniformly at random in \((0, 1)\), and \(\rho_2 = 1 - \rho_1\).
Figure 3.1: The rounding algorithm for $k = 3$

Note that $\rho_1 + \rho_2 = 1$, and thus, by Lemma 1, the solution is feasible.

The algorithm can be viewed geometrically in the following way: we choose a point on the boundary of the simplex uniformly at random. Suppose we have chosen a point x on one of the three simplex edges, we cut the triangle with two lines which pass through this point and are parallel to the other two simplex edges.

Analysis We show that for each edge $e = \{(u, v)\}$ of length ϵ, the probability that the edge is cut by the algorithm is $\frac{4}{3} \epsilon$. Thus the expected cost of the solution is $\sum_{(u,v) \in E} \frac{1}{2} \sum_{(u,v) \in w_{(u,v)}} \|x^u - x^v\| \cdot \frac{4}{3}$, and so the approximation ratio of the algorithm is $\frac{4}{3}$.

Let $e = (u, v)$ be some edge of G, of length ϵ. We assume without loss of generality that $x^u = x^v$. Thus $|x^u - x^v| = |x^2 - x^3| = \epsilon$. We consider all the possible permutations. For each we compute the probability over all values of ρ that the edge will be cut.

If the first two coordinates in the permutation are 1 and 2 (which happens with probability $\frac{1}{3}$), the edge is cut with probability $\leq 2\epsilon$.

If the first two coordinates are 1 and 3 (which also happens with probability $\frac{1}{3}$), the edge is cut with probability ϵ.

If the first two coordinates are 2 and 3, the case is symmetrical to the previous one.
The total probability that the edge will be cut during the algorithm is \(\frac{1}{3}(2\epsilon + \epsilon + \epsilon) = \frac{4}{3}\epsilon \).

3.3 Upper Bound for \(k = 4 \)

Our Computational Experiment We performed computational experiments similar to those performed by Karger et al. [6].

We wanted to use again an algorithm of the form Alg. So we were looking for the distribution of \(\rho_1, \rho_2, \rho_3 \), such that \(\rho_1 + \rho_2 + \rho_3 \leq 1 \), which would give us the best approximation ratio, using algorithm of the form Alg. We tried to get some idea how this distribution looks by solving a linear program.

First, we have built a mesh (with step \(d \)). The vertices of the mesh are:

\[
V = \{ (\frac{i}{d}, \frac{j}{d}, \frac{k}{d}, \frac{l}{d}) \mid \frac{i}{d} + \frac{j}{d} + \frac{k}{d} + \frac{l}{d} = 1, \text{ } i, j, k, l \text{ are integers} \}
\]

There is an edge between any two vertices which are at distance \(\frac{1}{d} \) from one another.

Note now that we need not consider all the possible values of \(\rho_i \) \((i \in \{1, 2, 3\})\). It’s enough to consider the values which are multiples of \(\frac{1}{d} \).

So the variables of the linear program are all the triples \((\rho_1, \rho_2, \rho_3)\), where \(\rho_1, \rho_2, \rho_3 \) are multiples of \(\frac{1}{d} \), and \(\rho_1 + \rho_2 + \rho_3 \leq 1 \). The values of these variables correspond to the probability of choosing this triple as a solution. Additional variable is \(MC \), which is the approximation factor of the solution.

We try to minimize \(MC \), subject to the constraints that for each edge \(e \), the probability that the edge is cut is less than or equal to \(MC \cdot |e| \).

Clearly, the smaller the step \(\left(\frac{1}{d}\right) \) we choose, the bigger the linear program becomes. So we were able to solve the linear program only for \(d \leq 18 \). The best approximation ratio achieved using this way by the linear program with \(d = 18 \) was 1.54. It shows that there does not exist a rounding algorithm of the form presented above, which achieves approximation factor 1.5 (the
lower bound on the integrality gap for the relaxation we use). There was also
a tendency of the solution for the linear program (the approximation factor)
to become bigger as we increased \(d \). So it is possible that factor 1.54 also
cannot be achieved in this way.

The solution of the linear program gave us the idea of the distributions of
\(\rho_1, \rho_2, \rho_3 \) in the rounding algorithm which we present here.

The Intuition: We use the algorithm of the form Alg. described above.
So we only need to specify what are the distributions of \(\rho_1, \rho_2 \) and \(\rho_3 \). We
use a parameter \(\Delta \), and we will set its value later. We denote by \(l = 1 - 3\Delta \).

The values of \(\rho_1 \) and \(\rho_2 \) are distributed uniformly at random, between \(\Delta \)
and \(1 - 2\Delta \), such that their sum is always \(1 - \Delta \). This is achieved by
choosing \(\rho_1 \) uniformly at random between \(\Delta \) and \(1 - 2\Delta \) and then setting
\(\rho_2 = 1 - \Delta - \rho_1 \). The parameter \(\rho_3 \) is distributed between 0 and \(\Delta \). Note
that \(\rho_1 + \rho_2 + \rho_3 \leq \Delta + 1 - \Delta = 1 \), which ensures that the solution is always
feasible.

Now let \(e = (u, v) \) be some edge. Assume, without loss of generality that \(x^v \)
and \(x^u \) differ in the first two coordinates. Clearly, this edge can only be cut
when we assign exactly one of \(u, v \) to \(t_1 \) or to \(t_2 \). This cannot happen with
\(t_3 \) or \(t_4 \), because \(x_3^v = x_3^u \) and \(x_4^v = x_4^u \). Now we are only considering
the probability that the edge is cut by assigning exactly one of \(u, v \) to \(t_1 \), and the
second case is symmetrical. We assume that \(x_1^v > x_1^u \).

Recall that we can assume that either both \(x_1^u \) and \(x_1^v \) are \(\geq \Delta \), or they are
both \(\leq \Delta \).

If the first case is true, the edge can be cut by assigning \(v \) or \(u \) to \(t_1 \) only during
the first two cuts the algorithm performs (if \(\sigma_1 = 1 \) or \(\sigma_2 = 1 \), respectively),
but it cannot be cut during the third cut of the algorithm (because even if
\(\sigma_3 = 1 \), we choose \(\rho_3 \in (0, \Delta) \), and both \(x_1^v \) and \(x_1^u \) are \(\geq \Delta \)).

If the second case is true, the edge can be cut by assigning \(v \) or \(u \) to \(t_1 \) only
during the third cut of the algorithm, if \(\sigma_3 = 1 \). This is because \(\rho_1, \rho_2 > \Delta \),
and \(x_1^v, x_1^u \leq \Delta \).

Finally, we must set the distribution of \(\rho_3 \) (we only said that \(\rho_3 \in (0, \Delta) \)).
Suppose that $x_1^n, x_1^v \leq \Delta$. If $\sigma_3 = 1$, the probability that the edge will be cut by assigning v or u to t_1 during the third cut of the algorithm is:

$$\leq Pr(u \text{ was not assigned on previous steps} \mid \sigma_3 = 1) \cdot Pr(\rho_3 \in [x_1^n, x_1^v])$$

We will show later that the probability that u was not assigned on previous steps is $\leq \frac{1 + 2n}{3l}$. The density function of the distribution of ρ_3, which we denote by $P(x)$, is proportional to $\frac{1}{\sqrt{x}}$.

The Rounding Algorithm: We set two parameters: $\Delta = \frac{\xi^1 - 1}{3\xi^2 - 1}$, $l = 1 - 3\Delta = \frac{2}{3\xi^2 - 1}$.

We use an algorithm of the form Alg. We must specify the distributions of ρ_1, ρ_2, ρ_3.

We choose ρ_1 uniformly at random from $(\Delta, 1 - 2\Delta = l + \Delta)$, and set $\rho_2 = 1 - \Delta - \rho_1$. The parameter ρ_3 is chosen from $(0, \Delta)$ with density function $P(x) = \frac{2}{\ln(\sqrt{x})} \cdot \frac{1}{\sqrt{x}}$.

Note that $\rho_1 + \rho_2 + \rho_3 \leq 1 - \Delta + \Delta = 1$ and so the solution the algorithm returns is feasible.

Analysis: We show that for each edge e of length ϵ, the probability to be cut by the algorithm is $\frac{3\xi^1 - 1}{2} \cdot \epsilon$, and so the approximation ratio of the algorithm is $\frac{3\xi^1 - 1}{2} \approx 1.5934187$.

Let $e = (u, v)$ be some edge of length ϵ. We assume without loss of generality that the two vertices differ in the first two coordinates and that $x_1^v > x_1^u$. Thus $|x_1^u - x_1^v| = |x_2^u - x_2^v| = \epsilon$.

Clearly, this edge can be cut only during assignments to t_1 or t_2. We compute separately the probabilities that the edge is cut during assignments to t_1 and to t_2.

22
First, we compute the probability that the edge was cut during the assignment to \(t_1 \). We take care of 2 cases:

1. \(x^u_1 \geq \Delta \). We assume that \(x^v_1 \geq \Delta \), too. If \(\sigma_1 = 1 \) (which happens with probability \(\frac{1}{4} \)), the edge is cut with the probability \(\frac{\epsilon}{2} \). The same analysis holds if \(\sigma_2 = 1 \). If \(\sigma_3 = 1 \), the edge cannot be cut, because \(\rho_3 < \Delta \). So the probability that the edge is cut during the assignment to \(t_1 \) is \(\frac{1}{4} \cdot 2 \cdot \frac{\epsilon}{2} = \frac{\epsilon}{4} = \frac{3\epsilon}{4} - 1 \cdot \epsilon \).

2. \(x^u_1 \leq \Delta \). Again, we assume that \(x^v_1 \leq \Delta \), too. First, note that if \(\sigma_1 = 1 \) or \(\sigma_2 = 1 \), the edge cannot be cut during the assignment to \(t_1 \), since \(\rho_1, \rho_2 > \Delta \).

Now assume \(\sigma_3 = 1 \) (which happens with probability \(\frac{1}{4} \)). The probability that the edge will be cut during the assignment to \(t_1 \) in this case is less than or equal to

\[
Pr \left(\frac{u \text{ was not assigned in previous steps}}{\sigma_3 = 1} \cdot \int_{x^v_1}^{x^u_1} P(x) dx \right) \leq
\]

\[
Pr \left(\frac{u \text{ was not assigned in previous steps}}{\sigma_3 = 1} \cdot P(x^u_1) \right) \epsilon
\]

This is true because \(P(x) \) is monotonous decreasing in \(x \).

We will show later that if \(\sigma_3 = 1 \), then \(u \) is assigned to some terminal after the first two cuts the algorithm performs with probability \(\geq \frac{2l - 2x^u_1}{3l} \). Thus the probability that \(u \) was not assigned in previous steps is \(\leq 1 - \frac{2l - 2x^u_1}{3l} = \frac{l + 2x^u_1}{3l} \).

So the probability that the edge is cut during the assignment to \(t_1 \) is \(\leq \)

\[
Pr(\sigma_3 = 1) \cdot Pr \left(\frac{u \text{ was not assigned previously}}{\sigma_3 = 1} \right) \cdot P(x^u_1) \epsilon \leq
\]

\[
\frac{1}{4} \cdot \frac{l + 2x^u_1}{3l} \cdot \frac{2\epsilon}{(l + 2x^u_1) \ln \frac{l + 2\Delta}{l}} = \frac{\epsilon}{6l \ln \frac{l + 2\Delta}{l}} = \frac{3\epsilon}{4} - 1 \cdot \epsilon
\]
So the edge can be cut during assignment to t_1 with probability $\frac{3\epsilon^{\frac{3}{4}}-1}{4} \cdot \epsilon$. By the symmetry, the edge can be cut during assignment to t_2 with the same probability. So the probability the edge is cut by the algorithm is $\leq 2 \cdot \frac{3\epsilon^{\frac{3}{4}}-1}{4} \cdot \epsilon = \frac{3\epsilon^{\frac{3}{4}}-1}{2} \cdot \epsilon \approx 1.5934187\epsilon$.

Now it only remains to show that if $\sigma_3 = 1$ and $x_u^v \leq \Delta$, the probability that u is assigned after the first two cuts of the algorithm is $\geq \frac{2l-2\epsilon^\Delta}{3l}$.

Claim 1 Suppose $x_{\sigma_1}^v, x_{\sigma_2}^v < 1-2\Delta$. Then if $x_{\sigma_1}^v + x_{\sigma_2}^v \geq 1-\Delta$, u is assigned after the first two cuts of the algorithm with probability 1. If $x_{\sigma_1}^v + x_{\sigma_2}^v < 1-\Delta$, u is assigned after the first two cuts of the algorithm with probability $\frac{x_{\sigma_1}^v + x_{\sigma_2}^v - 2\Delta}{l}$.

Proof:

1. Suppose $x_{\sigma_1}^v + x_{\sigma_2}^v \geq 1-\Delta$ and u was not assigned after the first two cuts of the algorithm. Then $x_{\sigma_1}^v < \rho_1$, $x_{\sigma_2}^v < \rho_2$. But $1-\Delta \leq x_{\sigma_1}^v + x_{\sigma_2}^v < \rho_1 + \rho_2 = 1-\Delta$. Contradiction.

2. Suppose $x_{\sigma_1}^v + x_{\sigma_2}^v < 1-\Delta$. Then the probability that u is assigned after the first two cuts of the algorithm is:

$$Pr[\rho_1 \leq x_{\sigma_1}^v] + Pr[\rho_2 \leq x_{\sigma_2}^v] - Pr[\rho_1 \leq x_{\sigma_1}^v \text{ and } \rho_2 \leq x_{\sigma_2}^v]$$

Since ρ_1 is distributed uniformly in $(\Delta, 1-2\Delta)$, $x_{\sigma_1}^v < 1-2\Delta$, and $1-3\Delta = l$, $Pr[\rho_1 \leq x_{\sigma_1}^v] \geq \frac{x_{\sigma_1}^v - \Delta}{l}$. Note that it is possible that $x_{\sigma_1}^v < \Delta$. In this case $Pr[\rho_1 \leq x_{\sigma_1}^v] = 0$, and $\frac{x_{\sigma_1}^v - \Delta}{l} < 0$.

The same computation holds for $Pr[\rho_2 \leq x_{\sigma_2}^v] \geq \frac{x_{\sigma_2}^v - \Delta}{l}$.

Finally, we compute $Pr[\rho_1 \leq x_{\sigma_1}^v \text{ and } \rho_2 \leq x_{\sigma_2}^v]$. Since $\rho_2 = 1-\Delta - \rho_1$, this is equivalent to $Pr[x_{\sigma_1}^v \geq \rho_1 \geq 1-\Delta - x_{\sigma_2}^v] = 0$, because $x_{\sigma_1}^v + x_{\sigma_2}^v < 1-\Delta$ and thus $x_{\sigma_1}^v < 1-\Delta - x_{\sigma_2}^v$.

So, the probability that u is assigned after the first two cuts of the algorithm is $\geq \frac{x_{\sigma_1}^v - \Delta}{l} + \frac{x_{\sigma_2}^v - \Delta}{l} - 0 = \frac{x_{\sigma_1}^v + x_{\sigma_2}^v - 2\Delta}{l}$.
Claim 2 Suppose $\sigma_3 = 1$ and $x_i^u \leq \Delta$. Then the probability that u is assigned after the first two cuts of the algorithm is \[\geq \frac{2l-2x_1^u}{3l} \].

Proof:

First, if for any $i \in \{2, 3, 4\}$, $x_i^u \geq 1 - 2\Delta$, the probability that u is assigned to some terminal by the first two cuts is $\frac{2}{3}$. (This is the probability that i will be chosen as one of the first two terminals. If it happens, u is surely assigned because $\rho_1, \rho_2 < 1 - 2\Delta$.) Note that $\frac{2}{3} \geq \frac{2l-2x_1^u}{3l}$. So now we assume that for each $i \in \{2, 3, 4\}$, $x_i^u < 1 - 2\Delta$. We take care of four different cases:

Case 1: For all three pairs of coordinates $(i,j): i,j \in \{2, 3, 4\}$ have $x_i^u + x_j^u < 1 - \Delta$. In this case, the vertex is assigned is \[\frac{1}{3} \left(\frac{x_i^u + x_j^u - 2\Delta}{l} + \frac{x_i^u + x_j^u - 2\Delta}{l} \right) = \frac{2x_i^u + 2x_j^u - 6\Delta}{3l} = \frac{2l-2x_1^u}{3l} \].

Case 2: There is exactly one pair of coordinates $(i,j): i,j \in \{2, 3, 4\}$ such that $x_i^u + x_j^u \geq 1 - \Delta$. We assume, without loss of generality, that the pair of the coordinates is $(2, 3)$, and so $x_2^u + x_3^u \geq 1 - \Delta$. Note that $x_4^u \leq \Delta$ must hold. If t_2 and t_3 are the first two coordinates, which happens with probability $\frac{1}{3}$, u is surely assigned. If $(2, 4)$ is the first pair of coordinates, u is assigned with probability $\frac{x_1^u - 2\Delta}{l}$, because $x_4^u < \Delta$. The same holds for the third pair of coordinates. So the probability u is assigned is:

\[\frac{1}{3}(1 + \frac{x_2^u - \Delta}{l} + \frac{x_3^u - \Delta}{l}) \geq \frac{l + x_2^u + x_3^u - 3\Delta}{3l} = \frac{l + 1 - x_1^u - 3\Delta}{3l} = \frac{2l - 2x_1^u}{3l} \geq \frac{2l - 2x_1^u}{3l} \]

Case 3: There are exactly two pairs of coordinates $(i,j): i,j \in \{2, 3, 4\}$ such that $x_i^u + x_j^u \geq 1 - \Delta$. If any of these two pairs is chosen to be the first two coordinates (which happens with probability $\frac{2}{3}$), u will be assigned. So the probability that u is assigned is $\geq \frac{2}{3} \geq \frac{2l - 2x_1^u}{3l}$.

Case 4: All the three pairs of coordinates have $x_i^u + x_j^u \geq 1 - \Delta$. This case is impossible, because it means that $x_2^u + x_3^u + x_4^u \geq \frac{3}{2}(1 - \Delta) = \frac{3l^u}{3l^u - 1} > 1$.

\[\Box \]
Chapter 4

Upper Bounds for the Uniform Labeling Problem

The Linear Program

We again represent each graph node v by a vector $x^v \in \mathbb{R}^k$. The vector x^v has $x_i^v = 1$ if v is assigned to the terminal t_i. Otherwise, $x_i^v = 0$. We also introduce vector variables $z^{(u,v)} \in \mathbb{R}^k$ for each $(u,v) \in E$, with values $z^{(u,v)} = |x^u - x^v|$.

\[(U\text{IP}) \quad \min \frac{1}{2} \sum_{(u,v) \in E} w_{(u,v)} \cdot (\sum_{i=1}^k z_i^{(u,v)}) + \sum_{v \in V, i \in TC(v, t_i)} \cdot x_i^v\]

s.t. \quad x_i^v = e^i \quad i = 1, \ldots, k \quad (4.1)

\quad \sum_{i=1}^k x_i^v = 1 \quad \forall v \in V \quad (4.2)

\quad z_i^{(u,v)} \geq x_i^v - x_i^u \quad \forall (u, v) \in E, \quad i = 1, \ldots, k \quad (4.3)

\quad z_i^{(u,v)} \geq x_i^u - x_i^v \quad \forall (u, v) \in E, \quad i = 1, \ldots, k \quad (4.4)

\quad x_i^v \in \{0,1\} \quad \forall v \in V, \quad i = 1, \ldots, k \quad (4.5)

Again, since the constraints (4.3), (4.4) ensure that $z_i^{(u,v)} \geq |x^u - x^v|$ and since we would like to decrease $z_i^{(u,v)}$ as much as we can, in the optimal solution $z_i^{(u,v)} = |x^u - x^v|$, and the objective function is actually
Min $\frac{1}{2}\sum_{(u,v) \in E} w_{(u,v)} \cdot \|x^u - x^v\| + \sum_{v \in V, t_i \in T} c(v, t_i) \cdot x^v_t$

Clearly, any feasible solution for (UIP) places all the graph nodes on the simplex vertices. For each $(u,v) \in E$, $\frac{1}{2}\|x^u - x^v\| = 0$ if u,v are assigned to the same simplex vertex, and $\frac{1}{2}\|x^u - x^v\| = 1$ otherwise. Thus, we pay $w_{u,v}$ for an edge (u,v) iff u and v are assigned to different terminals. For each node $v \in V$ and for each terminal $t_i \in T$, if v is assigned to t_i, $x^v_{t_i} = 1$, otherwise $x^v_{t_i} = 0$. So we pay the assignment cost $c(v, t_i)$ iff v is assigned to t_i. Thus, any feasible solution to (UIP) gives us a solution to the uniform labeling problem of the same or smaller cost. Given any feasible solution to uniform labeling problem, it is easy to construct a solution to (UIP) of the same cost by placing all the graph nodes on the simplex vertices corresponding to the terminals they are assigned to, and setting $z^{(u,v)} = \|x^u - x^v\|$. We denote by (ULP) the linear program obtained from (UIP) by replacing the integrality constraints (4.5) with

$$x^v_{t_i} \geq 0 \quad \forall v \in V, i = 1, \ldots, k$$

(4.6)

Kleinberg and Tardos proved in [8] that the integrality gap of (UIP) is $\geq 2 - \frac{2}{k}$ for all k. We showed in the previous chapters that the integrality gap of the relaxation we used for the restricted multiway cut problem is $\geq 2 - \frac{2}{k}$. The same example we used for proving the integrality gap of the restricted multiway cut problem can be used here to prove the integrality gap for the uniform labeling problem. We only need to "translate" this example to the uniform labeling problem by specifying the vertex assignment costs. We set them in the following way: for each $v \in V \setminus T, t \in T$, $c(v, t) = 0$ if $t \in l_v$, and $c(v, t) = \sum_{e \in E} w_e + 1$ otherwise.

The next lemma shows that the approximation algorithms we used for the restricted multiway cut problem can be used to round the fractional solution of the uniform labeling problem, obtained from (ULP), achieving the same approximation ratios.

Lemma 4 The two rounding algorithms for the restricted multiway cut problem for $k = 3$ and for $k = 4$ presented in the previous sections can be used
for approximation of the uniform labeling problem for the same values of \(k \), achieving the same approximation factors.

Proof: Let \(A \) be any of the two rounding algorithms from the previous sections, with approximation ratio \(\alpha \) (while \(\alpha = \frac{4}{3} \) for the algorithm for \(k = 3 \) and \(\alpha = \frac{3k^2 - 1}{2} \) for the algorithm for \(k = 4 \)). We use the fact that for any edge \(e \) of length \(\epsilon \), the probability that \(A \) will cut \(e \) is \(\leq \alpha \epsilon \). (This fact was proved for both algorithms while analyzing their approximation ratios). Another fact we use is that the distribution of the cuts \(A \) chooses is independent of its input.

Suppose we are given an optimal fractional solution \(S \) to the uniform labeling problem obtained from solving \((ULP)\). We denote by \(c_1 \) its vertex assignment cost, and by \(c_2 \) its edge stretch cost. The total cost of \(S \) is \(c_1 + c_2 \). We use \(A \) to round this fractional solution and to obtain integer solution \(A(S) \). The cost of the solution \(A(S) \) also consists of 2 parts: vertex assignment cost which we denote by \(a_1 \) and edge stretch cost which we denote by \(a_2 \). We need to prove that \(a_1 + a_2 \leq \alpha(c_1 + c_2) \). Since \(A \) is a factor-\(\alpha \) rounding algorithm for restricted multiway cut problem, we know that \(a_2 \leq \alpha c_2 \). It remains to show that \(a_1 \leq \alpha c_1 \).

Claim 3 For each \(v \in V \) and for each \(t_i \in T \), the probability that \(A \) assigns \(v \) to \(t_i \) is \(\leq \alpha x_i^v \).

Proof: Suppose, by contradiction, that the claim is wrong. Then there exist \(v \in V \), \(i \in \{1 \ldots k\} \), such that the probability that \(A \) assigns \(v \) to \(t_i \) is \(\geq \alpha x_i^v \). We can add to the fractional solution a new vertex \(u \) on the facet spanned by \(T \setminus \{t_i\} \), and a new edge \((v, u) \), such that \(\frac{1}{2} \|x^v - x^u\| = x_i^v \), and \(w(v, u) = 1 \). Note that \(A \) cannot assign \(u \) to \(t_i \). So if \(A \) assigns \(v \) to \(t_i \), the edge \((u, v) \) is surely cut. We know that the probability that \(A \) cuts the edge must be \(\leq \alpha \cdot \frac{1}{2} \cdot \|x^u - x^v\| = \alpha x_i^v \), and also that this probability is greater than or equal to the probability of assigning \(v \) to \(t_i \). Thus \(v \) is assigned to \(t_i \) with probability \(\leq \alpha x_i^v \). Since the distribution of the cuts does not depend on the input, adding the edge could not change the probability of assigning \(v \) to \(t_i \). This is a contradiction to the fact that before adding the edge, \(A \) assigned \(v \) to \(t_i \) with probability \(> \alpha x_i^v \).
Note that we can add an edge \((v, u)\) from \(v\) to the faced spanned by \(T \setminus \{t_i\}\) of length \(x_i^v\), by defining:

\[
x^v = (x_i^v + d_1, \ldots, x_{i-1}^v + d_{i-1}, 0, x_{i+1}^v + d_{i+1}, \ldots, x_k^v + d_k)
\]

while \(\Sigma_{j \neq i} d_j = x_i^v\) and for each \(j \neq i\), \(x_j^v + d_j \leq 1\). This is possible because \(\Sigma_{j=1}^k x_j^v = 1\). □

We now complete the proof of Lemma 4. The expected value of \(a_1\) is the sum of expected values of the vertex assignment costs of all the vertices. For each \(v \in V\), the expected value of the assignment cost is

\[Pr[v \text{ is assigned to } t_i] \cdot c(v, t_i) \leq \Sigma_{t_i \in T} \alpha x_i^v c(v, t_i),\]

and so the expected value of \(a_1\) is \(\leq \Sigma_{v \in V, t_i \in T} \alpha x_i^v c(v, t_i) = \alpha c_1\).

□
Bibliography

אלגוריתמי קרוב לבעיתת החוכמים קושי

תינון על מחקר

לשם مليי חלקי של הדרישות לрабלח ההSizer
מוגיסטר למדעי במדעי המחשב

נויה צורוב

נושט טכנולוגיה לישראל
—
המוכן טכנولوجي לישראל

פברואר 2000

 produto תות"ש

היפה
המחק נועד בתורתו דר"ר יובל רבינ ביתולה במדעי המחשב

ברצוני להודות לสวยงาม רבני על התניה והמסורות במחלק המחקר

אני מודה לבעל לאצני על העזרה והちらינתי

אני מודה לטובי על התなのに החשיפה ורדיבת בהשכלה
תוכלע עניינים

1. מבוא
 1.1 במות
 1.2 ביצוע קשיחות

2. ביצוע מתן סיות
 2.1 ביצוע מתן סיות בצורה ממונבלת
 2.2 ביצוע מתן סיות בצורה ממונבלת

3. תוכנית ביצוע
 3.1 תוכנית ביצוע

4. סיקור תוכנית

5. ביצוע המתן סיות
 2.1

6. תוכנית ליצירת ביצוע מתן סיות
 2.2

7. פער האסטרטגיות של הרכיבת
 2.3

8. תסменно
 3.1 תסменно

9. תבניות
 3.2 תבניות

10. חשמל
 3.3 חשמל

11. לסוג
 3.4 לסוג

12. חשמל

13. חשמל

14. חשמל

15. חשמל

16. חשמל

17. חשמל

18. חשמל

19. חשמל

20. חשמל

21. חשמל

22. חשמל

23. חשמל

24. חשמל

25. חשמל

26. חשמל
רשימה אוניברסית

$\text{אלגוריתם עבור } k = 3$
نكציצים מורחבת

בנינו תהליך של מתן תווית, נcrate את סט עצמיםиндקסים של תווית. נרער לכל עצם
 Ipsum תווית כלשהי באומת עצמים בעי מוקדים שיש בדיע.شكまった בשתי סט
 hiçוד מוקדים:

1. לכל עצם לכל תווית, ארז ידיע העצום, עליה סותר שערך הפרד לקבל
劑 תווהית.

2. שיש בו כל תווית מוקד על ידי ידיע העצמון בשתי תווית אませ פעל
עצמות, כל עצם משתין אいで פעל עצמים של העצמות שובג ריציים
לכל עק צхожת תווהית.

נרצות לכל עצם תווית כלשהי, בכל פיוס שמחפשת תווית אחר עקיב עי הודיע
מהמקוד, שענו "קנוכ". נמחק תור עתא תווית על עקיב פונטיס, רובורית קורא
נקווה עיק עיק עיק עיק עי היר העי הממקוד. ביצים ממקוד התווית
במסטריקוד אวดיה היא מדע ממקוד עי ידוע ממקוד שמעטניא משלי השגונים
המודחראים של עי.

בעינתי מתאם התווית במעריציק אוחדת מודגרות באור体彩גורה: תווית עי מהי ממקוד.
במקוד, הקבעה $T = \{t_1, \ldots, t_k\} \subset V$, $G = (V, E)$
ולא, $v \in V$ לכל צומת $v \in V$ לכל צומת $e \in E$ לכל צומת $w_e \geq 0$ לכל צומת
. $f : V \setminus T \rightarrow T$ נמצא פלט הווה $c(v, t)$ פלט הווה $c(v, t)$ פלט הווה $c(v, t)$ פלט הווה $c(v, t)$
כל פלט הווה כה מוגדר מחר, נחבש פלט הווה על מחר מימוש. מחר הפיתרון
מרוכב למעט עק צحجم:

$\sum_{v \in V} c(v, f(v))$ (כלומר, אום צומת v ממקוד, אם צומת v ממקוד
рошמה אום צומת v ממקוד, אם צומת v ממקוד

1. ממיר של השמות העצומים: $c(v, t)$ שואל קרצך מקוכל

2. ממיר של הרחבת התוויות: $c(u, v)$ במישר קרצך מקוכל

השומת שואל, ריכי עצום, עבור עצום reinst at $w(u, u)$

$\sum_{f(u) \neq f(v)} W(w(u, u))$}

הممיר המכל עיבת והסכים של ממיר השמות העצומים ממיר התוויות

המחורית

ככל ביצים של ממקוד עי ממקוד, שמעטניא משלי השגון המודחראים של עי

ניוגpen עלרגות_life מי ו龅י באה: עצמותי עומדות עצומות הרגליים והחוויות

...
לא ניתן לקרוא את התוכן המוצג במפתיע. תכונה מחוספסת או בעיית שליטה על התוכן המוצג. זה לא ניתן לקרוא.
השלב המרכזי הוא טעינת פיתוחים של ניתוחים ליניאריים,︃lesh kobel*

피יתון של הניתוחים בדליים,︃sheh va pempiot blevit meshi temi.︃mutesh
של שלב זה הוא אצע פיתוחים של ניתוחים ליניאריים בעפסים קוף︃כל האמצע ממש פיתוחים.︽︃hapus mesh bemahem pempiot ikbuz אצ פקוצר

בקורב.

בעברדأما הרשלמטן בדליים בדליים בדליים ליניאריים בך משהמש לקבישת
הנתזאה הקורמת בצלא יאני הרכית במעשיקת איזיד︃יעבר הרכבתוה מסייע אנרגים בך פקודיים קורוב סופיס יואר על nạ פיתוחים של ניתוחים

$ k = 4 \; k = 3$ ○ 4-1

הליניארי למקירם השופטים של iv