
Selective Sampling Using Random Field ModellingMichael Lindenbaummic@cs Shaul Markovitchshaulm@cs Dmitry Rusakovrusakov@csAbstractMost existing inductive learning algorithms assume the availability of a training set of labeled exam-ples. In many domains, however, labeling the examples is a costly process that requires either intensivecomputation or manual labor. In such cases, it may be bene�cial for the learner to be active by intelligentselection of examples for labeling with the goal of reducing the labeling cost.In this paper we propose a lookahead algorithm for selective sampling of examples for nearest-neighbors classi�ers. The algorithm attempts to �nd the example with the highest utility considering itse�ect on the resulting classi�er. Computing the expected utility of an example requires estimating theprobability of the possible labels. We propose to use the random �eld model for this estimation.The proposed selective sampling algorithm was evaluated empirically on real and arti�cial data sets.The experiments show that the proposed algorithm outperforms other methods.1 IntroductionMost existing inductive learning algorithms assume the availability of a training set of labeled examples.In many domains, however, labeling the examples is a costly process that requires either intensive compu-tation or manual labor. Consider, for example, training a classi�er for a character recognition problem.In this case, the character images are easily available, while their classi�cation is a costly process requiringa human operator. Another example may be a game-playing program that infers a resource allocationstrategy by inducing the class of positions that requires extra computation (Markovitch & Sella, 1996).Labeling examples for this purpose requires a costly computation of deep alpha-beta search. Yet anotherexample is a robot that learns about objects in an unknown environment by performing experiments onthem (Scott & Markovitch, 1993).In such domains it is desirable to reduce the number of training examples while maintaining thequality of the resulting classi�er. A possible solution to this problem is to provide the learning algorithmwith some control over the inputs on which it trains.This paradigm is called active learning, and is roughly divided into two major sub�elds: learningwith membership queries and selective sampling. In learning with membership queries (Angluin, 1988)the learner is allowed to construct arti�cial examples, while selective sampling deals with the selectionof informative examples from a large set of unlabeled data (Lewis & Catlett, 1994; Freund, Seung,Shamir & Tishbi, 1997; Dagan & Engelson, 1995). Note that the membership query paradigm maypose a practical problem by requesting a label for a nonsense example, e.g. asking to appraise an illegalchess-board position, or asking to recognize an arbitrary image as a character.One recent approach to selective sampling in a general setting, which is accompanied by strongtheoretical justi�cation, is Query by Committee. There, a committee of hypotheses consistent with thelabeled data is speci�ed and an unlabeled example on which the committee members most disagreeis chosen (Seung, Opper & Sompolinsky, 1992; Freund, Seung, Shamir & Tishbi, 1997; Hasenjager &Ritter, 1996; RayChaudhuri & Hamey, 1995). Techniques from the �eld of optimal experiment design1T
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(Fedorov, 1972) have been applied to active learning of real-valued functions (MacKay, 1992; Cohn,Ghahramani & Jordan, 1995). Various selective sampling methods have been developed for speci�cclassi�cation learning algorithms: for neural networks (Davis & Hwang, 1992; Cohn, Atlas & Lander,1994), for the C4:5 rule-induction algorithm (Lewis & Catlett, 1994) and for Hidden Markov Models(Dagan & Engelson, 1995).The goal of this paper is to develop a selective sampling methodology for nearest-neighbor classi�ca-tion learning algorithms. The nearest-neighbor algorithm (Cover & Hart, 1967; Aha, Kibler & Albert,1991) is a non-parametric classi�cation method, useful especially when little information is availableabout the structure of the distribution, implying that parametric classi�ers are harder to construct. Theproblem of active learning for nearest-neighbor classi�ers in the context of membership queries paradigmwas considered by Hasenjager and Ritter (1998). They proposed querying in points which are thefarthest (in the instance space) from previously sampled examples, that is, in the vertices of the Voronoidiagram of the points labeled so far.This paper introduces a lookahead approach to selective sampling which is suitable for nearest-neighbor classi�cation. The lookahead-based method for selective sampling chooses the next example(or sequence of examples) in order to maximize the expected utility of the resulting classi�er. Themajor components of this framework are a utility function for appraising classi�ers and a posteriori classprobability estimates for unlabeled points in the instance space. We derive a Bayesian utility functionand propose a random �eld model for the feature space classi�cation structure, which serves as a basisfor class probability estimation.The merit of our approach is empirically demonstrated on real and arti�cial problems. The algorithmwas compared with a number of known selective sampling methods adopted for use with nearest-neighborclassi�er. The lookahead selective sampling method outperformed the other methods and exhibited amuch more stable performance on the wide range of real and arti�cial problems.This article is organized in the following way. We start by formalizing the problem of selective sam-pling and by presenting intuitive considerations for selective sampling methods (Section 2). In Section 3we describe the lookahead-based framework and propose methods for estimating the utility of classi�ersand for estimating the class probabilities. In Section 4 we develop a random �eld model for the fea-ture space classi�cation structure, and in Section 5 we show how this methodology can be implemented.Section 6 describes the experimental evaluation of our algorithm and Section 7 concludes.2 Selective Sampling for Nearest Neighbor Classi�ersIn order to address the problem of selective sampling for the nearest neighbor classi�er, we must �rstunderstand and formalize what do we mean under the concept of selective sampling. In particular, whatinformation a selective sampling algorithm can and should use, and what is the goal of the selectivesampling process. These questions are addressed in the follow subsections.2.1 The selective sampling processWe consider here the following selective sampling paradigm. Let X be a set of objects described by a �nitecollection of attributes (features). Let f : X ! f0; 1g be a teacher (also called an expert) which labelsinstances by 0 or 1. A learning algorithm takes a set of labeled examples, fhx1; f(x1)i; : : : ; hxn; f(xn)ig,and returns a hypothesis h : X ! f0; 1g. Throughout this paper we assume that X =Rd.Let X be an instance space - a set of objects drawn randomly from X according to distribution p.Let D = fhxi; f(xi)i : xi 2 X; i = 1; : : : ; ng be a set of labeled examples from X. A selective samplingalgorithm SL, with respect to learning algorithm L, takes X and D, and returns an unlabeled elementof X. The architecture of an active learning system that uses selective sampling for obtaining trainingexamples is illustrated in Figure 1. 2T
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InstanceSpace Unlabeledexamples LabeledexamplesSelectiveSamplingAlgorithmTeacher LearningAlgorithm Classi�erFigure 1. Active Learning System1. D  ;2. h L(;)3. While stop-criterion is not satis�ed do:(a) Apply SL and get the next example, x  SL(X;D).(b) Ask the teacher to label x, !  f(x)(c) Update the labeled examples set, D  DSfhx; !ig(d) Update the classi�er, h L(D)4. Return classi�er hFigure 2. Learning with Selective SamplingThe process of learning with selective sampling can be described as an iterative procedure where ateach iteration the selective sampling procedure is called to obtain an unlabeled example and the teacheris called to label that example. The labeled example is added to the set of currently available labeledexamples and the updated set is given to the learning procedure which induce a new classi�er. Thissequence repeats until the stop criterion is satis�ed. The pseudo-code for this algorithm is described inFigure 2. The stop criterion may be a resource bound M on the number of examples that the teacheris willing to label, or a lower bound on the desired class accuracy. Here we will assume the �rst case.The goal of the selective sampling algorithm is to produce a sequence of length M which leads to a bestclassi�er according to some given criterion.2.2 Nearest neighbor classi�cationIn this paper we will be particularly interested in selective sampling for the nearest-neighbor classi�er(Cover & Hart, 1967). The nearest-neighbor classi�er accumulates the labeled examples received asinput. An unlabeled instance is then classi�ed according to the label of its nearest labeled neighbor.Variations of this scheme include k-nearest neighbor classi�ers (Duda & Hart, 1973), which use the voteof the k nearest labeled neighbors and selective classi�ers that store and utilize the labeled examplesselectively (Aha, Kibler & Albert, 1991).Formally speaking, given a set of labeled examples pairs fhx1; !1i; : : : ; hxn; !nig, where the xi's areobjects from a set X with the metric d, and the !i's take values from the set f0; 1g, the nearest-3T
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(a) (b)Figure 3: Voronoi diagram and nearest-neighbor classi�cation: (a) Voronoi diagram for a set of 10 points.Each query point for nearest-neighbor classi�er will be classi�ed according to the label of the center pointof the Voronoi cell it belongs to. (b) The decision boundary of the nearest-neighbor classi�er based on thelabeled points of (a).neighbor rule decides that x 2 X belongs to the category !j of its nearest neighbor xj, where j =argmini=1;::: ;nd(xi; x).The concept of nearest-neighbor classi�cation is closely related to the concept of Voronoi diagram fora set of points. Voronoi diagram of n points X = fx1; : : : ; xng from a metric space X is a partition of Xinto regions fV (x1); : : : ; V (xn)g, such that V (xi) = fx 2 X : 8xj 2 X; d(x; xi) � d(x; xj)g. In this waythe Voronoi diagram actually de�nes the space classi�cation for the nearest-neighbor rule based on thesame points, see Figure 3.2.3 Some intuitive considerationsWhat should be considered to be a good example? In this subsection we discuss some of the intuitive con-siderations for selective sampling. The underlying principle is that the uncertainty of classi�cation shouldbe reduced. One possible strategy for achieving such a reduction is to assign classi�cation uncertaintyto each unlabeled example and to select the unlabeled instance associated with the highest uncertainty.For the nearest-neighbor classi�er the most uncertain points will lie near the classi�cation boundary.Such points have two nearest neighbors with similar distances but conicting labeling. This idea can beused to develop a selective sampling algorithm for nearest-neighbor classi�er. Looking carefully at thesampling style of this method, however, we can discover a number of intrinsic problems.Consider various point con�gurations shown in Figure 4. These con�gurations are much simpler thanthe typical ones that may arise in practice, but they provide test cases for analyzing the behavior ofselective sampling algorithms.The boundary sampling will obviously prefer to sample point (a) over point (b) in con�guration (1).This decision �ts our intuition, since point (b) seems to be is less important because of its proximity tothe labeled point. Con�guration (2), however, shows a weakness of the naive uncertainty sampling. Inthis con�guration, the boundary method will prefer sampling in the border (point (c)). If point (c) will4T
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(1) + -a b(2) + -cd(3) e+ +(4)Figure 4: Various point con�gurations that may arise in the instance space. Unlabeled points are marked bycircles. (1) Single point near the border. (2) Group of points near the border. (3) Compact group of pointsfar from labeled examples. (4) The �gure of eight, very far from labeled examples.be labeled as '-', the uncertainty associated with the classi�cation of cluster (d) will remain high. Onthe other hand, sampling in any point in cluster (d) will yield classi�cation with high certainty for all itspoints. Thus, in con�guration (2), sampling in cluster (d) is preferable over the sampling point (c).These two examples imply that selective sampling algorithms should consider not only the uncertaintyof the candidate sample point, but also the e�ect of its classi�cation on the remaining unlabeled points.Thus, sampling in dense regions may be preferred over sampling in an isolated point. Even when acompact group of unlabeled points is surrounded by the instances of the same classi�cation, as illustratedin con�guration (3), in make sense to sample in it, because the resulting label inuences many points.Where should we sample if the instance space contains both con�gurations (2) and (3)? Sampling ineither cluster will be especially bene�cial if the true label of the cluster is '-'. In this case, the samplein cluster (d) is preferable, since intuitively cluster (e), being surrounded by points of class '+', is lesslikely to be of di�erent labeling.What if we can sample two or more instances in a row? Although we will select these points one byone (according to the framework described in Section 2.1) the very knowledge of the fact that we cansample more than one point can change our priorities in example selection. For example, in con�guration(4), the two clusters may be of di�erent classes. If we are allowed to sample only one instance, thenselecting a point between the two clusters may be a best strategy. On the other hand, if we know thatwe will be able to ask for the label of another instance, we may be better of sampling in the center ofone cluster (and sampling in the center of the other cluster afterwards).The above examples show that one must consider not only the uncertainty of the particular point inthe instance space, but mostly the e�ect that the labeling of this point may have on its neighborhood.The lookahead selective sampling algorithm described in next section takes these considerations intoaccount.3 Lookahead Algorithms for Selective SamplingIn this section we develop a lookahead framework for selective sampling algorithms, that chooses the nextexample (or sequence of examples) in order to maximize the expected utility of the resulting classi�er.The framework requires a method for estimating class probabilities of unlabeled instances and a utilityfunction for appraising classi�ers. We derive an optimal utility function in the Bayesian sense, anddescribe a number of possibilities for class probability estimation methods.5T
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x1 x2 xnx2 x3 xn x1 xn�1 0 1 0 1 0 1x1 x2 xn0 1f(x) = 0 1x2 xn x2 xn(a) (b)Figure 5: Lookahead, part of the tree of depth 2: (a) - without considering the teacher response, (b) -considering the teacher response.SkL(X;D):Select x0 2 X with maximal expected utility:x0 = argmaxx2X E![U�L(X;D;D [ fhx; !ig; k� 1)]where U�L(X;D;D0; k) is a recursive utility propagation function:U�L(X;D;D0; k) =8><>: UL(D0; D) k = 0maxxE![U�L(X;D;D0 [ fhx; !ig; k� 1)] otherwiseand the expected value E![�] is taken according to conditional probabilities for classi-�cation of x for a given D, P (f(x) = !jD).Figure 6. k-deep lookahead algorithm.3.1 The lookahead framework for selective samplingUsing an intuition developed in the previous section, we may introduce the lookahead algorithm forselective sampling, which considers sampling sequences of length k and selects an example that leads tothe best sequence (as illustrated in Figure 5a). The merit of the sequence is determined by estimatingthe utility of selected points as a training set for the classi�er. For example, one may prefer sequencesthat uniformly sample the instance space (according to its distribution).One problem with this approach is that it does not take into account the possible responses of theteacher. An alternative approach views the selective sampling process as an interaction between thelearner and the teacher. At each stage the learner must select an object from the set of unclassi�edinstances and the teacher assigns one of the possible labels to the selected object. This interaction canbe represented by a \game tree" such as the one shown in Figure 5b.We use this tree representation in order to develop a lookahead algorithm for selective sampling. LetUL(D0;D � D0) be a utility function that estimates the merit of adding labeled instances D0 nD to theset D as training examples for learning algorithm L. Let P (f(x) = !jD) denote the conditional classprobabilities of x for a given labeled set D. The k-deep lookahead algorithm for selective sampling withrespect to learning algorithm L selects the example that leads to the learning sequence with the highestexpected utility. This algorithm is presented in Figure 6.Note that this algorithm is a speci�c case of a decision theoretic agent, and that, while it is speci�ed formaximizing the expected utility, one can be, for example, pessimistic and consider a minimax approach.6T
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S1L(X;D) :Select x 2 X with maximal expected utility, E!2f0;1g[UL(D [ fhx; !ig; D)], which isequal to:P (f(x) = 0jD) � UL(D [ fhx; 0ig; D) + P (f(x) = 1jD) � UL(D [ fhx; 1ig; D)Figure 7. One-step lookahead algorithm.In our implementation we use a one-step lookahead algorithm which assumes ! 2 f0; 1g. This algorithmis illustrated in Figure 7.The actual use of the lookahead example selection scheme relies on two choices:� The utility function UL(D0;D).� The method for estimating P (f(x) = 0jD) (and P (f(x) = 1jD)).These choices are considered in the next sections.3.2 Accuracy-based utility functionsTaking a Bayesian approach, we specify the utility of the classi�er as its expected accuracy relativeto the distribution of consistent target functions. First, consider a speci�c target f and a hypothesish. Let If;h be a binary indicator function, where If;h(x) = 1 if and only if f(x) = h(x), and let�f(h) = Rx2Rd If;h(x)p(x)dx denote the accuracy of hypothesis h relative to f . Recall that p(x) is theprobability density function specifying the instance distribution overRd (Section 2.1). Let AL(D) denotethe expected accuracy of a hypothesis produced by learning algorithm L on data D:AL(D) = Ef jD [�f(h = L(D))]= Ef jD [Rx2Rd If;h(x)p(x)dx] = Rx2Rd P (f(x) = h(x)jD)p(x)dx (1)where P (f(x) = h(x)jD) is the probability that a random target function f consistent with D will beequal to h in the point x, i.e P (f(x) = h(x)jD) = Ef jD[f(x) = h(x)].Note that P (f(x) = h(x)jD) is the probability that a particular point x gets the correct classi�cation.Therefore, for every given hypothesis h, estimating the class probabilities P (f(x) = 0jD) and P (f(x) =1jD) gives also the accuracy estimate (from Equation 1):AL(D) � Xx2X P (f(x) = h(x)jD)=jXj: (2)We assume that X is large but �nite, otherwise, if X is in�nite, we can draw a su�ciently large and�nite set X 0 � X and work with it instead of X. Equation 2 translates the problem of evaluating theutility measure as a classi�er accuracy into the problem of estimating the class probabilities. Assumingthat the probability calculation model is correct, the Bayesian selective sampling strategy is one thatuses UaccL (D0;D) , AL(D0) as the utility function.If we assume that the learning process is \monotonic", i.e. that additional examples only increasethe accuracy of the resulting classi�er, than we can devise an alternative utility function based on thisassumption. The proposed function evaluates the increase in accuracy between the classi�er based onthe current data (D) and the classi�er based on the data together with the additional examples (D0).This accuracy gain is evaluated from the point of view of the resulting classi�er (based on D0).Assume we have labeled data D and we wish to evaluate the merit of sampling points D0 nD. Let hbe a nearest-neighbor classi�er based on D and let h0 be a nearest-neighbor classi�er based on D0. Given7T
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a target function f , the increase in accuracy is:�f(h0; h) , �f(h0)� �f (h)= Rx2Rd If;h0 (x)p(x)dx� Rx2Rd If;h(x)p(x)dx= Rx2Rd ;h(x) 6=h0(x)(Ih0;f (x)� Ih;f (x))p(x)dx (3)We de�ne the utility function to be the expected value of �f(h0; h) given D0:UchL (D0;D) = Ef jD0 [�f(h0 = L(D0); h = L(D))]= Rx2Rd ;h(x) 6=h0(x) (P (f(x) = h0(x)jD0)� P (f(x) = h(x)jD0)) p(x)dx= Rx2Rd ;h(x) 6=h0(x) (2P (f(x) = h0(x)jD0)� 1) p(x)dx (4)Since X was drawn randomly from Rd according to p, we can approximate UchL by:UchL (D0;D) � Xx2X;h(x) 6=h0 (x)(2P (f(x) = h0(x)jD0)� 1)=jXj (5)The value of UchL (D0;D) is positive, because h0 should be a Bayesian classi�cation under the speci�edprobability model.The presented utility function tends to sample points that have the potential of radically changingthe current hypothesis. The �rst proposed utility function, UaccL , is more conservative in this sense. Thisdi�erence may lead to faster learning when using UchL in domains that have the \monotonicity" property.In this section we have solved the problem of estimating the utility function, by moving the focus todetermining the correct class probabilities from the labeled data. Once these probabilities are estimated,one should have no problem to construct the utility function for a lookahead selective sampler.3.3 Probability estimation methodsThe utility propagation method used in the lookahead selective sampling algorithm needs the same con-ditional probabilities as the utility function. Denote by P0(x);P1(x) the approximation of the probabilitythat x is labeled 0 or 1 for a given data D, i.e. P0(x) � P (f(x) = 0jD) and P1(x) � P (f(x) = 1jD).Some possible options for the estimation of conditional class probabilities are described below:� The simplest approach to estimate these conditional probabilities is to assume them equal to apriori class probabilities, P0 and P1. These a priori probabilities can be estimated from labeleddata by averaging the number of points of each class:P0 = jfhx;!i 2 D : ! = 0gjjDj ; P1 = 1� P0: (6)This approach assumes constant class probabilities for all regions in the feature space. This as-sumption is too rough and does not lead to an e�ective example selective method.� A common heuristic is to specify class probabilities by a distance ratio to the nearest labeledexamples of di�erent classes: P0(x) = d1d0+d1 ; P1(x) = 1� P0(x);d0 = minhs;0i2D d(x; s);d1 = minhs;1i2D d(x; s): (7)� A more rigorous approach, which converges (in a limit) to the true probability (Duda & Hart,1973), is to set the probabilities by voting, or weighted voting, between the k nearest neighbors:P0(x) = Phs;0i2Dx;k w(d(x;s))Phs;!i2Dx;k w(d(x;s)) ; P1(x) = 1� P0(x);Dx;k , k points from D closest to x: (8)where w(d) is a monotonically non-increasing weight (inuence) function. For ordinary vote proce-dure, w(d) � 1. 8T
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� Estimation of class probabilities can be also done by using a committee of consistent hypotheses(This method is inspired by Query by Committee paradigm (Seung, Opper & Sompolinsky, 1992;Freund, Seung, Shamir & Tishbi, 1997)). The �rst step is to choose some reasonable class ofpossible target functions, F. For example, F can be the class of nearest-neighbor classi�ers basedon m labeled points, NNm. Then the probabilities can be estimated by:P0(x) = jfh : h 2 H;h(x) = 0gjjHj ; P1(x) = 1� P0(x) (9)where H = fh 2 F : 8hx; !i 2 D;h(x) = !g. The exact computation of H may be intractable, anda random �nite subset of consistent hypotheses H 0 � H may be used instead.The complexity of F may be adapted to the expected number of allowed examples M (see Section2.1), e.g. for the class of nearest-neighbor classi�er, NNm, m may increase with M .A theoretical issue is whether such conditional probability estimates are consistent with some targetfunction family F, i.e. P0(x) � P (f(x) = 0jD) for any �nite D � Rd and f drawn randomly from F. Thisis clearly the case for the last method, but setting function space to consist of nearest-neighbor classi�erswith limited number of base point seems to signi�cantly restrict the possibilities for target function f ,and such restriction may be unjusti�ed. In this paper, we choose another approach, and a realistic modelof feature space classi�cation structure will be proposed in the next section.4 Random Field Model for Feature Space Classi�cationFeature vectors from the same class tend to cluster in the feature space (though sometimes the clustersare quite complex). Therefore close feature vectors share the same label more often than not. Thisintuitive observation, which is the rationale for the nearest-neighbor classi�cation approach, is used hereto estimate the classes of unlabeled instances and their uncertainties.Mathematically, this observation is described by assuming that the label of every point is a ran-dom variable, and that these random variables are mutually dependent. Such dependencies are usuallydescribed (in a higher than 1-dimensional space) by random �eld models. In the probabilistic setting,estimating the classi�cation of unlabeled vectors and their uncertainties is equivalent to calculating theconditional class probabilities from the labeled data, relying on the random �eld model.Thus, we assume that the classi�cation of a feature space is a sample function of a binary valuedhomogeneous isotropic random �eld (Wong & Hajek, 1985) characterized by a covariance function de-creasing with distance (see (Eldar, Lindenbaum, Porat & Zeevi, 1997), where a similar method was usedfor progressive image sampling). That is: let x0; x1 be points in X and let �0; �1 be their classi�cations,i.e. random variables that can have values of 0 or 1. The homogeneity and isotropy properties implythat the expected values of �0 and �1 are equal, i.e. E[�0] = E[�1] = ��, and that the covariance between�0 and �1 is speci�ed only by the distance between x0 and x1:Cov[�0; �1] = E[(�0 � ��)(�1 � ��)] , (d(x0; x1)) (10)where  : R+ ! (�1; 1) is a covariance function with (0) = V ar[�] = E[(� � ��)2] = P0P1, where P0,P1 = 1 � P0 are the a priori class probabilities. Usually we will assume that  is decreasing with thedistance and that limr!1 (r) = 0. This idea is illustrated in Figure 8. Note that while specifying thecovariance does not uniquely determine the random �eld and the distribution of target functions, it limitsthem considerably and makes them \similar" in a sense. If, for example, the covariance is substantial forclose points and decreases with distance (as we assume), then the labels of close points are expected tobe identical.We shall now describe several ways of calculating estimates of these conditional probabilities, usingthe underlying random �eld model. 9T
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AB x0 d(x0; x1)x1Figure 8: The labels of every pair of points, such as x0 and x1, are correlated with covariance decreasing withthe distance between the points. Thus points in the region A are more likely to have the same classi�cationas x0 than points in region B.4.1 Calculating the probabilities from correlation data by mean-squareestimation of the conditional meanIn estimation, one tries to �nd the value of some unobserved random variable, from observed values ofother, related, random variables, and from prior knowledge about their joint statistics.Having only two classes implies that the class probabilities associated with some feature vector areuniquely speci�ed by the conditional mean of its associated random variable (r.v.). This conditional meanis also the best estimator for the r.v. value in the least squares sense (Papoulis, 1991). Therefore, commonmethods for mean square error (MSE) estimation can be used for estimating the class probabilities.We choose a linear estimator, for which a closed form solution described below is available. Let �0be the binary r.v. associated with some unlabeled feature vector, x0, and let �1; : : : ; �n be the (known)r.v. associated with the feature vectors, x1; : : : ; xn, that were already labeled. A linear estimator of theunknown label �0 is: �̂0 = �0 + nXi=1 �i�i: (11)The estimate uses the known labels and relies on the coe�cients �i; i = 1; : : : ; n. The constructionof such estimators is a common statistical procedure (Papoulis, 1991). The optimal linear estimator,minimizing the MSE �mse = E[(�̂ � �0)2] is�̂ = E[�0] + ~a � (~� �E[~�])t (12)where ~a is an n-dimensional coe�cients vector speci�ed by the covariance values:~a = R�1 �~r;Rij = E [(�i �E[�])(�j �E[�])] ;ri = E [(�0 � E[�])(�i �E[�])] : (13)(R is an n� n matrix, and ~a;~r are n�dimensional vectors). The values of R and ~r are speci�ed by therandom �eld model: Rij = (d(xi; xj));ri = (d(x0; xi)): (14)The procedure is straightforward and easy to implement. In practice only reasonably close labeledpoints are used to construct the estimate, because far points are not correlated and therefore cannot10T
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contribute anything to the estimate implying that their corresponding coe�cients become zero. Thereforethis estimation procedure is also fast.One problem with the linear estimation of label probability is that the range of the estimated valuesis not limited and may lie outside the [0; 1] interval. With the interpretation of �̂ as probability suchvalues are clearly not valid. Fortunately, this is rarely the case. When such invalid values occur, they areclipped to either 0 or 1, resulting in a legal value (and a more accurate estimate also in the MSE sense).Another problem with linear estimators is that they use only the information on second-order statistics(covariance matrix), and higher order statistics cannot be used.4.2 Direct calculation of conditional probabilitiesThe conditional distribution of �0 given the �1; : : : ; �n can also be found from the joint distribution of�0; : : : ; �n, since P (�0j�1; : : : ; �n) = p(�0; �1; : : : ; �n)=p(�1; : : : ; �n)= p(�0; �1; : : : ; �n)=P!2f0;1g p(�0 = !; �1; : : : ; �n): (15)Let ~! , (!0; !1; : : : ; !n), ~! 2 f0; 1gn+1 denote the vector of values of �0; �1; : : : ; �n and p~! , P (�0 =!0; : : : ; �n = !n) denote the probability of �0; : : : ; �n to obtain these values. We can �nd the jointdistribution of �0; : : : ; �n from the moment data:P~!2f0;1gn+1 p~! = 1 sum of probabilities is one:P~!2f0;1gn+1 !ip~! = P1 (for i=0,. . . ,n) a priori probabilities:P~!2f0;1gn+1 (!i � P1)(!j � P1)p~! = (d(xi; xj)) for i 6= j : i; j 2 f0; : : : ; ng: (16)There are 2n+1 unknown variables and only 1+(n+1)+ n(n+1)2 equations, so the unique solution can notbe obtained for n larger than 1. This could have been expected, since the second-order statistics doesnot specify an arbitrary joint probability function uniquely. Additional constrains must be introducedin order to obtain the unique solution.Knowing a number of higher moments, f�gn+13 , gives additional constraints:X~!2f0;1gn+1 "Yk2I(!k � P1)# p~! = �jIj(xi2I) (17)for I � f0; : : : ; ng; 3 � jIj � n + 1; (n � 2). Note that the constraints speci�ed in Equation 16 are thelower �0; �1; �2 moments. This linear system (Equations 16 and 17), implied by all moments consistsof 1 + (n + 1) + n(n+1)2 +Pn+1i=3 �n+1i � = Pn+1i=0 �n+1i � = 2n+1 equations and 2n+1 unknown variablesdenoting the joint probabilities of �0; : : : ; �n, and thus can be uniquely solved. Note, however, that theintuition on which the nearest-neighbor classi�er is based, implies that the second-order moments arepositive and decreasing with distance. Making further assumptions on higher order moments constraintsthe distribution beyond the basic nearest-neighbor rationale, and may be unjusti�ed. Note also thatarbitrarily chosen moments may be inconsistent with any binary r.v. distribution.It may be natural, in a certain context, to assume that both class probabilities are equal, P0 = P1 = 12, and the distribution is \symmetric". That is,8~! 2 f0; 1gn+1; p~! = p:~! (18)This readily implies that all odd moments are zero, �2k+1 � 0; k 2 N. Interestingly, the symmetryproperty (18) holds if and only if P0 = P1 and �2k+1 � 0;8k 2 N;k � dn+12 e � 1.This assumption is much stronger than just assuming that P0 = P1, but if it is believed to hold,it provides the additional third order moments, and allows to compute the joint distribution of threerandom variables from Equations 16 and 18 alone.11T
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In contrast to the linear estimation approach which relies only on the second-order statistics of thedistribution and is therefore non-optimal for non-Gaussian distributions, the direct method describedabove tries to calculate the exact joint distribution. Therefore, it requires more information, in the formof higher order statistical moments. On the other hand, it guarantees that the estimated probabilitieslie in the legal [0;1] interval (provided that all moments that are used, are indeed correct).Both methods are associated with some theoretical de�ciency, to be explained and solved below.4.3 A modi�ed random �eld model: Excursion setAs mentioned above, there are some de�ciencies in the probability estimation methods that we described.The MSE approximation of the conditional mean can yield an invalid estimate of the mean, outside the[0; 1] range. The direct calculation does not have this problem but requires the use of a set of higherorder moments which are not justi�ed by the nearest-neighbor rationale.The major theoretical de�ciency, as we see it, is that an arbitrarily speci�ed covariance function, (d),may not correspond to a binary random �eld. That is, there is no guarantee that there indeed existssome random �eld with binary outcomes and with the chosen covariance function. One way to solve thisproblem is to specify the labels indirectly, using an additional, real-valued random �eld. Now, from thedistribution of this \hidden" random �eld, we can infer the covariance of the binary �eld.De�ne a Gaussian random �eld as a collection of random variables Y(x); x 2 Rd, such that all �nite di-mensionaldistributions of variables Y(x) are multivariate Gaussians (Adler, 1981). For simplicity, we alsoassume that this random �eld is homogeneous and isotropic, i.e. E[Y(x)] � �Y and the covariance betweenY(x1) and Y(x2) depends only on the distance between x1 and x2, Cov[Y(x1);Y(x2)] , �(d(x1; x2))(similarly to Equation 10). Note that all �nite dimensional distributions of Y's are uniquely de�ned by� and �Y.Now we can model the (random) concept class (the set of all points of class 1 in Rd), to be the(random) excursion set (Adler, 1981) above the level 0:A0(Y;Rd) = fx 2Rd : Y(x) � 0g (19)of the real-valued random �eld Y(x); x 2Rd. Then, the binary class label is:�(x) = ( 0; Y(x) < 01; Y(x) � 0: (20)For any value assignment, the joint probability p(�0 = !0; �1 = !1; : : : ; �n = !n) may be calculated by(numerically) integrating the multivariate Gaussian distribution of Y0; : : : ;Yn:p(�0 = !0; : : : ; �n = !n) = Z b0a0 : : :Z bnan 1(2�)n+12 j�j 12 e� 12 (~Y��~Y)��1(~Y��~Y)td~Y: (21)where ai = ( �1; !i = 00; !i = 1 , bi = ( 0; !i = 01; !i = 1 and �, �~Y are de�ned by the model, that is�[i; j] = �(d(xi; xj)) and �~Y[i] = �Y.The � function must be non-negative de�nite, that is for any �nite collection of x1; x2; : : : ; xk 2Rd, the covariance matrix C, where Cij = �(d(xi; xj), is non-negative de�nite. Knowing the priorprobabilities speci�es the Gaussian distribution so that the following relation,P1 = P (� = 1) = Z 10 (2��(0))� 12 e� 12 (t��Y)2�(0) dt (22)is satis�ed. This relation may be considered as a condition de�ning the mean when the prior probabilityis known and the variance is speci�ed. (This framework resembles the Gaussian Process Modeling(MacKay, 1998; Williams & Barber, 1998), although we use a di�erent transformation to get binary r.v.)12T
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Figure 9: The log-plot for the covariance function of binary r.v.,(d), computed numerically from covariancefunction of the underlying Gaussian random �eld, �(d) = e�d (� = 1). Except for a very small values of dthe plot is almost linear indicating that (d) can be approximated by an exponential function.Note that the nearest-neighbor method rationale may be satis�ed also by specifying the covariance(associated with the \hidden" Gaussian process) as a decreasing function of the distance between thepoints. Such a speci�cation induces (another) covariance associated with the binary �eld, which is also adecreasing function of the distance. Therefore, the intuitive properties of the �eld are satis�ed. We showbelow that these covariance functions are not necessarily very di�erent. The main purpose of introducingthe excursion set is to make the speci�cation of the covariance legal. A secondary bene�t associated withthe choice of the Gaussian distribution is that for such choice the random �eld is speci�ed by its second-order statistics, namely by the covariance function associated with the hidden r.v., and no higher orderstatistics are required.The excursion set model may be used directly to produce predictions on the conditional probabilitiesof the labels. It is, however, associated with high computational cost. Another way to use it would beto derive the covariance function of the binary random �eld from it, thus guaranteeing its validity.Consider the situation when P0 = P1 = 12 (�Y = 0) and the exponential covariance function of thehidden, real-valued, random �eld is �(d) = e��d. Using the equality Cov[�1; �2] = P (�1 = 1; �2 =1)�0:25, it is possible to (numerically) calculate the covariance function of the binary random �eld (d).As we can see in Figure 9, the resulting function is very close to exponential. Thus, if we choose anexponential covariance function for a binary valued random �eld in an experimental implementation ofour algorithm (see Section 5), it is at least a very good approximation to a valid covariance, which isjusti�ed theoretically. This is the method adopted in our experiments.5 Lookahead Selective Sampling Using a Random FieldModelThe previous chapters describe a general framework for lookahead-based selective sampling as well as aspectrum of methods for probability estimation. In this chapter the proposed algorithm is described indetails including its instantiation.With the probability estimation methods described above, every sampled point inuences the es-timated probability. Such long-range inuence is non-intuitive and is also computationally expensive.13T
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Therefore, in practice, we neglect the inuence of all except the two closest neighbors. Such choice givesa higher probability to the nearest-neighbor class and is therefore consistent with 1-NN classi�cation.Using only two closest labeled neighbors to estimate the conditional probabilities of unknown pointswe allow the problem to be solved by the methods described in Sections 4.1 and 4.2. Using Equations 12-14 for the estimation of �0 from �1; �2 we get:~r = [(d01); (d02)] ;R = " (d11) (d12)(d21) (d22) # = " P0P1 (d12)(d12) P0P1 #�̂0 = P1 + h (d02)(d12)�(d01)P0P1(d12)2�P20 P21 ; (d01)(d12)�(d02)P0P1(d12)2�P20 P21 i � �h �1�2 i� hP1P1 i� (23)where dij = d(xi; xj) and hx1; !1i; hx2; !2i 2 D are the �rst and second nearest neighbors of x0 2 X.The �̂0 value is an approximation for P (�0 = 1j�1; �2) (see Section 4.1).For the implementation of our algorithm, we assume equal a priori class probabilities which arejusti�ed at the initial stages of the learning process, when a priori class probabilities can not be estimated.Simplifying and substituting P0 = P1 = 12 we get the conditional probabilities:P (�0 = 1j�1 = 0; �2 = 0) = 12 + �(d01)�(d02)12+2(d12)P (�0 = 1j�1 = 0; �2 = 1) = 12 + �(d01)+(d02)12�2(d12)P (�0 = 1j�1 = 1; �2 = 0) = 12 + (d01)�(d02)12�2(d12)P (�0 = 1j�1 = 1; �2 = 1) = 12 + (d01)+(d02)12+2(d12) : (24)These values are equal to the values we get by \direct" probability calculations (Equations 16 and 17)by assuming �3 � 0 and P0 = P1 = 12 (or assuming the \symmetry" property, see Equation 18). Thisis due to the fact that setting these conditions actually means that we are incorporating only �rst andsecond order statistics into probability calculations. In this way we are making an intrinsic assumptionabout distribution of �0; �1; �2 being Gaussian, thus allowing the mean of conditional distribution of �0for given �1; �2 to behave as a linear function of �1 and �2.We choose an exponentially decreasing covariance function (d) = 0:25e�d=�. Such function is a goodapproximation for a covariance function, which can be computed numerically from the excursion setmodel (Section 4.3), thus providing our approach with theoretical justi�cation. Given P0 = P1 = 12 and(d) = 0:25e�d=� the Bayesian classi�cation of x0 is de�ned by the label of x1, i.e. P (�0 = 1j�1; �2) >12 , �1 = 1; (d01 6= d02), thus being consistent with the nearest-neighbor classi�cation.Assuming (d) to approximate the \correct" covariance function derived from an excursion set modeldoes not guarantee that P (�0j�1; �2) will be in valid range of [0; 1]. To show the correctness of the choiceof  we need to show that 8x0; x1; x2 2Rd : 0 � P (�0j�1; �2) � 1: (25)The main step is to prove that (d01)�(d02)12�2(d12) � 12 (the rest is similar or trivial, keeping in mind thatd01 � d02 and d01; d02; d12 are subject to triangular inequality). After substituting (d) = 14 e�d (omitting� as a scaling parameter) and simplifying, it must be shown that: e�d01 � e�d02 + e�d12 � 1. Using thetriangular inequality d02 � d01 + d12 and the fact that e�dij � 1 (for dij � 0), we get: e�d01 � e�d02 +e�d12 � e�d12 + e�d01 � e�d01e�d12 � 1 �. The common forms of the resulting probability distributionsare illustrated in Figure 10.For the experiments, we implemented the one-step lookahead selective sampling algorithm, which usesthe accuracy utility function and the above method of estimating the conditional class probabilities. Thealgorithm consists of two parts: the initialization, illustrated in Figure 11, which is used to de�ne thecovariance function, and a selective sampling procedure, described in Figure 12, which uses the lookaheadselective sampling method.The algorithm needs a speci�cation of the � parameter, which we set depending on the average pair-distance in the instance space and on the a priori scale parameter D, which is set to four. The e�ect ofthe choice of D is considered in the separate set of experiments (Section 6.3).14T
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(a) (b)Figure 10: The conditional probabilities of class 1 as a function of location, in one dimension, (d) = 0:25e�d(� = 1): (a) Point of class 1 at x = 5 and point of class 0 at x = 7. (b) Two points labeled as class 1 atx = 5 and x = 7.Initialize-Selective-Sampling-Algorithm(X):1. Compute average pair-wise distance in X.2. �  average-pair-distance=D3. Set (d) equal to 0:25e�d=�.Figure 11: Initialization of the lookahead selective sampling algorithm. The only parameter is the scale ofthe covariance function, D, which is set to be the quarter of the average-pair-distance. The experimentsshow the stability of algorithm upon wide range of D parameter.The time complexity of the described algorithm is O(jXj2) for the straightforward implementation.This time complexity, however, may be reduced by selecting a random subset X 0 � X and working withit instead of X, thus managing the time/performance trade-o� of this algorithm.6 Experimental EvaluationWe have implemented our random-�eld based lookahead algorithm and tested it on several problems,comparing its performance with a number of other selective sampling methods.6.1 Experimental methodologyThe lookahead algorithm (with D = 4) was compared with the following three selective sampling algo-rithms representing the most common choices found in the literature (see Section 1):� Random sampling: The algorithm randomly selects the next example. While this method looksunsophisticated, it has the advantage of yielding a uniform exploration of the instance space. Thismethod actually corresponds to a passive learning model.� Uncertainty sampling: The method selects the example which the current classi�er is most uncer-tain about. This is one of the most common choices for selective sampling (Section 1). No speci�cuncertainty sampling method, however, was proposed for the nearest-neighbor classi�ers. We de-�ned the uncertainty for each example as a probability of its misclassi�cation, which is estimated15T
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Select-Next-Example(X,D):1. If D is empty, return random point from X.2. Otherwise, set Umax  0.3. For each x 2 X do:(a) D0  D [ fhx; 0ig.(b) Compute class probabilities for all points in X based on data D0, usingEquation 24.(c) Compute utility by approximating the accuracy of the classi�er based ondata D0 using computed class probabilities and Equation 2, U0(x) A(D0).(d) Repeat the above steps for D0  D [ fhx; 1ig and get U1(x).(e) Compute class probabilities for x based on data D, using Equation 24.(f) U (x) P (f(x) = 0jD) �U0(x) + P (f(x) = 1jD) � U1(x).(g) If Umax < U (x) then Umax  U (x), xbest x.4. Return xbest.Figure 12: The body of the lookahead selective sampling algorithm. The algorithm uses a covariance functionde�ned at the initialization stage.by the ratio between the distances to the closest labeled neighbors of di�erent classes (see Equation7). This method tends to sample on the existing border, without considering exploration in otherregions, and while for some decision boundaries this may be bene�cial, for others it may be a sourceof a serious failure (as will be shown in Section 6.2.6).� Maximal distance: An adaptation of the method described by Hasenjager and Ritter (1998). Thismethod selects the example from the set of all unlabeled points which have di�erent labels amongtheir three nearest classi�ed neighbors. The example selected is the one which is most distant fromits closest labeled neighbor.The experiments were conducted on seven datasets. Among them there were three natural datasets:Pima Indians Diabetes dataset, Ionosphere dataset and Image Segmentation dataset, one syntheticdataset: Letters dataset and three arti�cial problems: Two-Spirals problem, Two-Gaussians problemand Multi-Gaussian problem. The Gaussian problems were included so that we can control the geometryof the instance space in order to illustrate the bene�ts of the lookahead selective sampling. The sourceof each dataset is indicated in the corresponding section.The basic quantity measured in the experiments was the average error rate of the classi�er basedon the training points selected by the selective sampling algorithm. For the real datasets the followingprocedure was applied:1. The training set and the test sets were obtained from the data. All natural datasets which we usedwere already divided into training and test sets according to the past usages. The training set wasused as an instance space, X, for a selective sampling algorithm. The test set was used only for theevaluation of error rates of the resulting classi�ers.2. The selective sampling algorithms were applied to the training set, X. After selecting each example,the error rate of the current hypothesis, h (which is the nearest-neighbor classi�er), was calculated16T
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Table 1: Pima Indians Diabetes dataset: Average error rates and their standard deviations for classi�ersbased on 20 selected examples (10% of the training set). Statistics based on 100 runs.Selective sampling method Average error rate Standard deviationRandom 30:2% �4:4%Uncertainty 30:3% �7:8%Maximal Distance 29:8% �5:3%Lookahead 26:9% �1:7%using the test set of examples put aside.3. Steps 1; 2 were performed 100 times and the average error rate was calculated.Note that, while the training and test sets for natural datasets remain the same, we are still interestedin the average performance, since all non-trivial selective sampling methods are naturally randomized byselection of the �rst example.For the arti�cial datasets (for which we were able to generate an unlimited number of examples)we conducted 100 independent runs, with randomly drawn separate training and test sets of size 1000elements each, in a manner similar to the one described above.6.2 The performance of the lookahead selective sampling6.2.1 Pima Indians Diabetes datasetThis dataset was widely used in the past and it is available from the UCI Machine Learning Repository(Blake, Keogh & Merz, 1998). The data, consisting of 7 dimensional vectors, has already been split intotraining and test sets of sizes 200 and 332 respectively, which we used in the experiments. In addition,we normalized the data attributes to �t into the [0; 20] interval. In this dataset an error rate of anearest-neighbor classi�er based on the training set was 31%.The experimental results of comparison between the selective sampling methods are shown in Table 1and the learning curves are shown in Figure 13. Interestingly, learning only 10% of the training set withthe proposed lookahead selective sampling method yields a better classi�er than the nearest-neighborclassi�er trained on all available points.6.2.2 Ionosphere datasetThis dataset is available from UCI Machine Learning Repository (Blake, Keogh & Merz, 1998). Thisdata set consists of 34 dimensional vectors belonging to two classes. Similarly to the past usages we used�rst 200 examples as a training set and the last 151 as a test. The data was normalized with all featurestransformed to the same range. In this dataset, an error rate of a nearest-neighbor classi�er based onthe training set was 7:9%.The results of the selective sampling methods comparison are shown in Table 2, together with learningcurves presented in Figure 14. The lookahead selective sampling not only achieves a much lower errorrate on this dataset, but is also the most stable one, in terms of its standard deviation. Note, thatthe lookahead selective sampling needs only 8% of the training set in order to achieve the same averageaccuracy as the nearest-neighbor classi�er based on all training points.6.2.3 Image Segmentation datasetThe data we used was taken from UCI Machine Learning Repository (Blake, Keogh & Merz, 1998).This dataset originally contained feature vectors with 19 numerical valued attributes which belonged to17T
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Figure 13: Pima Indians Diabetes dataset: Comparison of the selective sampling methods. Learning allpoints in the training set gives an error of � 31%.Table 2: Ionosphere dataset: Average error rates and their standard deviations for classi�ers based on 20selected examples (10% of the training set). Statistics based on 100 runs.Selective sampling method Average error rate Standard deviationRandom 18:5% �8:9%Uncertainty 30:3% �21:7%Maximal Distance 19:8% �9:2%Lookahead 7:6% �2:2%7 classes. We dropped one attribute which was constant for all feature vectors, normalized the attributesto �t into [0; 20] interval and transformed the data to be the binary classi�cation problem by assigninglabel 0 to original classes of BRICKFACE, SKY, FOLIAGE and label 1 to the classes of CEMENT,WINDOW, PATH, GRASS. This dataset consists of pre-de�ned training and test sets of sizes 210 and2100, which we used in our experiments. An error rate of a nearest-neighbor classi�er based on thetraining set was 4:7%.The average accuracy for a classi�ers based on the selected 10% of the learning space is shown onTable 3. The results of comparison of the selective sampling methods learning curves are shown in inFigure 15. Again we observe the superiority of the lookahead selective sampling method in terms of anaverage error rate and standard deviation. Note that the best non-lookahead selective sampling method,uncertainty, needs almost twice the number of examples the lookaheadmethod needs to achieve an errorrate of 15%.6.2.4 Letters datasetThis synthetic dataset, which was contributed to the UCI Machine Learning Repository (Blake, Keogh &Merz, 1998) by David Slate (1991), consists of 20000 feature vectors belonging to 26 classes representingthe capital letters of Latin alphabet. The features of these characters were summarized in 16 numerical18T
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Figure 14: Ionosphere dataset: Comparison of the selective sampling methods. Learning all points in thetraining set gives an error of � 7:9%.Table 3: Image Segmentation dataset: Average error rates and their standard deviations for classi�ers basedon 21 selected examples (10% of the training set). Statistics based on 100 runs.Selective sampling method Average error rate Standard deviationRandom 16:9% �5:5%Uncertainty 14:8% �5:0%Maximal Distance 26:6% �9:3%Lookahead 10:9% �1:4%attributes that can receive values from the range [0; 15]. We modi�ed the data by changing all lettersfrom 'a' to 'm' to 0 and all the letters from 'n' to 'z' to 1. This dataset was randomly divided into 10separate pairs of training and test sets (1000 examples each), and 10 experiment runs were conductedon each pair, resulting in total 100 experimental runs for which the average error rate and its standarddeviation were reported. The average error rate of a nearest-neighbor classi�er based on all points in thetraining set was � 11:6%.The error rates of the various selective sampling methods using only a 10% of the training set arereported in Table 4, along with the learning curves shown in Figure 16. The lookahead selective samplingalgorithm outperforms other selective sampling methods in this particularly hard domain, where everyclass consists of many di�erent subclasses (associated with the di�erent letters).6.2.5 Two Spirals problemWe decided to test our method on this particular problem for a comparison, since this dataset was used inthe work of Hasenjager and Ritter (1998). This is an arti�cial problem where the task is to distinguishbetween two spirals in XY -plane, as shown in Figure 17. The examples were randomly generated from19T
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Figure 15: Image Segmentation dataset: Comparison of the selective sampling methods. Learning all thepoints in the training set gives an error of � 4:7.Table 4: Letters dataset: Average error rates and their standard deviations for classi�ers based on 100selected examples (10% of the training set). Statistics based on 100 runs.Selective sampling method Average error rate Standard deviationRandom 30:8% �1:7%Uncertainty 28:6% �2:3%Maximal Distance 29:6% �4:0%Lookahead 28:2% �2:0%a uniform distribution over [�7;7] � [�7;7] and classi�ed o�-line1 . The feature space of this problemis illustrated in Figure 17. The Bayes error of such classi�cation is zero since the classes are perfectlyseparable and the average error of a nearest-neighbor classi�er based on 1000 random labeled points is� 9:1%.The error rates of the various selective sampling methods using only 10% of a training set are shownin Table 5. The learning curves of the selective sampling methods are illustrated in Figure 18. All threenon-random methods exhibited comparable performance, with Maximal-Distance method being slightlybetter than others. On the other hand, the Maximal-Distance method is the most unstable method. Inthe next experiment we show that other methods lack one of the basic properties required from selectivesampling algorithms - exploration - and fail in the datasets consisting of separated regions of the sameclassi�cation.6.2.6 Two Gaussians problemThis dataset was specially constructed to demonstrate the advantage of the lookahead selective samplingmethod in the domains which consist of more than one region of the same classi�cation. The feature1We used a code available from [http://www.boltz.cs.cmu.edu/benchmarks/two-spirals.html], and (Lang & Witbrock, 1988)as a basis for our \two spirals" data generation program. 20T
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Figure 16: Letters dataset: Comparison of the selective sampling methods. Learning all the feature spacegives a classi�er with an average error of 11:6%.Table 5: Two Spirals problem: Average error rates and their standard deviations for classi�ers based on 100selected examples (10% of the training set). Statistics based on 100 independent runs.Selective sampling method Average error rates Standard deviationRandom 27:9% �2:1%Uncertainty 26:1% �2:5%Maximal Distance 24:5% �5:1%Lookahead 26:3% �2:0%space of Two Gaussians problem consists of two-dimensional vectors belonging to two classes with equala priori probability (0:5). The distribution of class 1 is uniform over the region [0; 20]� [0; 20] and thedistribution of class 0 consists of two symmetric Gaussians, with means in points (5; 5) and (15; 15) andcovariance matrix � = 22I, normalized to �t the [0;10]� [0; 10] and [10; 20]� [10; 20] windows. The datais illustrated in Figure 19. The Bayes decision boundary can be derived analytically, and the Bayes erroris 18:2%, while the expected error of a nearest neighbor classi�er based on 1000 randomly drawn trainingpoints is � 18:2%.The average errors of a nearest-neighbor classi�ers based on 10% of the training set selected byvarious selective sampling methods are summarized in Table 6. The learning curves of the variousselective sampling methods are shown in Figure 20. We can see that apparently the uncertainty andmaximal-distance selective sampling methods fail to detect one of the Gaussians, resulting in highererror rates. The variance of the lookahead selective sampling method is much lower due to the samereason - the lookahead selective sampling algorithm always detects both regions, while the uncertaintyand the maximal-distance methods discover it only occasionally creating greater variance in the quality ofresulting classi�ers. The uncertainty and the maximal-distance selective sampling algorithm experiencefailure due to the fact that these methods consider sampling only at the existing boundary, while in thisdomain exploration is essential for good performance.21T
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Figure 17. The feature space of Two Spirals problem.
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Figure 18: Two Spirals problem: Comparison of the selective sampling methods. Learning all the points inthe training set gives a classi�er with average error 9:1%.22T
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Figure 19. The feature space of Two Gaussians problem.Table 6: Two Gaussians problem: Average error rates and their standard deviations for classi�ers based on100 selected examples (10% of the training set). Statistics based on 100 independent runs.Selective sampling method Average error rate Standard deviationRandom 27:3% �2:6%Uncertainty 32:7% �6:0%Maximal Distance 31:4% �6:5%Lookahead 24:9% �2:1%6.2.7 Multi-Gaussian problemThis arti�cial problem is similar to the Two Gaussians dataset, but the number of Gaussians is increased,in order to further investigate the sampling style of the lookahead selective sampling algorithm. Similarlyto Two Gaussians data, we have two-dimensional vectors belonging to two classes with equal a prioriprobability (0:5). The distribution of class 1 is uniform over the region [0; 20]�[0; 20] and the distributionof class 0 consists of nine symmetric Gaussians, with means in the grid (3:5; 10; 16:5)� (3:5;10; 16:5) andcovariance matrix � = 12I. The data is illustrated in Figure 21. The Bayes decision boundary can beapproximated analytically, and the Bayes error is 20:8%, while the expected error of a nearest-neighborclassi�er based on 1000 points is � 29:9%.The learning curves of the various selective sampling methods are shown in Figure 22 and the nu-merical results are summarized in Table 7. Again, it can be seen that the uncertainty and the maximal-distance selective sampling methods fail to detect some of the Gaussians, resulting in higher error rates.The lookahead selective sampling seems to perform bad at the initial stages of the learning. Byanalyzing the errors in each class (Figure 23) we can understand that such behavior is the result ofoversampling in the clusters of class 0, arising from a higher density in these regions.6.3 The e�ect of the covariance function on the performanceWe carried out additional experiments to determine how much our algorithm depends on the choice ofcovariance function, in particular, how much it depends on the choice of the scaling parameter D. In theexperiments reported in the previous section, D was set to 4. In this section the scale parameter was set tobe twice and four times larger and smaller than those in the original experiments, i.e. D = 1; 2; 8 and 16.The dependence of the average error rate on parameter D is shown in Figure 24. The results for23T
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Figure 20: Two Gaussians problem: Comparison of the selective sampling methods. Learning all the pointsin the training set gives an error of 27:3% and the Bayes error is 18:2%.Table 7: Multi-Gaussian problem: Average error rates and their standard deviations for classi�ers based on100 selected examples (10% of the training set). Statistics based on 100 independent runs.Selective sampling method Average error rate Standard deviationRandom 35:5% �2:9%Uncertainty 39:4% �3:1%Maximal Distance 38:5% �4:6%Lookahead 33:6% �2:6%Ionosphere datasets, typical for the rest of data, are summarized in Table 8. These results demonstratethe stability of the lookahead algorithm upon a wide range of the scale parameter. In addition, we can seethat generally the variance of the error rates of the resulting classi�ers decreases with D. This could havebeen expected, since increasing D means the decreasing of the actual inuence range (see initializationalgorithm on Figure 11) and thus the higher D the more local, and the less depending on the initialrandom example, is the sampling strategy.6.4 The e�ect of the utility function on the performanceIn Section 3.2 we propose an alternative exploratory utility function, UchL . We performed an experimentto compare this function to our standard utility function. The results are shown in Table 9. For mostdatasets the exploratory utility function yields the slight improvement over the accuracy-based utilityfunction. Noticeable exception is the noisy Pima Indians Diabetes dataset, where the more conservativeaccuracy based utility function has an advantage.6.5 Summary of experimental resultsThe experiments show that the lookahead sampling method performs better or comparable with otherselective sampling algorithms on both real and arti�cial domains. It is especially strong when the instance24T
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Figure 21. The feature space for Multi-Gaussian problem. Bayes decision boundaries are shown.
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Figure 22: Multi-Gaussian problem: Comparison of the selective sampling methods. The Bayes error is� 20:8% and learning all the points in the learning space gives an average error of � 29:9%.25T
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(a) (b)Figure 23: Multi-Gaussian problem: (a) errors in class 0, (b) errors in class 1. This Figure supports theclaim that the lookahead selective sampling algorithm tends to sample �rst in the dense clusters (class 0).
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Figure 24: Average error rate (in percent) as a function of the scale parameter D. Statistics based on 100runs, sampling 10% of the instance space in each run.space contains more than one region of some class. Then, the selective sampling algorithm must considernot only the examples from the hypothesis boundary, but also explore large unsampled regions. The lackof an \exploration" element in uncertainty and maximal-distance sampling methods often results in thefailure of these methods.The advantage of a lookahead selective sampling method can be seen by comparing the numberof examples needed to reach some pre-de�ned accuracy level. Figure 25 shows a number of examplesneeded for various selective sampling algorithms to reach the average error level, equal to that achievedby the lookahead selective sampling using only 5% of the instance space. Note that in the Pima IndiansDiabetics domain, other selective sampling methods never achieve accuracy of the lookahead sampling(due to noise).The experiments indicate that the proposed selective sampling approach is more stable than thealternatives in the following two aspects:Stability within a domain As apparent from the variance of the error rates of the resulting classi�ers,26T
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Table 8: Variations of D parameter, Ionosphere dataset: Average error rates and their standard deviationsfor classi�ers based on 20 selected examples (10% of the training set). Statistics based on 100 runs.Selective sampling method Average error rate Standard deviationLookahead, D = 1 10:6% �6:4%Lookahead, D = 2 7:4% �3:3%Lookahead, D = 4 7:6% �2:2%Lookahead, D = 8 7:2% �0:6%Lookahead, D = 16 8:4% �0:6%Table 9: Average error rates for the lookahead selective sampling algorithm using the two alternative utilityfunctions.Utility Pima Ionosphere Image Letters Two Two MultiIndians Segm. Spirals Gaussians Gaussaccuracy 26:9% 7:6% 10:9% 28:2% 26:3% 24:9% 33:6%exp-change 30:0% 6:7% 9:5% 27:5% 25:0% 24:2% 34:0%the lookahead selective sampling algorithm is the most stable one with regard to di�erent trainingsets within a domain and to the di�erent choices of the �rst example.Stability over domains The results, described in Tables 1-7, show that while the second best selectivesampling method changes, the lookahead selective sampling algorithm remains the best and themost stable among the compared methods. This can also be seen in Figure 26, which brings theresults of di�erent experiments together.7 DiscussionIn many real-world domains unlabeled examples are available in large quantities, while it is expensive tolabel a large number of examples for training. A possible solution of this problem, investigated in thispaper, is to provide the learning algorithm with an ability to automatically select the training examplesfrom an unlabeled instance space. In the context of the nearest-neighbor classi�cation, this paradigmcan be viewed as an example �ltering in addition to the selective utilization �ltering implemented in theIB3 algorithm (Aha, Kibler & Albert, 1991).This paper proposes a lookahead framework for selective sampling, which selects an optimal examplein the Bayesian sense. This framework and a novel, random �eld model of the instance space labelingstructure, are the major contributions of this research to the �eld of machine learning.The random �eld model which we use was inspired by the rationale for the nearest-neighbor classi-�cation. Nearest-neighbor classi�ers are often used when little or no information is available about thefeature space structure. In this case the loose, minimalistic speci�cation of the feature space labelingstructure implied by the distance-based random �eld model, seems to be appropriate. We also observethat large changes in the covariance function had no signi�cant e�ect on the classi�cation performance.Our algorithm, however, has a number of de�ciencies, which can be addressed in future research. Con-sidering the classi�cation of one point (including �nding 1 or 2 labeled neighbors) a basic operation, theuncertainty and the maximal-distance methods have time complexity of O(jXj) while the straightforwardimplementation of the lookahead selective sampling has a time complexity of O(jXj2) (we need to com-pute class probabilities for all points in the instance space after each lookahead hypothesis). This highercomplexity, however, is well justi�ed for a natural setup, where we are ready to invest computational27T
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Figure 25: Comparing a number of examples needed for the average learning error of various methods toachieve the level equal to one that lookahead algorithm achieves at 5% of the learning sets. In each groupfrom left to right: random, uncertainty, maximal distance and lookahead sampling methods. Note that in\Pima Indians" domain, other selective sampling methods never achieve accuracy of the lookahead samplingalgorithm (due to noise).resources to save time for a human expert whose role is to label examples.Another de�ciency, and a possible direction of further research, lies in the application of the random�eld model as a probability estimation tool for a nearest neighbor classi�cation. As it was mentionedin Section 5, this model is consistent with 1-NN classi�cation only if we can neglect the inuence of alllabeled neighbors except the two closest to the current point of interest. In some cases, however, takingonly two neighbors into account is not an optimal strategy.Consider, for example, n labeled points distributed uniformly within a unit ball of d dimensions, andsuppose the point of interest lies in the center of the ball. The higher the dimensionality, the larger partof the ball weight tends to be on the outer sphere; hence the di�erence in distances from the point ofinterest to closest labeled points in the sphere decreases with dimensionality. This example supports theclaim that in order to de�ne the classi�cation of the point of interest in higher dimensions one shouldconsider a larger number of nearest neighbors.A natural extension of this research is the application of the lookahead sampling to other models offeature space classi�cation structure or to another classi�cation algorithm. The issue of reducing thetime complexity of a lookahead sampling should also be further investigated, where one possibility is tode�ne the cost model, i.e. an amount of resources/time one can allow in order to select the next example.We believe that the research presented in this paper is a signi�cant contribution to the emerging �eldof selective sampling becoming especially relevant in modern data mining applications.8 AcknowledgmentsThe authors would like to thank Neri Merhav for the helpful discussions.ReferencesAdler, R. J. (1981). The Geometry of Random Fields. Wiley series in probability and mathematicalstatistics. John Wiley & Sons. 28T
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