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Abstract 

We present a simple construction of a small probability space on 
n bits for which any k bits are almost independent. The number of 
bits used to specify a point in the sample space is O(log log n + k + 
log ~), where e is the statistical difference between of the distribution 
induced on any k bit locations and the uniform distribution. This 
is asymptotically comparable to the construction recently presented 
by Naor and Naor. An additional advantage of our construction is 
its simplicity. Loosely speaking, the sample space consists of the set 
of sequences obtained from a linear feedback shift register on various 
short start and feedback sequences. 
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1 Introduction 

In recent years, randomization has played a central role in the development 
of efficient algorithms. Notable examples are the massive use of randomness 
in computational number theory (e.g., primality testing [16, 17, 10, 1]) and 
in parallel algorithms (e.g. [12, 14]). 

A randomized algorithm can be viewed as a two-stage procedure in which 
first a "sample point" is chosen at random and next a deterministic proce­
dure is applied to the sample point. In the generic case the sample point 
is an arbitrary string of specific length (say n), the sample space consists 
of the set of all 2n strings, and "choosing a sample at random" amounts 
to taking the outcome of n consequative unbiased coin tosses. However, as 
observed by Luby [12], in many cases the algorithm "behaves as well" when 
the sample is chosen from a much smaller sample space. If points in the 
smaller sample space can be compactly represented and generated (i.e. re­
constructed to their full length from the compact representation) then this 
yields a saving in the number of coin tosses required for the procedure. In 
some cases the required number of coin tosses gets so small that one can 
deterministically scan all possible outcomes (e.g. [12]). 

To summerize, the construction of small sample spaces which have some 
randomness properties is of major theoretical and practical importance. A 
typical property is that the probability distribution, induced on every k 
bit locations in a string randomly selected in the sample space, should be 
uniform. Such a sample space is called k-wise independent. 

Alon, Babai and Itai [3] presented an efficient construction of k-wise in­
dependent sample spaces of size nk/2, where n is (as above) the length of 
the strings in the sample space. This result is the best possible, in view 
of the matching lower bound of Chor. et. al. [5]. Hence, k-wise indepen 
dent sample spaces of size polynomial in n are only possible for constant 
k. This fact led Naor and Naor to introduce the notion of almost k-wise 
independent sample spaces. Loosely speaking, the probability distribution 
induced on every k bit locations in the sample string is "statistically close" 
to uniform. Clearly, if an algorithm "behaves well" on points chosen from 
a k-wise independent sample space then it will "behave essentially as well" 
on points chosen from an almost k-wise independent sample space. 

Naor and Naor presented an efficient construction of an almost k-wise 
independent sample space [15]. Points in their sample space are specified by 
o(log log n +k +log ~) bits, where f. is a bound on the statistical difference 
between the distribution induced on k bit locations and the uniform one. 
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The heart of their construction is a sample space of size (7f(l) for which 
the exclusive-or of any fixed bit locations, in the sample point, induces a 
0-1 random variable with bias bounded by E (Le. the exclusive-or of these 
bits is 1 with probability t ± E). The constant in the expOnent depends, 
among other things, on the constants involved in an explicit construction 
of an expander (namely the degree and second eigenvalue of the expander). 
Using the best known expanders [13] this constant is around 10. 

We present a construction of a sample space of size (7)2 for which the 
exclusive-or of any fixed bit locations, in the sample point, induces a 0-1 
random variable with bias bounded by E. Our construction is so simple 
that it can be described the the rest of this paragraph. A point in our 
sample space is specified by two bit strings of length m ~ logn/E each, 

idenoted fo ... f m -1 and So ... Sm_l, where fo = 1 and t m + E~o I/;.. t is 
an irreducible polynomial. The n-bit sample string, denoted TO'" Tn-I is 
determined by Ti =Si for i < m and Ti =Ej;i/ f; . Ti-m-!+j for i 2: m. 

2 Formal Setting 

We will consider probability distributions on binary strings of length n. In 
particular, we will construct probability distributions which are uniform over 
some set S ~ {O,l}n. The parameter that will be of interest to us is the 
"size of the probability space"i namely, the number of strings in the support 
(Le. lSI). The aim is to construct "small" probability spaces which have 
"good" randomness properties. In particular we will be interested in k-wise 
independence. 

2.1 Almost k-wise Independence 

Definition 1 (k-wise independence): A probability-space S is k-wise inde­
pendent if when X = XI ..• X n is chosen uniformly from S then for any k 
positions i l < i 2 < '" < ik and any k-bit string lX, we have 

For all practical purposes it is sufficient that a set of bits is "almost" 
k-wise independent. There are several standard ways of quantifying this 
condition (i.e. interpreting the phrase "almost"): d. [4]. We use two very 
natural ways corresponding to the Loo and LI norms: 
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Definition 2 (almost k-wise independence): Let S be probability~space and 
X = Xl ••• Xn be chosen uniformly from S. 

•	 (max-norm): S is (f,k)-independent if for any k positions it < i2 < 
... < ik and any k-bit string a, we have 

IPr[xil Xi2 ... Xi/c = a] - 2-k I ~ f • 

•	 (statistical closeness): S is f-away from k-independence if for any k 
positions i 1 < i 2 < '" < ik we have 

I: \Pr[xil Xi2 ... Xi/c = a] - 2-k l ~ Eo 

aE{O,I}/c 

Clearly, if S is (f,k)-independent then it is at most 2kf-away from k­
independence, whereas if S is f-away from k-independence then it is (f, k)­
independent. The first relation seems more typical. 

2.2 The Basic Construction 

The heart of our construction is a sample space which is very close to random 
with respect to "linear Boolean tests" (Le., tests which take the exclusive­
or of the bits in some fixed locations in the string). Following Naor and 
Naor [15], this sample space can be used in various ways to achieve almost 
k-wise independence. Our construction is based on feedback shift register 
sequences. 

Definition 3 (linearfeedback shift register sequences): Lets = so, S1, .•. Sm-l 

and 1 = fo, ft, ... fm-l be two sequences of m bits each. The shift regis­
ter sequence generated by the feedback rule 7 and the start sequence s is 
ro, rl,'" rn-I where Tj = Sj for i < m and ri = E'!=(/ Ii . ri-m-l+i for 
i 2: m. 

Our sample space will consist of all shift register sequences generated by 
"non-degenerate" feedback rules and any starting sequence. 

Construction 1 (The Sample Space S:): The sample space S: is the set 
of all shift register sequences generated by a feedback rule 1 = foft . " fm-l 

with fo = 1 and f(t) ~f tm +Ei=(/'fi . ti being an irreducible polynomial 
(such a feedback rule is called non-degenerate). Namely, S: contains all 
sequences r = rOrI ... rn-l such that there exists a non-degenerate feedback 
rule 1 and a start sequence s generating r. 
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Hence, the size of the sample space S~ is at most 22m (actually, it is 
~ 2

2m 
). As stated before, we start by evaluating the quality of this sample 

spa; with respect to "linear Boolean tests" (Le. the exclusive-or of a specific 
subset of the bits). 

Definition 4 : 

•	 Let (a,f3h denote the inner-product mod 2 of the binary vectors a and 
f3 (i.e. (al··· an ,f3l ... f3"h =Ef:l ai/3i mod 2). 

•	 A 0-1 random variable X is called €-biased if 

IPr[X = 0] - Pr[X = 1]/ ~ €. 

Proposition 1 : For any nonzero a the random variable (a, rh is n2-m ­

biased when r is selected uniformly in S~. 

Setting m = k + log n + log f, the sample space S~ is €-away from k-wise 
independence. The proof of Proposition 1 is given in Section 3. Using the 
XOR-Lemma of Vazirani [18] we immediately get 

! 

Theorem 1 : For any k ~ n, the sample space S: is (n2- m ,k)-independent. 

A sample space is called linear if its elements are obtained by a lin­
ear transformation of their succinct representation (equivalently, the sample 
space is a linear subspace). Note that the construction of a k-wise indepen­
dent sample space presented by Alon, Babai and Itai [3] is linear. Naor and 
Naor observed that a sample space with is almost unbiased with respect to 
linear Boolean tests can be used to sample points in a linear k-wise indepen­
dent sample space while only moderately increasing the bias with respect to 
linear Boolean tests. Hence, we can efficiently construct a sample space R'fl 
having the same size as S: but containing much longer strings. For N < 21', 
the new space R'N has the same guarantee for almost independence. Namely, 

m
Theorem 2 For any k,~ n, the sample space R'N (containing ~ 2: strings 
each of length N) is (k ~og N12-m

, k)-independent. 

Setting m =k+logk+loglogN +log~, the sample space R'N is €-away 
from k-wise independence. 
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3 Proof of Proposition 1 

For the rest of the paper we consider only polynomials over GF(2). 
number of irreducible monic polynomial of degree m is 

The 

. 
:. 

This expression is well approximated by 2;. For the rest of this abstract 
we will, for notational simplicity, treat the number of irreducible monic 
polynomials of degree m as if it is exactly 2;. (The tiny error introduced 

by the approximation is negligable anyhow.) Hence, the size of A~ is 2:. 
We now turn to the proof of Proposition l. 

Fix the feedback rule and consider the distribution of (a,rh when we 
only vary the starting vector. A key observation is that the ri's are a linear 
combination of the 8;'S (which are the only indeterminates as the fi'S were 
fixed). It is useful (and standard practice) to notice that in GF(2), the 
reduction of ti modulo f(t) (= tm +L~ol fi . t i ) is a linear combination of 
to, t1, ... tm - 1 and that this linear combination is identical to the expression 
of ri as a function of the sj's. Hence, a linear combination of the ri's 
(which is exactly what (a, r)2 is) corresponds to a linear combination of the 
corresponding powers of ti• This linear combination can be either identically 
zero or not. The first case means that the polynomial f(t) divides the 

polynomial get) d~f Lr;J ai' tij whereas in the second case (a,rh being a 
non constant combination of the Si'S is unbiased when the Si'S are uniformly 
selected. 

Hence we get the following expression for the bias of (a, rh when r is 
uniformly selected in S::': 

1
2.Erl(a,rh-2' ~ EyIEa2.(a,rh- 11 

LJ(t)lg(t) IEs2. (a,rh ­ 11 + LJ(t)l9(t) IEa2. (a,rh ­
2m jm 

11 

The first term can be bounded by the number of irreducible monic poly­
nomials of degree m which divide a polynomial of degree n ­ 1: there are at 
most n~l such polynomials (out of the 2: irreducible monic polynomials of 
degree m). The second term is identically zero. The proposition follows.• 

5 
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4 Using the Sample Space 

As is clear from the above, the points in the sample space (S~ as well as 
the points in RYJ) are specified by irreducible monic polynomials of degree 
m (used to specify a non-degenerated feedback rule) and another m-bit 
string (specifying the start sequence). However, the reader may wonder 
whether problems are not encountered once we wish to generate sample 
points. As will be clear from this section, the answer to this worry depends 
on the application: either there is no difficulty or the difficulties can be 
easily resolved. 

In some applications we are allowed to use a preprocessing stage of com­
plexity 2m • Two notable examples follow 

•	 The sample space is used for deterministic simulation of a randomized 
algorithm. In such a case the overall complexity will be a factor of 2~m 
anyhow, so we might as well go through a preprocessing stage which 
costs less... 

•	 The sample space contains strings of length comparable to 2m . This is 
the case, for example, when m is selected such that the sample space 
is €-away from log n-wise independent, for some fixed f (or € =n-O(l)) 

(d. [15]). 

In the preprocessing stage, we may enumerate all monic polynomials of 
degree m and discard those which have non-trivial divisors. In case such a 
preprocessing is too costly we select a sample of monic polynomials so that 
we are guaranteed that, with overwhelmingly high probability, at least one of 
these polynomials is irreducible. A straight forward sample will require m2 

independently selected random polynomials, meaning that we use m3 +m 
unbiased bits to select an element of S~ (instead of 2m bits). An alternative 
procedure is suggested below. 

Construction 2 (sample space for irreducible polynomials): 

•	 Use pairwise-independent sampling to specify m monic polynomials of 
degree m. With probability at least!, at least one of these polynomials 
is irreducible. The pairwise independent sampling requires 2m bits (cf. 
[6J). Call the resulting sample space Pm. 

•	 Use an expander-path of lenght 2m to specify 2m points in the sample 
space Pm. With probability at least 1 - 2-m, at least one of these 

6 
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5 

points specifies a sequence of m polynomials containing at least one 
irreducible polynomial (cf. [2, 7, 11, 9]). This sampling requires Oem) 
bits. Call the resulting sample space Em. 

•	 A sample point in Em specifies m2 polynomials and with overwhelm­
ing probability at least one of them is irreducible. Say we use the first 
irreducible polynomial among these m2 polynomials (to specify the feed­
back rule). We now select a starting sequence which, together with the 
above feedback rule, specifies a sample point rES:. Note that we 
used Oem) bits to specify this sample point. 

Although this choice does not specify a uniformly selected irreducible 
polynomial, it is easy to see that the probability that the polynomial selected 
in this manner divides a fixed n degree polynomial is bounded above by 
m2 • 2':..' Hence, the above construction gives 

Proposition 2 : For any nonzero a the random variable (a, rh is nm22-m _ 

biased when r is selected in S: with distribution induced by Construction 
2. 

Theorem 3 For any k ~ n, a string r selected in the set RlJ (defined as 
in Theorem 2) according to the distribution induced by Construction 2 is 
(kflog N12-m

, k)-independent. Again, r is specified using Oem) bits. 

Finally, observe that one can get the ith pit by O(1og i) matrix multipli­
cations. 

Concluding Remarks 

This paper may be viewed as an explanation for the popularity of using 
linear feedback shift registers for sampling purposes. We showed that when 
both the feedback rule and the starting sequence are selected at random 
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