A CONSTRUCTION OF NON-GRS MDS CODES

by

R.M. Roth and A. Lempel

Technical Report #509
May 1988
A CONSTRUCTION OF NON-GRS MDS CODES

RON M. ROTH AND ABRAHAM LEMPEL

Department of Computer Science
Technion, Israel Institute of Technology
Haifa 32000 - Israel

ABSTRACT

We present a construction of long MDS codes which are not of the generalized Reed-Solomon (GRS) type. The construction employs subsets S, $|S| = m$, of a finite field $F = GF(q)$ with the property that no t distinct elements of S add up to some fixed element of F. Large subsets of this kind are used to construct $[n = m+2, k = t+1]$ non-GRS MDS codes over F.
I. INTRODUCTION

An \([n,k,d]\) linear code over \(F = GF(q)\) is called maximum distance separable (MDS) if \(d = n - k + 1\) [4, Ch. 11]. Some upper bounds on the lengths of MDS codes derive from the fact that, for certain ranges of \(k, n,\) and \(q,\) every MDS code must be a generalized Reed-Solomon (GRS) code, i.e., generated by

\[
G_{RS} = \begin{bmatrix}
1 & 1 & \cdots & 1 & 0 \\
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-2} & 0 \\
\cdot & \cdot & \cdots & \cdot & 0 \\
\cdot & \cdot & \cdots & 0 \\
\alpha_0^{k-1} & \alpha_1^{k-1} & \cdots & \alpha_{n-2}^{k-1} & 1
\end{bmatrix} \cdot V,
\]

where the \(\alpha_i \in F\) are distinct and \(V\) is a diagonal, nonsingular matrix [3][5].

A \(S \subseteq F\) of size \(m\) is called an \((m,t,\delta)\)-set in \(F\) if there exists an element \(\delta \in F\) such that no \(t\) elements of \(S\) sum to \(\delta\). In this paper we present a construction which produces an \([m+2,t+1]\) MDS code which is \textit{not} GRS from any given \((m,t,\delta)\)-set in \(F, m \geq t + 2\). As a method for obtaining long non-GRS MDS codes, the suggested construction reduces to the combinatorial problem of finding the largest \((m,t,\delta)\)-set in \(GF(q)\) for given \(t\) and \(q\). Lower bounds on the cardinality of such sets are derived in Section III. For related work and references see, for instance, [1].

II. A CONSTRUCTION OF NON-GRS CODES

Let \(n\) and \(k\) be two integers such that \(k \geq 3\) and \(k + 3 \leq n \leq q + 2\). Consider the \([n,k]\) code over \(F\) generated by the matrix

\[
G = \begin{bmatrix}
1 & 1 & \cdots & 1 & 0 & 0 \\
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-3} & 0 & 0 \\
\cdot & \cdot & \cdots & \cdot & 0 & 0 \\
\cdot & \cdot & \cdots & 0 & 1 \\
\alpha_0^{k-1} & \alpha_1^{k-1} & \cdots & \alpha_{n-3}^{k-1} & 1 & \delta
\end{bmatrix},
\]

where the \(\alpha_i\) are distinct elements of \(F\) and \(\delta \in F\). First we show that \(G\) does not generate a
GRS code; then we prove that G generates an MDS code if and only if the α_i form an $(n-2,k-1,\delta)$-set in F.

Let

$$g_i(x) = \sum_{j=0}^{k-1} g_{ij} x^j \triangleq \prod_{0 \leq j \leq k-1 : j \neq i} (x - \alpha_j), \quad 0 \leq i \leq k-1,$$

and let $P = [g_{ij}]_{0 \leq i,j \leq k-1}$. Consider the matrix $\overline{G} \triangleq P \cdot G = [\Lambda A]$, where $\Lambda = [\lambda_{ij}]_{0 \leq i,j \leq k-1}$ consists of the first k columns of \overline{G}. By the definition of P, $\lambda_{ij} = g_i(\alpha_j)$ and, therefore, Λ is a diagonal matrix with $\lambda_{ii} = g_i(\alpha_i) \neq 0$.

One can easily verify that the last three columns of A are given by

$$\bar{A} = \begin{bmatrix} a & 1 & b + \alpha_0 \\ \alpha_{n-3} - \alpha_0 & 1 & b + \alpha_1 \\ \vdots & \ddots & \ddots \\ \alpha_{n-3} - \alpha_{k-1} & 1 & b + \alpha_{k-1} \end{bmatrix}$$

where $a \triangleq \prod_{i=0}^{k-1} (\alpha_{n-3} - \alpha_i) \neq 0$ and $b \triangleq \delta - \sum_{i=0}^{k-1} \alpha_i$. To prove that G does not generate a GRS code, it suffices to show that $A = [a_{ij}]$, and therefore \bar{A}, is not a Cauchy matrix [4, p. 323]; that is, there exist no nonzero c_i and d_j, distinct x_i, and distinct y_j such that

$$a_{ij} = \frac{c_i d_j}{x_i + y_j}, \quad 0 \leq i \leq k-1, \quad 0 \leq j \leq n-k-1,$$

possibly with one of the columns (rows) of A having the form $d_\omega(c_0 c_1 \cdots c_{k-1})'$ ($d_\omega(d_0 d_1 \cdots d_{n-k-1})$) [6].

Lemma 1. [5]. Given a $k \times r$ Cauchy matrix $A = [a_{ij}]$ over $F = GF(q)$, we can always assume $a_{0j} = d_j$ and $a_{1j} = d_j y_j^{-1}$, $0 \leq j \leq r-1$.
Applying Lemma 1 to \(\bar{A} \), after a permutation of columns and transposition, we can assume \(d_j = 1 \) and \(y_j = a^{-1}(\alpha_{n-3} - \alpha_j) \), \(0 \leq j \leq k-1 \), so that for some \(c \neq 0 \) and \(x \),

\[
\frac{c \cdot d_j}{x + y_j} = b + \alpha_j, \quad 0 \leq j \leq k-1,
\]

or

\[
\frac{c}{a^{-1}(\alpha_{n-3} - \alpha_j) + x} = b + \alpha_j, \quad 0 \leq j \leq k-1.
\]

(1)

Regarding (1) as a quadratic equation in \(\alpha_j \), it has at most \(2 < k \) solutions.

Now, for \(G \) to generate an MDS code, every set of \(k \) columns of \(G \) must be linearly independent. It suffices to check only sets of \(k \) columns containing \(u = (0 \ 0 \ \cdots \ 0 \ 1) \) but not \(u_0 = (0 \ 0 \ \cdots \ 0 \ 1) \). Consider a \(k \times k \) matrix \(B \) consisting of \(u \) and any \(k-1 \) columns of \(G \) but \(u_0 \). Without loss of generality, we may write

\[
B = \begin{bmatrix}
1 & 1 & \cdots & 1 & 0 \\
\alpha_0 & \alpha_1 & \cdots & \alpha_{k-2} & \cdot \\
\cdot & \cdot & \cdots & \cdot & 0 \\
\cdot & \cdot & \cdots & \cdot & 1 \\
\alpha_{0}^{k-1} & \alpha_{1}^{k-1} & \cdots & \alpha_{k-2}^{k-1} & \delta \\
\end{bmatrix}
\]

Let \(A_i \) be the coefficient of \(x^i \) in the polynomial \(\det(B(x)) \), where

\[
B(x) = \begin{bmatrix}
1 & 1 & \cdots & 1 & 1 \\
\alpha_0 & \alpha_1 & \cdots & \alpha_{k-2} & x \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
\alpha_{0}^{k-1} & \alpha_{1}^{k-1} & \cdots & \alpha_{k-2}^{k-1} & x^{k-1} \\
\end{bmatrix}
\]

Then, \(\det(B) = A_{k-2} + \delta \cdot A_{k-1} \). By the Vandermonde form of \(B(x) \), we have

\[
\sum_{i=0}^{k-1} A_i x^i = \prod_{0 \leq i < j \leq k-2} (\alpha_j - \alpha_i) \prod_{i=0}^{k-2} (x - \alpha_i).
\]

Thus, \(A_{k-1} \neq 0, A_{k-2} = -A_{k-1} \sum_{i=0}^{k-2} \alpha_i \), and \(\det(B) \neq 0 \) if and only if \(\sum_{i=0}^{k-2} \alpha_i \neq \delta \). Therefore, \(G \) generates an MDS code if and only if the \(\alpha_i \) form an \((n-2,k-1,\delta)\)-set.
III. DERIVATION OF LOWER BOUNDS

Let $S(t,q,\delta)$ denote a largest (m,t,δ)-set in $GF(q)$, let $M(t,q,\delta) = |S(t,q,\delta)|$, and let $M(t,q) \triangleq \max_{\delta \in F} M(t,q,\delta)$. Our objective is to obtain lower bounds on $M(t,q)$ which, by the construction of Section II, provide lower bounds on the maximal length of non-GRS MDS codes.

Lemma 2. If $(t,q) = 1$, then $M(t,q,\delta) = M(t,q)$ for all $\delta \in GF(q)$.

Proof. Let δ_1 and δ_2 be two distinct elements of F and let S_1 be an (m,t,δ_1)-set in F, where $(t,q) = 1$. Consider the set

$$S_2 \triangleq \{ \alpha + t^{-1}(\delta_2 - \delta_1) \mid \alpha \in S_1 \}.$$

Clearly, S_2 is an (m,t,δ_2)-set, implying $M(t,q,\delta_1) \leq M(t,q,\delta_2)$. As δ_1 and δ_2 are arbitrary elements of F, the value of $M(t,q,\delta)$ is independent of δ. □

Thus, when $(t,q) = 1$, it suffices to examine the values of, say, $M(t,q,0)$ in order to obtain lower bounds on $M(t,q)$.

Clearly, $M(1,q) = q - 1$ for every q, since we may set $S(1,q,0) = F - \{0\}$ and no $(m,1,0)$-set may contain the zero element. Also, $M(q-1,q) = q - 1$ with $S(q-1,q,0) = F - \{\alpha\}$ for any $\alpha \in F - \{0\}$. For $2 \leq t \leq q - 2$ we distinguish between even and odd q and begin with the even case.

Lemma 3. For $q = 2^h$, $h \geq 2$,

$$M(2,q) = q.$$

Proof. No two distinct elements of F sum to zero. □

For a set $S \subseteq F$, denote by $\sigma(S)$ the sum of elements of S. Note that every (m,t,δ)-set S, $t < m$, is also an $(m,m-t,\sigma(S)-\delta)$-set.

Lemma 4. For $q = 2^h$ and $3 \leq t \leq \frac{q}{2} - 2$,

$$...$$
$M(t, q) \geq \begin{cases} \frac{q}{2} + 1 & \text{if } t \in \{3, \frac{q}{2} - 2\} \\ \frac{q}{2} & \text{if } 3 < t < \frac{q}{2} - 2 \end{cases}$

Proof. Let $\Omega = \{\omega_i\}_{i=0}^{h-1}$ be a basis of $F = GF(q)$, when viewed as a vector-space of dimension h over $GF(2)$, and associate $(a_0 a_1 \cdots a_{h-1}) \in GF(2)^h$ with $\alpha = \sum_{i=0}^{h-1} a_i \omega_i$. Assume, first, that t is odd. In this case the elements of odd Hamming weight form a $(\frac{q}{2}, t, 0)$-set, since the weight of the sum of any odd number of such elements must be odd and, therefore, nonzero. The same construction yields a $(\frac{q}{2}, t, \omega_0)$-set for even t. In the special case of $t \in \{3, \frac{q}{2} - 2\}$, we can join the zero element to form a $(\frac{q}{2} + 1, t, 0)$-set. \(\square\)

Remark. Lemma 4 can be shown to hold with equality. As the full proof is rather tedious, we present here only the case $t = 3$. Suppose there exists a $(\frac{q}{2} + 2, 3, \delta)$-set S. Let $\alpha \in S - \{\delta\}$ and define $T = S - \{\alpha\}$. Since $|T| > \frac{q}{2}$, there exist distinct $\beta, \gamma \in T$ such that

$$\beta + \gamma = \delta + \alpha,$$

implying $\sigma((\alpha, \beta, \gamma)) = \delta$, in contradiction to the definition of S.

Lemma 5. For $q = 2^h$ and $\frac{q}{2} - 1 \leq t \leq q - 2$, $M(t, q) = t + 2$.

Proof. Every $(t+2, 2, 0)$-set S is also a $(t+2, t, \sigma(S))$-set, so that $M(t, q) \geq t + 2$. On the other hand, if there were a $(t+3, t, \delta)$-set S, it would also serve as a $(t+3, 3, \sigma(S) - \delta)$-set, implying $t \leq M(3, q) - 3 = \frac{q}{2} - 2$, contrary to the stated range of t. \(\square\)

The given lower bounds on $M(t, q)$ guarantee the existence of $[n, k]$ non-GRS MDS codes over $GF(q)$, $q = 2^h$, for the following values of n and k:
These are not necessarily the longest possible codes with the said properties. For example, when $q = 2^h$, $h \geq 7$, there exists a $[q+1,4,q-2]$ non-GRS code [3, §5(3)], which can be utilized to construct $[k+4,k,5]$ non-GRS codes for $\frac{q}{2} \leq k \leq q-3$.

We turn now to finite fields of odd size.

Lemma 6. Let q be a power of an odd prime. Then,

$$M(2,q) = \frac{q+1}{2}.$$

Proof. Let $\{\alpha_i\}_{i=0}^{q-1}$ denote the elements of F so that $\alpha_0 = 0$ and $\alpha_i = -\alpha_{q-i}$, $1 \leq i \leq \frac{q-1}{2}$, and let $S = \{\alpha_i\}_{i=0}^{\frac{q}{2}}$. Clearly, S is a $\binom{q+1}{2}$ set in F, implying $M(2,q) \geq \frac{q+1}{2}$. To show equality, note that any set $S' \subseteq F$ of size greater than $\frac{q+1}{2}$ must contain both α_i and α_{q-i} for some i, $1 \leq i \leq \frac{q-1}{2}$.

The following is the analog of Lemma 5 for odd values of q.

Lemma 7. Let q be a power of an odd prime. Then, for $\frac{q-1}{2} \leq t \leq q-2$,

$$M(t,q) = t + 1.$$

Proof. Every $(t+1,1,0)$-set S is also a $(t+1,t,\sigma(S))$-set. The proof of tightness is similar to that in Lemma 5.
It is easy to see that the construction of Section II cannot be used to obtain non-GRS MDS codes for \(k \geq \frac{q+1}{2} \). There exists however an example of a \([10,5,6]\) non-GRS construction over \(GF(9) \) \([3]\) and it would be nice to have a general construction of non-GRS MDS codes also for this range of \(k \).

Lemma 8. Let \(q \) be a power of an odd prime. Then, for \(3 \leq t \leq \frac{q-3}{2} \),

\[
M(t,q) \geq t + 2.
\]

Proof. Any \((t+2,2,0)\)-set \(S \) is also a \((t+2,t,\sigma(S))\)-set. \(\square \)

In specific cases, one can do much better than that. Consider first the case \(q = p \), an odd prime. Here we have

\[
M(3,p) \geq 2\left\lfloor \frac{p+7}{6} \right\rfloor \geq 2r,
\]

by taking the set

\[
S = \{ \pm 1, \pm 3, \pm 5, \cdots, \pm (2r-1) \}.
\]

The bound \(M(t,p) \geq \left\lfloor \frac{p-1}{t} + \frac{t+1}{2} \right\rfloor \) is easy to obtain also for larger \(t \). For small \(p \) we have the following values of \(M(t,p), 3 \leq t \leq \frac{p-3}{2} \):

<table>
<thead>
<tr>
<th>(t)</th>
<th>(M(t,11))</th>
<th>(M(t,13))</th>
<th>(M(t,17))</th>
<th>(M(t,19))</th>
<th>(M(t,23))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Considering extension fields \(GF(q), q = p^h \), and \(t \leq \frac{q}{p} \), we have \(M(t,q) \geq \frac{q}{p} \) by taking the elements of \(GF(q) \) whose leading coefficient is 1 when viewed as \(h \)-vectors over \(GF(p) \).

Furthermore, for \(3 \leq t \leq p-1 \) we have \(M(t,q) \geq \left\lfloor \frac{p}{t} \right\rfloor \cdot \frac{q}{p} \) by taking all \(h \)-vectors with leading
coefficients a, $1 \leq a \leq \left\lfloor \frac{L}{t} \right\rfloor$.

These lower bounds on $M(t,q)$ yield non-GRS MDS constructions for the following values of n and k over $GF(q)$, q odd: for $k = 3$ we obtain a $[\frac{q+5}{2},3]$ non-GRS MDS code; a special case of this construction for $q \equiv 3 \pmod{4}$ results in a code which is known to be a complete arc: appending any column to its generator matrix violates the MDS property [2, p. 215]. Applying Lemma 8, we obtain a $[k+3,k,4]$ non-GRS code for all $4 \leq k \leq \frac{q-1}{2}$. For small values of k longer codes can be obtained; when $k = 4$, for instance, the non-GRS construction yields a code whose length is of the order $\frac{q}{3}$. When $GF(q)$ is an extension field of characteristic p, $[\frac{q+2}{p},k]$ non-GRS MDS codes exist for all $k \leq \frac{q}{p} - 1$.

REFERENCES

