AN ALGORITHM FOR FINDING A SHORTEST VECTOR IN A TWO DIMENSIONAL MODULAR LATTICE

by

Mody Lempel and Azaria Paz

Technical Report #658
December 1990
AN ALGORITHM FOR FINDING A SHORTEST VECTOR IN A TWO DIMENSIONAL MODULAR LATTICE

by

Mody Lempel and Azaria Paz
Computer Science Department
Technion - Israel Institute of Technology
Haifa 32000, Israel

ABSTRACT

Let \(0 < a, b < d\) be integers with \(a \neq b\). The lattice \(L_d(a, b)\) is the set of all multiples of the vector \((a, b)\) modulo \(d\). An algorithm is presented for finding a shortest vector in \(L_d(a, b)\). The complexity of the algorithm is shown to be logarithmic in the size of \(d\), when the number of arithmetical operations are counted.
1. INTRODUCTION

A classical algorithm, due to Gauss, for finding a shortest vector in a two dimensional lattice, has been used as one of the main building blocks in the recent \(L^3\) (Lenstra A.K., Lenstra, H.W. Jr., and Lovasz, L.) basis reduction algorithm for general lattices \([1]\). The complexity of Gauss’ algorithm has been shown to be logarithmic in the maximal integer among the entries of the vectors forming the basis of the lattice at input (when counting the number of arithmetical operation involved) \([2]\).

Let \(0 < a, b < d\) be integers such that \(a \neq b\). We define \(L_d(a,b)\) to be the modular lattice generated by the vector \((a,b)\) modulo \(d\), i.e. the (finite) set of all vectors of the form \((ia \mod d), (ib \mod d))\), \(0 \leq i < d\), which is closed under addition modulo \(d\).

We present, in this paper, an algorithm for finding a shortest vector in a lattice \(L_d(a,b)\) as above, and we prove that the complexity of the algorithm is logarithmic in the size of \(d\), when counting the number of arithmetical operations involved.

While our algorithm bears certain similarities to the algorithm of Gauss, the two algorithms are different and cannot be reduced one to the other, when Gauss algorithm is considered over vectors with integer entries only. Thus, e.g. in the modular lattice generated by the vector \((4,1)\) modulo 5, a shortest (nonzero) vector is the vector \((2,3) = (3\cdot4 \mod 5), 3\cdot1 \mod 5)\) (or the vector \((3,2)\) which has the same length). The shortest vector in the corresponding general (nonmodular) lattice containing the vectors \((4,1)\) and \((3,2)\) is \((-1,1) = (3\cdot4,2\cdot-1)\).

Conversely, consider the general (nonmodular) lattice with base vectors \((7,11)\) and \((5,8)\). The determinant \[\begin{vmatrix} 7 & 11 \\ 5 & 8 \end{vmatrix}\] is equal to 1. It can be shown that under those circumstances no \(d > 1\) exists such that \((5,8) = (i\cdot7 \mod d), i\cdot11 \mod d)\), \(0 \leq i < d\), since the existence of such a \(d\) would imply that the above determinant has value \(\geq d\) (see next section in the paper).

It is hoped that this algorithm will enable generalizations for general \(n\)-dimensional modular lattices, and will have applications to other areas of study (e.g. Cryptology, Coding Theory, Geometry of Numbers, etc.).
2. PRELIMINARIES

Given the integers $0 < a, b < d$ and i, the notation $i(a,b) (\text{mod } d)$ stands for the vector $(ia (\text{mod } d), ib (\text{mod } d))$.

We shall denote by $L_d(a,b)$ the modular lattice $L_d(a,b) = \{i(a,b)(\text{mod } d) : 0 \leq i \leq d-1\}$. We start with a few simple remarks:

1. If $gcd(a,b,d) = g > 1$ then the lattice $L_{dg} \left[\frac{a}{g}, \frac{b}{g} \right]$ is an isomorphic contraction of the lattice $L_d(a,b)$. The shortest vector of the original lattice is equal to the shortest vector of the L_{dg} lattice multiplied by g. We shall assume therefore that $gcd(a,b,d) = 1$.

2. If $gcd(a,b,d) = 1$ but $gcd(a,b) = g_1 > 1$ then $L_d \left[\frac{a}{g_1}, \frac{b}{g_1} \right] = L_d(a,b)$. This follows from the fact that g_1 is invertible modulo d, given that $gcd(a,b,d) = 1$. Thus

$$i(a,b)(\text{mod } d) = \left[\frac{a}{g_1}, \frac{b}{g_1} \right] (\text{mod } d)$$

where

$$j \equiv ig (\text{mod } d) \text{ if } i \text{ is given and}$$

$$i \equiv jg^{-1} (\text{mod } d) \text{ if } j \text{ is given.}$$

3. Any two vectors in L_d whose determinant is equal to $\pm d$ will be called a geometrical basis for L_d. It will be shown in the next section that any vector $(a,b) \neq (1,1)$ (with $gcd(a,b) = 1$) belongs to a geometrical basis. Vectors in L_d will be considered both as vectors and as points in two dimensional space. Let (a,b) and (c,e) be a geometrical basis in L_d. Consider the topological torus formed from the square $0 \leq x, y \leq d$ when its edges $x = 0, y = 0$ are identified with the edges $x = d, y = d$, correspondingly. The area of the face of this torus is d^2 and it is covered by d nonoverlapping translates of the parallelogram whose vertices are $(0,0), (a,b), (c,e), (a+c, b+e)$ and whose area is d. It follows that the determinant of any 2 points in L_d which are not colinear is equal to $\pm kd$ where k is an integer $0 < k < d$.

3. SOME PROPERTIES OF L_d

Lemma 1: Let (c,e) be a point vector in $L_d(a,b)$ such that $gcd(c,e) = 1$. If $c > 1$ then there is a vector (c_1,e_1) in $L_d(a,b)$ such that

$$\begin{vmatrix} c & e \\ c_1 & e_1 \end{vmatrix} = d.$$

If $e > 1$ then there is a vector (c_2,e_2) in $L_d(a,b)$ such that

$$\begin{vmatrix} c & e \\ c_2 & e_2 \end{vmatrix} = -d.$$

Proof: Assume that $c > 1$. $gcd(c,e) = 1$ implies that there are integers u, v such that $cu - ev = 1$. Multiplying by d we get $cud - evd = d$. This equality induces the set of equalities

$$c(ud - ke) - e(vd - kc) = d$$

for any integer k.

Let k_0 be the maximal k such that both $(ud - k_0 e) = e_1 \geq 0$ and $(vd - k_0 c) = c_1 \geq 0$. If both e_1 and c_1 are smaller than d, then from $(c_1, e_1) = (v, u)d - (c, e)k_0$ we get that (c_1, e_1) is a modular multiple of a vector in $L_d(a,b)$ and satisfies therefore the requirement of the lemma. To complete the proof of the first part of the lemma we must show that $c_1c_1 < d$.

From the choice of k_0 we know that either $c_1 < c$ or $e_1 < e$. Assume, by way of contradiction that $ce_1 - ec_1 = d$ and either

$$c_1 < c < d$$

together with $e_1 \geq d$

or

$$c_1 \geq d$$

together with $e_1 < e < d$.

In the first case we have that $c_1 \leq c-1$, $e < d$ and $e_1 \geq d$. Also, since $c > 1$ (by assumption) $c-1 > 0$. Therefore, $d = ce_1 - ec_1 > cd - d(c-1) = d$,

a contradiction.

In the second case, we have that $e_1 \leq e-1$, $c < d$ and $c_1 \geq d$. This implies that $d = ce_1 - ec_1 < d(e-1) - ed = -d$,

which is impossible.
It follows that \(c_1, e_1 < d \) and the proof of the first part of the lemma is complete. The proof of the second part is similar.

Remark: The excluded point vector \((1, 1)\) can never belong to a geometrical basis since the value of the determinant \[
\begin{vmatrix}
1 & 1 \\
1 & c
\end{vmatrix}
\]
is always less than \(d \), in absolute value, given that \(0 < c, e < d \). Moreover, if the vector \((1, 1)\) belongs to a modular lattice \(L_d \), then

\[
L_d = \{(k, k); 0 \leq k < d\}.
\]

No other vector \((c, e) \neq (k, k)\) can belong to \(L_d \). Any such vector forms a determinant with \((1, 1) \in L_d \) whose value is less than \(d \), which cannot happen for vectors in \(L_d \) (see previous section).

The next few lemmas provide a characterization of the set of points forming a geometrical basis with a given vector.

Lemma 2: Let \((a, b)\) be a vector in a lattice \(L_d \). Let \((c, e)\) be another vector in \(L_d \) such that \((a, b)\) and \((c, e)\) form a geometrical basis. If \(\gcd(a, b) = g > 1 \) with \((a, b) = g(a', b')\) then any vector of the form \(k(a', b'), 1 \leq k < g \) is not in \(L_d \).

Proof: Since \((a, b)\) and \((c, e)\) form a basis we have that \[
\begin{vmatrix}
\frac{a}{c} & \frac{b}{e}
\end{vmatrix} = \frac{ga' gb'}{c e} = \pm d.
\]
Assume that the determinant equals \(+d \) (the other case is similar). This implies that \[
0 < \left| \frac{ka' kb'}{c e} \right| < \left| \frac{ga' gb'}{c e} \right| = d.
\]
Given that \((c, e)\) is in \(L_d \), if \((a', b')\) is in \(L_d \) then \[
\left| \frac{ka' kb'}{c e} \right|
\]
must be equal to 0 or to a nonzero multiple of \(d \), a contradiction.

Lemma 3: Let \((a, b)\) be a vector in a lattice \(L_d \) and let \((c, e)\) and \((c', e')\) be two vectors in \(L_d \) such that both form a basis with \((a, b)\). Then \((c, e)\) can be written in the form

\[
(c, e) = (c', e') + i(a, b) \quad \text{or} \quad (c, e) = -(c', e') + i(a, b)
\]
for some \(1 \leq i < d \).

Proof: It follows from the assumptions that \(ae - bc = \pm (ae' - bc') \). Let \(\gcd(a, b) = g \) with \((a, b) = g(a', b')\). Then

\[
\gcd(a' \pm e') = gb'\]

implying that

\[
\pm e' = kb' \quad \text{and} \quad c \pm c' = ka'
\]
Thus

\[(c,e) = (c',e') + k(a',b') \quad \text{or} \quad (c,e) = -(c',e') + k(a',b').\]

If \(g = 1 \) or \(g \mid k \) then we are done. To complete the proof we show that this is the only possible case. Otherwise, let \(g > 1 \) and \(k = gs + r, \; 0 < r < g \). Then

\[(c,e) = (c',e') + s(a,b) + r(a',b')\]

or

\[(c,e) = -(c',e') + s(a,b) + r(a',b').\]

In both cases \(r(a',b') \) must be in \(L_d \) since \((c,e), (c',e') \) and \(s(a,b) \) are in \(L_d \) and all the entries of all the vectors involved are nonnegative. But this contradicts Lemma 2 since \(0 < r < g \).

\[\square\]

Corollary 4: Let \((a,b), (c,e)\) be two vectors in \(L_d \) which are a geometric basis. The set of all vectors forming a basis with \((a,b)\) in \(L_d \) is the set (*) below

\[(p,q) = \pm (c,e) + i(a,b): -d \leq i \leq d, \; 0 \leq p, q < d\] (*)

Lemma 5: Let \(i_0 \) be the maximal \(i \) such that \((c,e) - i_0(a,b)\) is nonnegative and let \(i_1 \) be the minimal \(i \) such that \(-(c,e) + i_1(a,b)\) is nonnegative, in the set (*). Then the shortest vector in the set (*) is the shortest of \((p',q')\) and \((p'',q'')\) where

\[(p',q') = (c,e) - i_0(a,b), \]

\[(p'',q'') = -(c,e) + i_1(a,b).\]

Proof: Left to the reader.

Remark: Notice that \(i_0 \) can be defined as

\[
i_0 = \left\{ \begin{array}{ll}
\text{if } a, b > 0 & \text{then } \min\{\left\lfloor \frac{c}{a} \right\rfloor, \left\lfloor \frac{c}{b} \right\rfloor \} \\
\text{if } b = 0 & \text{then } \left\lfloor \frac{c}{a} \right\rfloor \\
\text{if } a = 0 & \text{then } \left\lfloor \frac{c}{b} \right\rfloor
\end{array} \right.
\]

and \(i_1 \) can be defined in a similar way. It follows that the number of operations involved in the computation of the shortest vector in the set (*) is constant.
2.4 If $p \leq m-1$ return u_p, halt;

2.5 Set $v_2 = u_p$, $v_1 = u_{p-1}$, $k := \frac{v_1}{v_2}$
end;
[Remark: Now $k > 2$ and $\delta_j > 0$]

2.6 Set $v_3 := v_2$, $v_2 := -v_1 + kv_2$, $v_1 := v_3$
end (repeat);

3. If $|v_2| > |v_1|$ return v_1, else return v_2
end of algorithm

5. PROPERTIES OF THE MIN-CROSS Procedure

The vectors at input v_1 and v_2 are assumed to satisfy the following properties:

(a) $|v_2| < |v_1|$
(b) v_2 and v_1 are cross vectors
(c) v_2 and v_1 are a geometrical basis for a lattice L_d.

Consider the sequence of vectors below:

$$v_1, v_2, v_3, \ldots, v_i$$

such that for all $i > 2$ the following properties hold

(d) $|v_i| < |v_{i-1}|$, $i \geq 2$
(e) v_i is the shortest vector in L_d which forms a basis for L_d with v_{i-1}.

We proceed to prove the following

Theorem 6:

(f) v_i and v_{i-1} are cross vectors, of the same type (left or right) as v_2 and v_1, for all $i \geq 2$.

(a) The vectors generated, at steps 2.5 and 2.6 by the procedure Min-Cross are a subsequence of the sequence (1), starting from v_2 and on.

(b) v_i, the last vector in (1), is the last vector generated by the procedure, at one of the steps 1, 2.3, 2.4, 3.

(i) The number of iterations of the procedure is logarithmic in the magnitude of d.

Proof: (f) is proved by induction. By assumption v_2 and v_1 are cross vectors. Assume that v_{i-1} and v_{i-2}, $i \geq 3$, are left cross vectors with $v_{i-1,1} < v_{i-2,1}$ and $v_{i-1,2} > v_{i-2,2}$ (the right cross case is
where the line passing through v_1 and v_2 is

$$l(a) = v_2 - a(v_1 - v_2) = v_2 - a\delta.$$

Let $m = \left\lfloor \frac{v_{21}}{\delta_1} \right\rfloor$ and assume $k = \left\lfloor \frac{v_{11}}{v_{21}} \right\rfloor = 2$.

Claim 1: $k = 2$ implies that $m \geq 1$.

Proof: $k = 2$ implies that $v_{11} \leq 2v_{21}$ by the definition of k. This implies that $\delta_1 = v_{11} - v_{21} \leq v_{21}$ or $\frac{v_{21}}{\delta_1} \geq 1$ resulting in $m = \left\lfloor \frac{v_{21}}{\delta_1} \right\rfloor \geq 1$. \qed

Define as before $u_i = v_2 - i\delta$ ($u_{-1} = v_1$, $\delta = v_1 - v_2$), $k_i = \left\lfloor \frac{u_{i-1}}{u_{i-1}} \right\rfloor$ ($k = k_0$), and assume the following: $k_0 = 2$, u_0 is the shortest vector in L_d forming a basis with u_{-1} and u_0. u_{-1} and u_1 are left cross vectors.

Claim 2: Under the above assumptions, for all $0 \leq i < m$, $k_i = 2$, the vector u_i is the shortest vector forming a basis in L_d with u_{i-1}, u_i and u_{i-1} are left cross, and $u_{i-1} - u_i = \delta$.

Proof: By induction. For $i = 0$, the properties follow from the definitions and assumptions.

Assume now that, for $i > 0$, $k_{i-1} = 2$, u_{i-1} is the shortest vector forming a basis in L_d with u_{i-2}. u_{i-1} and u_i are left cross vectors and $u_{i-2} - u_{i-1} = \delta$. The shortest vector forming a basis in L_d with
If $\alpha < 0$ (step 3.1, $p_1 = [\alpha]$), then there is no vector shorter than v_2 forming a basis for L_d with v_1 (the shortest such vector is the vector $v_2 - \delta$ which must be longer than v_2 since v_2 is longer than $v_2 + (\alpha) \delta$). v_2 must therefore be the final vector in the sequence (1) and the procedure halts.

Let u_r be the shortest vector in the sequence (u_i) on I.

If $r = m$: this happens if $p_1 = \alpha = m$ or $p_1 = \alpha = m - 1$ but $p = m$ ($|u_m| < |u_{m-1}|$).

Then the sequence u_1, u_2, \ldots, u_m is the subsequence $v_1, v_2, \ldots, v_{m+1}$ of (1), by Claim 2 with $m \geq 1$ (Claim 1). This case corresponds to step 2.5 in the procedure. The vectors v_1 and v_2 are reset and the procedure continues with step 3.

If $k \geq 3$ then the procedure proceeds directly to step 2.6 and it either halts with v_1 at output, if the new v_2 (the shortest vector forming a basis with v_1) is longer than v_1; or it halts with the new v_2 at output, if the new v_2 is terminal; or it proceeds with a new iteration. The proof of the properties (g) and (h) is thus complete.

Proof of (i): Let v_{j+2} be the new v_2 vector created at step 2.6 at iteration j. The application of step 2.6 is based on $k > 2$. Therefore $k = \lceil \frac{v_{j+1,1}}{v_{j+2,1}} \rceil > 2$ or $v_{j+1,1} > 2v_{j+2,1}$. Thus the new first coordinate of v is decreased by a factor of at least 2. The number of iterations is therefore logarithmic in the magnitude of the coordinates of the vectors at input which are bounded by d.

All properties of the procedure are now proved.

6. THE MAIN ALGORITHM

To find the shortest vector in a modular lattice L_d generated by a vector $v = (v_1, v_2)$, modulo d, $v_1 \neq v_2$, apply the following algorithm.

1. Assume $gcd(a, b, d) = 1$

2. If $gcd(v_1, v_2) = g > 1$ then reset $(v_1, v_2) = \frac{1}{g}(v_1, v_2)$. Now $(v_1, v_2) \neq (1, 1)$.

3. Based on Lemma 1 and Lemma 5 find the shortest vector v_2 forming a basis with v_1

4. While $|v_2| < |v_1|$
7. PROOF OF CORRECTNESS

We conclude now by showing that the algorithm is correct and that its complexity is logarithmic in the size of d (when counting the number of arithmetical operations).

Lemma 7: Let ABC be a triangle in the plane such that the vertices A, B, C correspond to vectors in L_d. If the area of ABC is greater than $d/2$, then there must be a point of L_d different from A, B and C, on the border of or inside the triangle.

Proof: Consider the torus formed by identifying the edges $x = d$, $y = 0$, correspondingly, of the square $(x,y) : 0 \leq x,y \leq d$. The area of the face of this torus is d^2. If no lattice point exists inside or on the border of ABC then the parallelogram formed by the edges AB and AC has no lattice points inside or on its border, except its vertices. Under the assumption of the lemma, the area of the parallelogram is greater than d. Thus d translates of this parallelogram will cover the whole torus with no overlap implying that the area of the torus is greater than d^2, a contradiction.

Theorem 8: If a vector v in L_d has the property that no vector in L_d forming a basis with v is shorter than v, then v is the shortest vector in L_d.

Proof: Assume to the contrary that there is a vector v_1 shorter than v in L_d. v_1 cannot form a basis with v by the properties of v_1. Therefore, the triangle whose vertices are $0,v,v_1$ (0 is the origin) must have an area which is greater than $d/2$. Both vectors v and v_1 belong to some basis and therefore, by Lemma 2, no vector in L_d can subdivide v_1 or v_2. By the previous lemma there must be a point in L_d inside the triangle or on the line joining v to v_1. Let v_2 be such a point, then obviously $|v_2| < |v|$ (since $|v_1| < |v_1|$) and the area of the triangle whose vertices are $0,v_2,v$ is smaller than the area of
The algorithm is thus shown to be correct.

8. COMPLEXITY ANALYSIS

If, at step 4, $|v_2| \geq |v_1|$, the algorithm halts. If at step 4.1 v_2 and v_1 are crossing, then the algorithm enters procedure Min-Cross and will eventually halt, while executing this procedure, in at most $O(\log_2 d)$ steps.

Let v_i, v_{i-1}, v_{i-2} be the vectors generated at step 4.3 at the $i, i-1$ and $i-2$ iterations correspondingly, with $i \geq 2$. Since $|v_{i-1}| < |v_{i-2}|$, with $|v_{i-1}|^2$ and $|v_{i-2}|^2$ being integers, the algorithm will eventually halt. Since the algorithm did not enter the procedure Min-Cross at step 4.1, we must have that $|v_{i-1}| \leq |v_{i-2}|$ and v_{i-1}, v_{i-2} are not crossing. Therefore $v_{i-1,1} = v_{i-2,1}$, $v_{i-1,2} = v_{i-2,2}$, and at least one of the inequalities is strict. Let

$$k_i = \min \left\{ \frac{|v_{i-2,1}|}{v_{i-1,1}}, \frac{|v_{i-2,2}|}{v_{i-1,2}} \right\} ; k_i \geq 1 \text{ (since the vectors are not cross).}$$

The vector v_i generated at step 4.3 is either equal to $v_{i-2} - k_i v_{i-1}$ or a shorter vector (in case $v_{i-2} + k_i v_{i-1}$, as defined in Lemma 5, is shorter than $v_{i-2} + i v_{i-1}$). Set $v'_i = v_{i-2} - k_i v_{i-1}$. It follows that

$$|v'_i| = |v_{i-2} - k_i v_{i-1}| \geq |v_i|.$$

Now $v_{i-2} = v'_i - k_i v_{i-1}$ which implies that

$$|v_{i-2}| = |v'_i - k_i v_{i-1} | \geq |v'_i| + |v_{i-1}|$$

since k_i is positive and the entries of the vectors involved are nonnegative.

Consider the parallelogram whose vertices are the origin O and the points A, B, C, corresponding to v_{i-1}, v'_i and $v'_i + v_{i-1}$, all in the positive quadrant. Since v'_i and v_{i-1} are both in the positive quadrant, the origin is an acute angle in the parallelogram and the angle between the edges OA and AC is obtuse. It follows from the law of cosines that $OC^2 \geq OA^2 + AC^2 = OA^2 + OB^2$ which implies that
Combining the last three inequalities we get that

\[|v_i + v_{i-1}|^2 \geq |v_i|^2 + |v_{i-1}|^2. \]

Notice also that the numbers involved in the above inequality are nonnegative integers.

Let \(t \) be the number of iterations of the algorithm through step 4.3 and let \(\phi \) be the positive solution of the equation \(x^2 = x + 1 \), \(\phi = (1 + \sqrt{5})/2 \). Then

\[|v_t|^2 \geq 1 \]
\[|v_{t-1}|^2 \geq |v_t|^2 \geq 1 \]
\[|v_{t-2}|^2 \geq |v_{t-1}|^2 + |v_t|^2 \geq 2 > \phi \]
\[|v_{t-1}|^2 \geq |v_{t-2}|^2 + |v_{t-1}|^2 > \phi + 1 = \phi^2 \]
\[|v_{t-j}|^2 \geq |v_{t-j+1}|^2 + |v_{t-j+2}|^2 > \phi^{j-1} \]
\[|v_0|^2 = |v_{t-1}|^2 > \phi^{-1} \]

We get that

\[(t-1) \log \phi < \log |v_0|^2 < 4 \log d \]

or

\[t < \frac{4 \log d}{\log \phi} + 1 \]

The complexity of the algorithm is thus shown to be logarithmic in the magnitude of \(d \). If the algorithm does not enter the mincross procedure then the number of iterations before it halts is bounded as above. If it enters the procedure mincross then the number of iterations before entering the procedure is also bounded as above and after entering the procedure mincross the algorithm will stay in the procedure no more than a logarithmic number of iterations before halting.
REFERENCES
