OPTIMAL DISTRIBUTED t-RESILIENT ELECTION IN COMPLETE NETWORKS

by

A. Itai, S. Kutten, Y. Wolfstahl, and S. Zaks

Technical Report #591

November 1989
OPTIMAL DISTRIBUTED t-RESILIENT ELECTION IN COMPLETE NETWORKS

Alon Itai, Shay Kutten, Yaron Wolfstahl and Shmuel Zaks

Department of Computer Science
Technion, Haifa, Israel

ABSTRACT

We study the problem of distributed leader election in an asynchronous complete network, in presence of faults that occurred prior to the execution of the election algorithm. Failures of this type are encountered, for example, during a recovery from a crash in the network. For a network with \(n \) processors, \(k \) of which start the algorithm and at most \(t \) of which might be faulty, we present an algorithm that uses at most \(O(n \log k + n + k t) \) messages. We prove that this algorithm is optimal. We also present an optimal algorithm for the case where the identities of the neighbors are known. It is interesting to note that the order of the message complexity of a \(t \)-resilient algorithm is not always higher than that of a non-resilient one. The \(t \)-resilient algorithm is a systematic modification of an existing algorithm for a fault-free network.

Index Terms: complete networks, distributed algorithms, election, fault-tolerance, message complexity.

\(^1\)A preliminary version of this paper appeared as IBM research Report RC 12177, September 1986. The current version will appear in IEEE Transactions on Software Engineering.

\(^2\)Part of the work of this author was done while visiting IBM Thomas J. Watson Research Center.
1. INTRODUCTION

The problem of leader election in asynchronous distributed systems has been widely studied (e.g. [G, L77]). In this problem it is required that the nodes cooperate to elect one of them as the leader. The election problem, and the related spanning tree construction problem, are fundamental in many distributed algorithms, and have been studied for various models and cost measures in reliable networks. Real systems, however, are subject to faults of different types, and this paper focuses on unreliable networks. A t-resilient algorithm is an algorithm that finds a leader when at most t nodes are faulty. In this paper, we develop t-resilient election algorithms. We believe, however, that our main contribution is to the understanding of the methods for making algorithms t-resilient.

The fault-free model consists of a distributed complete network of n identical processors, k of which start the algorithm spontaneously. Each processor has a unique identity, but no processor knows the identity of any other processor. Every pair of processors are connected by a bidirectional communication line. The network is asynchronous (the time to transmit a message is unpredictable). The processors all perform the same algorithm, that includes operations of (1) sending a message over a line, (2) receiving a message from a pool of unserviced messages that arrived over lines, and (3) processing information locally. A node which does not start the algorithm spontaneously joins the algorithm when it receives a message for the first time. We view the communication network as a complete undirected graph, where nodes represent processors and edges represent communication lines. To evaluate the efficiency of an algorithm, we use the usual measure of the maximal possible number of messages transmitted during any execution (see e.g. [GHS83]). Each message may contain at most $O(\log Max_{id})$ bits, where Max_{id} is the highest possible identity of a node in the network.

Note that the above assumptions are quite reasonable. Although in real-life networks not every two nodes are connected by a direct dedicated communication line, they are still connected somehow via the network. Moreover, in some networks the cost of routing a message between two nodes is about the same as that of a one-hop message, as long as the route between these nodes is known in advance. This route need not consist of identities of nodes. Instead, it may consist of numbers of communication lines. Thus, it is also reasonable to assume that a node does not know the identities of its neighbors. We assume that each communication line satisfies the FIFO discipline. Note that this discipline can be achieved by using acknowledgements; i.e., a node sends a message on a line only after receiving an acknowledgement for the
previous message sent on this line.

Consider the possibility that some nodes in the network may be faulty. We assume that the only type of faults is that in which a faulty node stops sending messages (these failures are known as fail-stop or crash failures; see [FLP85]). In our model we also assume that all faults have occurred prior to the execution of the election algorithm (see also [BKWZ]). For the general case where nodes can fail during the execution of an algorithm, no deterministic election protocol exists [FLP85, MW87]. Other types of failures are also hard or impossible to cope with [F83, FL85]. (Fortunately, reliable hardware equipment makes failures of the most general type quite rare [G82].) Thus, additional assumptions are needed. These include, for example, knowledge about synchrony in the network [G82], its topology [KW84, SG86], or its size [SG86].

An \(\lceil n/2 \rceil -1 \)-resilient consensus algorithm for a complete network is presented in [FLP85]. \(O(n^2) \) messages are sent in any execution of this algorithm; however, since most messages contain \(O(n \log \text{Max}_i d) \) bits, the bit complexity is \(O(n^3 \log \text{Max}_i d) \) and the message complexity, in terms of our model, is \(O(n^3) \) (our result implies an \(O(n^2) \) for this case). An \(O(n \log n) \) upper bound for 1-resilient election in a ring (where neighbor identities are known and only an edge may fail) is given in [SG86]. The problem of designing resilient algorithms for graphs other than rings (using less than \(O(nm) \) messages, where \(m \) is the number of edges in the graph), and for more limited types of faults, is given there as an open problem.

We modify the election algorithm of [H84], obtaining a \(t \)-resilient election algorithm (for any \(t < \frac{n}{2} \)). The resulting algorithm uses at most \(O(n \log k + n + k t) \) messages during any possible execution, where \(k \) is the number of nodes that started the algorithm. This bound is proved to be the best possible. Our algorithm improves on existing resilient algorithms (for the same fault model) in terms of message, bit, space and computational complexity measures (see last section of [FLP85], and [KW84]). Note that when \(t = O\left(\frac{\log k}{k}\right) \) the message complexity is \(O(n \log k) \), as in election algorithms for reliable networks [KMZ83]. On the other hand, for \(\frac{n \log k}{k} = o(t) \) the message complexity of every \(t \)-resilient algorithm is higher than the message complexity of election in reliable networks. We also present an optimal algorithm for the case where the identities of the neighbors are known.
2. DESCRIPTION OF THE ALGORITHM

2.1. General remarks

Leader election algorithms are usually viewed as each processor starting the algorithm by being its own king; the algorithm advances by processors surrendering to one another, and agreeing on a unique leader. Each processor knows, at any given time, the edge leading to its current master; in other words, it might belong to several 'kingdoms' during the execution of the algorithm. Each king contains certain information about its kingdom; this information contains at least the size of the kingdom.

These election algorithms can be thought of as token algorithms. An originator of a message sends a token, that is a message carrying the originator's identity, and it traverses the network, trying to increase its originator's kingdom. A processor receiving a token of another processor can modify some information (in either its local variables or in the message itself) and send it to other processors, but it does not change the identity of the originator of that message. In the presence of faults, we extend this idea and use more than one token per processor. More precisely, in the presence of at most t faulty processors each processor sends $t+1$ tokens, in order to insure that at least one of them will be processed.

2.2. Humblet's algorithm

Our algorithm elects a leader in a complete network with n nodes, at most t of which may be faulty ($t < \frac{n}{2}$). It is a modification of the following algorithm of [H84], which elects a leader in a reliable complete network (this algorithm is similar to the one in [AG84]).

In this algorithm some nodes are candidates for leadership, called kings. Each king tries to annex other nodes to its domain (initially containing only itself). An annexed king becomes a subject, and stops trying to annex other nodes, but those already annexed by it remain in its own domain. The size of a node is the size of its domain. The value of size may only increase. The size and identity of node A are denoted by size$_A$ and id$_A$, respectively. At different times a node may belong to several domains, but it remembers the edge leading to its master, that is the last node by which it was annexed (a node that has not been annexed by another node is considered its own master). As explained above, the algorithm is described as if each king owns one token, which is a process representing it, and carrying its size, its identity and an additional message, which is either a join message (originated by the node that owns the token), an accept message or a reject message (both originated by a node that was annexed by the token).
In order to annex a neighbor \(B \), the token of a king \(A \) is sent from \(A \) to \(B \) with a join message. The token proceeds from node \(B \) to \(B \)’s master \(C \), which may be \(B \) itself. When the token \((\text{join}, \text{id}_A, \text{size}_A)\) arrives at \(C \), it compares \((\text{size}_A, \text{id}_A)\) with \((\text{size}_C, \text{id}_C)\).

If \((\text{size}_A, \text{id}_A) > (\text{size}_C, \text{id}_C)\) – lexicographically, namely, either \(\text{size}_A > \text{size}_C\), or \((\text{size}_A = \text{size}_C \text{ and } \text{id}_A > \text{id}_C)\) – then \(C\)'s status becomes defeated and the token returns to node \(B \); \(B \) joins \(A \)’s domain, and the token returns to \(A \) with an accept message, and \(\text{size}_A\) is incremented (by 1). Otherwise – that is, \((\text{size}_A, \text{id}_A) < (\text{size}_C, \text{id}_C)\) – the token is returned to \(B \) with a reject message (so that \(B \) can continue its algorithm) and is then destroyed (note that since the id’s are distinct, there cannot be an equality).

A token that returns safely repeats the process of attempting to annex a new neighbor. The algorithm terminates when one processor \(A \) notices that \(\text{size}_A = n\) (actually, \(\frac{n}{2}\) suffices).

2.3. The t-resilient algorithm

As mentioned above, our algorithm is a modification of Humblet’s. It differs from Humblet’s in the following respects:

1. Each processor owns \(t+1 \) tokens instead of one; this ensures that at least one token arrives at a nonfaulty node.
2. All tokens return to their originators, carrying either an accept or a reject message.
3. Suppose a token was sent from \(A \) to \(B \) and from there to \(B \)’s master \(C \) and upon examining the token \(C \) sees that its own status was larger than \(A \)’s. It returns the token with a reject message. However, by the time the token returns to \(A \), \(A \)’s status may have increased and it may even become higher than \(C \)’s. \(A \) therefore enters into a war with \(C \): it resends the token (with \(A \)’s new status) and does not read any of its other tokens. (These tokens will be suspended.) Another consequence is that \(A \)’s status cannot change until the token returns from \(C \) for the second time. If the token carries an accept message then \(A \) increases its size and reads its suspended tokens. Otherwise the token carries a reject message, indicating that \(C \) also changed its size and its status is greater than \(A \)’s frozen status. Thus \(A \) becomes defeated. (It may destroy all of its tokens.)

We now present our algorithm. Each processor may be either a king, in states \(\text{king_search}, \text{king_battle} \) or \(\text{king_defeated} \), or a subject, in states \(\text{subject_relay} \) or \(\text{subject_waiting} \). The possible changes of states are depicted in Figure 1.
The messages are of four types: join, accept, reject or leader. Each king owns \(t+1 \) tokens that are initially sent to different neighbors. The algorithm is message-driven, in the sense that each processor, after sending its first messages, acts in steps, each consisting of reading a message from its pool, performing some computation, and either sending a message or returning the message to the pool. As long as no leader announcement is made, the processor continues to react to messages. The model assumes that a message that is sent to a processor eventually arrives at the pool. To simplify the exposition we assume the following:

Eventuality property: Each message in the pool is eventually read.

This property can be easily achieved by letting the processor receive the messages in a round-robin fashion (without this property a message that is returned to the pool could possibly be read infinitely often, blocking all other awaiting messages, and resulting in a deadlock.
situation).

Processor A uses the following:

States:
- king_search, king_battle, king_defeated, subject_relay, subject_waiting, leader.

Data structures:
- A pool of unprocessed messages,
- Variables: id, size, state, edge_to_master, waiting_edge.

Messages:
- (join, id, size, hop_length) (hop_length is either 1 or 2)
- (accept, id)
- (reject, id, size_B, id_B)
- (leader, id).

Following is the algorithm to be performed by processor A.

```plaintext
state := king_search;
edge_to_master := nil;
size := 0;
If the node woke up spontaneously
then begin
  size := 1;
  send (join, id, size, 1) on t+1 edges;
end;
while the pool contains a message m (from edge e) do
begin
  remove m from the pool;
  If m = (leader, id) then stop
  else act as follows, according to the type of the message and
  your state (the actions – e.g. <1> – are detailed below):
```
<1> if \((size, id) > (size_B, id_B) \) \(\text{Invariant:} id \neq id_B \)
then send (reject, \(id_B, size, id \)) on \(e \)
else begin
send (accept, \(id_B \)) on \(e \);
if \(hop_{length} = 1 \)
then begin
state := subject_relay;
edge_to_master := e;
end
else if state := king... then state := king_defeated;
end;
<2> send (join, \(id_B, size_B, 2 \)) to master;
state := subject_waiting;
waiting_edge := e;
<3> size := size + 1;
if size > n/2
then begin
state := leader;
send (leader, id) to all processors (you are the leader)
end
else begin
send (join, \(id, size, 1 \)) on a new edge.
state := king_search
end;
<4> state := subject_relay;
if id \neq id_B
then begin
send \(m \) on waiting_edge;
edge_to_master := waiting_edge;
end;
<5> state := subject_relay;
if id \neq id_B
then send \(m \) on waiting_edge;
<6> if \((size, id) < (size_B, id_B) \)
then state := king_defeated
else begin
send (join, \(id, size, 1 \)) on \(e \);
waiting_edge := e;
state := king_battle
end;
<7> state := king_defeated;
<8> Return \(m \) to the pool \{the message is suspended\}.
<9> no action \{the message is destroyed\}.
end.
3. PROOF OF CORRECTNESS

In this section we prove the correctness of the protocol. We first show that at least one node remains a king (Lemma 1). We then show (Lemma 2) that, as long as no leader is elected, there is no deadlock in the network, that the algorithm terminates and that exactly one node remains as a leader (Lemma 3, Lemma 4 and Theorem 5).

In proving the correctness of the protocol, we consider a given execution of the algorithm. The following facts follow immediately from the protocol and our assumptions about the model:

Fact (1): If a node B has a master then both B and its master are non-faulty.

Fact (2): When a king becomes a leader, it sends a leader message to all processors, who subsequently terminate the algorithm.

Fact (3): A token can be destroyed only by its originator. A king in state king_defeated and a subject destroy all of their own messages (accept or reject).

Fact (4): As explained above, a step during the (message-driven) execution might result in suspending a message, i.e., returning it to the pool. The only possible suspensions are as follows:

(a) A subject A in state subject_waiting suspends the message $(join, id_B, size_B, l)$. The reason for this is that A has already forwarded a message to its master, so it waits for a response (which might entail a change of its master's status, or even the change of its master) before it transmits any messages.

(b) A king in state king_battle suspends an accept or a reject message (unless it belongs to its current war). accept messages are suspended in order to make sure that the message from the waiting_edge is still valid, thus each war involves sending of at most one more message. reject messages are suspended in order to prevent wars within wars.

Note: A subject in state subject_relay and a king in state king_search do not suspend any messages. Also, a message of type $(join,*,*,2)$ is never suspended.

Fact (5): Only in state subject_waiting a processor may receive an accept or reject message that is addressed to another processor.

Lemma 1: At least one node always remains an undefeated king.
Proof: Assume, to the contrary, that each processor became either a subject or a defeated king (after which its size did not increase). Consider the set T of all pairs $(size, id)$ sent in tokens to non-faulty processors (for each processor consider a pair with the largest possible $size$). These pairs are clearly totally ordered. Let $(size_A, id_A) = \max_{V \in T} (size_V, id_V)$. In order for processor A to become either a subject or a defeated king, it must have seen a token of another processor B such that $(size_B, id_B) > (size_A, id_A)$, a contradiction.

Lemma 2: Consider any time τ during the execution. Eventually, either all processors receive a leader announcement message, or one of the tokens is returned to its originator.

Proof: Following Fact (2) we assume that no leader message is sent during the execution. At time τ, consider for each king the last token it sent (and has not yet returned) in state $king_search$ to a non-faulty processor, and consider the set T of all such tokens (by Lemma 1 T is not empty). Each token in T carries the values $size$ and id of its sender, and these values are totally ordered. Let $(size_A, id_A) = \max_{V \in T} (size_V, id_V)$. This token of A arrives at a node B, and by the eventuality property it will eventually be processed by B. When this is done, B might be either in a king state or in a subject state.

Case 1: B is in a king state.
The token is returned to A (by Fact (4) above).

Case 2: B is in a subject state. Both B and its master are non-faulty (Fact (1)).

Case 2.1: B is in state $subject_relay$. Then B does not suspend the message (Fact (4)) and, according to the protocol, it forwards the message $(join,*,*,2)$ to its master, and, by Fact (4) and the eventuality property, this message is eventually returned to B and then to A.

Case 2.2: B is in state $subject_waiting$. B returns the token to the pool. Moreover, B is in this state since it forwarded a message $m'=(join,id_{A'},size_{A'},2)$ to its master, and, by Fact (4) and the eventuality property, m' is eventually returned to B and then to A'.

Lemma 3: Every king eventually has size $> \frac{n}{2}$ or it ceases to be a king.

Proof: When a leader announcement message is sent, its originator has size $> \frac{n}{2}$, and all other processors will receive this message and cease to be kings (if they are still kings). If no leader announcement is sent, then, by Lemma 2, at least one token will be returned from a processor C (via B) to its originator A. If A is a defeated king, then the token is destroyed. Applying this
argument again, and using Lemma 1, we get that at least one token will be returned from a processor C (via B) to its originator A, which is a non-defeated king.

Now, consider all kings to which tokens are returned while being non-defeated kings. If a token is returned not on the waiting edge of a king in state king_battle, then it is suspended, and we can apply the argument again. Therefore, eventually a token will return to its originator, that is a king in state king_search, or a king in state king_battle (and the token is returned via the waiting edge).

We proceed by induction of the number \(i\) of such kings in state king_search (actually, we use induction on the total number of non-defeated kings, and within it we use induction on the number of them in state king_search).

The case \(i=0\): if the token carries an accept message, then the processor will enter a king_search state and its size will be increased and we are done, and if it carries a reject message, then the processor will enter a king_defeated state, and we can apply the previous argument again, with a smaller number of non-defeated processors.

The induction step follows from the fact that if a token returns to a processor in state king_search (that is, \(i>0\)), then the processor either becomes defeated (in which case we apply the previous argument), or it enters a king_battle state (in which case we use the induction hypothesis), or its size is increased (in which case we are done).

Lemma 4 [H84,AG85]: For every \(l \geq 1\), there are at most \(\frac{n}{l}\) kings that ever reach size \(l\).

Proof: If a node B of the domain of C joins the domain of A, then C ceased to be a king and from that time \((\text{size}_C, \text{id}_C) < (\text{size}_A, \text{id}_A)\). Thus domains of equal sizes (even viewed at different times) are disjoint. The lemma follows.

Theorem 5: During any execution of the algorithm, exactly one leader is elected.

Proof: According to Lemma 1 at least one node will remain as a candidate for leadership, and Lemmas 3 and 4 assures the termination of the algorithm and the uniqueness of the leader.

4. COMPLEXITY ANALYSIS.

We now analyze the message complexity of the algorithm. Recall that throughout the discussion \(n\) denotes the number of processors in the network, \(t\) is an upper bound for the number of faulty processors, and \(k\) is an upper bound for the number of initiators. Lemma 4, that was
used above in proving the correctness of the protocol, implies that:

Theorem 6: The number of messages used by the t-resilient algorithm is $O(n \log k + n + k t)$.

Proof: The number of messages used for the leader announcement is $n - 1$. The total number of tokens sent in the beginning is $k(t+1)$. A token of processor A traverses at most eight steps before either it is destroyed or A's size increases (this is so because it might take up to four steps until the token returns and A enters a war situation, and it now takes at most four more messages for A to resolve this war). Since only the k processors that woke up spontaneously originate tokens, they are the only ones whose size is positive. Following Lemma 4, the total number of messages is bounded by $n - 1 + k(t+1) + 8n(1+1/2+1/3+...+1/k) = O(n \log k + n + k t)$. □

The following theorem implies that the above t-resilient algorithm is optimal:

Theorem 7: The message complexity of election in complete networks containing at most t faulty processors is $\Omega(n \log k + k t)$.

Proof: The term $\Omega(n \log k)$ follows from the lower bound of $\Omega(n \log k)$ messages for the problem of election in complete reliable networks [KMZ83], and from the fact that the number of nonfaulty processors $n-t$ is larger than $\frac{n}{2}$. For the lower bound of $\Omega(k t)$ consider a node which initiated the algorithm. It must send at least $t+1$ messages as it may be the only node to wake up, and the first t messages may have been sent to faulty nodes. Assume now that there is actually no faulty node, and that k nodes initiate the algorithm. Since an adversary can delay all the messages, each of these k nodes must act as if it alone initiates the algorithm. □

Note: The result presented above can be extended for the case where every node knows its neighbors' identities. In fact, it is easily verified that

Theorem 8: The message complexity of election in complete networks containing at most t faulty processors where all identities are known to all nodes is $\Theta(k t)$.

In the algorithm achieving the upper bound of $O(k t)$, the kings compete by capturing only $t+1$ nodes out of the $2t+1$ nodes with the highest identities, instead of capturing half of the nodes.

Remark: After the preliminary version of this paper had appeared [KWZ86], Abu-Amara independently developed an algorithm similar to ours [A87]. However, his algorithm deals with
the case when there are n processors and f faulty communication lines, where $1 \leq f \leq \lfloor \frac{n}{2} \rfloor - 3$, whereas we deal with the failure of t processors. Although this can be simulated by the failure of $t(n-1)$ edges, Abu-Amara's algorithm cannot be applied in this case, due to the restriction on the number of faulty edges. Moreover, his algorithm deals with faults that occur during the course of the algorithm, while we require all failures to occur prior to the execution. As explained in the Introduction, this is necessary; in other words, no version of Abu-Amara's algorithm will work in the presence of $n-1$ or more faulty edges, since this will violate the impossibility result of [FLP].

Acknowledgement: We would like to thank the referees for many helpful suggestions.

REFERENCES

