INTERLEAVING SET TEMPORAL LOGIC

by

Shmuel Katz and Doron Peled

Technical Report #505
March 1988
INTERLEAVING SET TEMPORAL LOGIC

by

Shmuel Katz and Doron Peled

Department of Computer Science, Technion, Haifa, Israel.

ABSTRACT.

A new temporal logic and interpretation are suggested which have features from linear temporal logic, branching time temporal logic, and partial order temporal logic. The new logic can describe properties essential to the specification and correctness proofs of distributed algorithms such as those for global snapshots. It is also appropriate for the justification of proof rules and ascribing temporal semantics to properties such as layering of a program. These properties cannot be described with existing temporal logics. The semantic model of the logic is based on a collection of sets of interleaving sequences which reflect partial orders from the underlying semantics of the computational model. For the common partial order derived from sequentiality in execution of each process, the logic will distinguish between nondeterminism due to the parallel execution and nondeterminism due to local nondeterministic choices. The difference in expressive power is thus qualitative, and not merely due to the presence or absence of a particular temporal operator. In the logic, theorems are proven which clarify when it is possible to establish a property P for some of the interleaving computations, and yet conclude the truth of P for every interleaving.

† A preliminary version of this work appeared in the Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, Vancouver, Canada, August 1987, pages 178-190.
1. Introduction.

Many attempts have been made to design a logic which allows expressing specifications and proving correctness for distributed systems, and the relative expressibility of each has been studied. We deal here with a new kind of temporal logic, called Interleaving Set Temporal Logic (ISTL), which can express various new properties that existing logics can not.

The simplest version of ISTL is syntactically identical to a branching-time temporal logic [CE], but the formulas have a different semantic interpretation, one which is more appropriate for distributed computation and specification.

In any (temporal or other) logic, the semantic objects over which the logic operates determine what can be expressed about the 'reality' outside the logic. The logic here is in essence over a collection of pairs, where each pair is a set of events and a partial order on the events. Each such pair is used to generate a branching structure, equivalent to a set of all interleavings of the events in the set which are consistent with the partial order and satisfy an additional fairness criterion called acceptability. Within each such set (called an interleaving set) global states and explicit reasoning on the paths are used. Because all the paths in the same interleaving set are generated from a single partial order and event set, they have certain uniformity properties that all of the interleavings of events generated from a program do not have.

We demonstrate that this semantic interpretation is appropriate for expressing and reasoning about many known phenomena of distributed computation which cannot be expressed in other temporal logics.

This logic is particularly appropriate for specifying and reasoning about distributed programs and languages which have both independently executing processes, and local nondeterministic choices within the processes. Such nondeterministic constructs are common in most languages for distributed programming, with two well-known examples being the select construct of Ada, and the guards of CSP [H]. Among other benefits, the explicit nondeterminism allows choosing one of a number of possible communications without imposing an arbitrary ordering in advance. In the partial order that appears frequently in the literature [B, BR, L1, L5, R], it is natural to distinguish between the nondeterminism which arises because of the independent execution of events in different processes, and the nondeterminism due to the explicit choices of the nondeterministic control constructs. However, other partial orders can be considered in the framework of ISTL. In Section 2, several alternative partial orders are described.

No matter which partial order is adopted, in our view, a program will be represented by a collection of partial orders, each defining a set of (interleaved) execution sequences. For each partial order there can exist several interleaving sequences (paths) which are completions of that partial order to a total order. The abstraction of a distributed system does not allow us to prove
that one path is more correct than another (we do not depend on a global clock). This is a non-
determinism that is due to the execution of unrelated events in different processes. On the other
hand, paths that are different because of choosing a different continuation out of several non-
deterministic choices inside a process have different event sets and are completions of different
partial orders. We can sometimes say that a distributed program is correct under a given specifi-
cation if for each partial order, there exists a path that satisfies the specification. Using the

grouping into substructures and the branching modalities, we will show when it is justified to
apply this correctness criterion to distributed programs.

This approach, similar to the semantic view suggested in [L1] and [R], has not previously
served as the basis of a global temporal logic. Rather, an assertion in linear temporal logic
(denoted LTL [MP1, MP2]) is easiest understood as having a set of (nonbranching) sequences
as models, each one being a structure. This logic expresses correctness properties such as live-
ness and partial correctness. An LTL formula is a path formula. That is, it makes an assertion
about an interleaved path. It has the feature of always talking about "all the executions" of a
program at the same time. In other words, a formula is valid for a certain program iff it is true in
each of the structures (which are interleaved paths) which its possible executions generate.

An assertion in branching temporal logic (denoted by UB, CTL or CTL* [BMP], [CE],
[EH1], [E]) is modeled by a single DAG structure, where we can express the possibility that a
program will choose a given alternative. Therefore properties like "there can be an execution
that terminates with X=2" may be expressed. A UB formula is a state formula, that is, it makes
an assertion about all the possible continuations from a global state. A formula is said to be
valid for a program iff it is true in every global state of the DAG structure generated by its possi-
bile executions.

Partial order temporal logic [PW] allows treating the relative precedence of local events in
a single partial order execution. It is meaningless to talk in POTL about global states, since the
logic reasons directly on the partial order and does not generate the global states. Although
some global assertions can be 'simulated' by assertions about the local states of the partial order,
this is not true for many global assertions.

ISTL inherits some of the features of each of these logics: From LTL we take the transition
between global states and the property that a formula is satisfied by a structure if it is satisfied in
any (partial order) execution. The branching structure is clearly from UB or CTL, as is the abili-
ty to choose between alternative continuations. From POTL, the view of a single partial order
execution as a stand-alone (sub)structure is adopted.

By dividing the structure into such substructures and using the branching modalities we are
able to express properties that the other temporal logics can not. Among the new properties that
we can now consider are: the specification of the distributed snapshot algorithm for finding the
global states of a distributed system as seen in [CL], the behavior of communication closed layers [EF], or giving temporal semantics for distributed languages like CSP.

The rest of this paper is organized as follows: In Section 2 a short description is given of the two models of distributed computation: as a partial order between events and as an interleaving, and the semantic model is defined. In Section 3 the informal description of the model of partial order is related to a structure in the sense of logic and set theory, and a formal definition is given for the syntax and semantics of the new logic. In Section 4 the expressive power of the new logic is compared with that of some existing ones through a few examples. Section 5 deals with deduction in the new framework. In Section 6 correctness criteria for distributed programs are examined, and the subject of giving a specification and correctness proof for a distributed program in the new logic is discussed. In Section 7 we present some applications which demonstrate the utility of ISTL. Section 8 gives some conclusions.

2. Preliminaries.

The underlying semantics of distributed programs is clearly dependent on the set of operations defined. In addition to standard operations such as assignment, testing, and local control, the set of operations will depend on whether e.g., there are a variable or a fixed number of processes (that is, fork and join operations to spawn or terminate processes are either allowed or disallowed), synchronous or asynchronous communication is present, or communication is defined only between two processors or is generalized to N-way communication. In order to abstract away from these issues, we will assume that for each model a set of primitive operations is given.

2.1. Definition. Events are single executions of atomic operations. Events are not the same as the syntactic representation of the operations [L3] which are merely patterns of events. Note that each execution of an atomic operation defines a different event. A process is an abstract entity which represents a task which can be executed concurrently with other tasks and is a subset of the events. The division of events to processes can be thought of as an indexing of the events: events indexed by a process identifier are said to occur inside a process (e.g. an assignment), events that are indexed by more than one process identifier occur jointly among several processes (e.g., in a model with synchronous communication when handshaking occurs between two processes).

There are at least two ways to connect the possible executions of a distributed program to partial orders. In the first one, the entire program is considered as defining one large partial order (or branching semantics) of all possible choices. This is the classic branching view. In the other view, whenever there is an explicit nondeterministic choice in the code of the program, a single (partial order) execution will include only the specific choice made in that execution. Thus in
general there will be many partial orders associated with a program. We will adopt and further explain this latter view. Both of the above are contrasted with the modeling of a program as a collection of sequences, i.e., as a total order (interleaving) of the events. An excellent description of these views appears in [L1] and we give here only a short explanation which will be needed in the sequel.

2.2. Definition. A (local or global) snapshot of a program is an element of the Cartesian product of the values of the (process’ or program’s resp.) variables including program counters. A global snapshot in a model with asynchronous communication includes also for each channel the set of messages sent but not received.

A local event starts from a local snapshot of the process in which it occurs, and ends with a new local snapshot. In a synchronous communication model, a communication event is mutual to two (or more) different processes.

The ordering among events is also a part of the basic semantics of the model. For example, among events that occur in the same process during a single execution, there exists a natural total order of occurrence. Apart from that, the event of sending a message in one process precedes the event of receiving it in another (or in a synchronous communication model, this is done within a single joint event). Other natural orderings are defined for events such as join and fork. The transitive closure of this irreflexive relation between events is a partial order that is taken as the model of computation in the partial order approach. This partial order which is due to Lamport [L1] is only one possibility, although it is natural and popular among researchers.

Another reasonable partial order may be defined which takes into account only real causality between events. In such a partial order, two sequentially executed events can be considered as unordered if they do not affect each other (and their relative order is not an interesting factor in the description of the program). This partial order, which can be called the essential partial order, is weaker than the one discussed previously, but still expresses the temporal relations which are required by the underlying semantics.

Although the partial order model is mainly discussed in connection with distributed systems [B, L1, L5, R], it is also a useful tool for shared memory parallel programs [BR]. One way to introduce shared variables into the execution model is by adding the following constraint: in each partial order, each shared memory location imposes a total order among the events which reference it (both read and write). Because of the total order among the events of accessing a shared variable, one can view each of the shared variables as a process by itself. Each of the events of this process is mutual to another process (the one that reads or writes) similarly to a synchronous communication between processes. Therefore, nondeterminism in the access to a shared variable creates alternative events that belong to different executions. Again, this is only one proposed semantics for using a shared variable. A different underlying semantics may
allow, for example, concurrent reading.

The choice of a partial order to represent what we view as a submodel is orthogonal to the following definitions and the logic in the next section. This choice will follow from the semantics. In the continuation, we assume that the partial order at least includes the essential partial order described above. In addition, two semantic properties are required: The first is that the number of events in the partial order is countable. The second is that no event has an infinite number of predecessors. Otherwise, we will not be able to ensure that there are sequences which contain each event from a partial order.

2.3. Definition. Let \((E, <)\) be a partial order on a set of events \(E\) for a relation \(<\). The term a single execution is taken to be synonymous with "a partial order".

The precedence relation among events represents exactly what our abstraction of distributed systems allows us to infer about the order of events. If two unrelated (according to \((E, <)\)) events \(e_1\) and \(e_2\) were executed, no conclusions may be reached about their relative order of execution as long as no global clock is given. Two such events are said to be concurrent.

A global state does not exist directly in the partial order model. In order to incorporate such states, for each possible partial order \((E, <)\) the following terms \([L1]\) may be defined:

2.4. Definition. A slice \(S\) is a finite subset of \(E\) in which the following property holds: for each pair of events \(x\) and \(y\) in \(E\) such that \(x < y\), if \(y \in S\) then \(x \in S\). Let SLICES\((E, <)\) be the set of all slices defined on \((E, <)\). A maximal event \(x \in S\) is one that for no \(y \in S\) is it true that \(x < y\). Minimality is defined similarly.

2.5. Definition. A global state is identified with a slice. The global snapshot characterizing a global state \(S\) is the Cartesian product of all the local snapshots resulting after the execution of the maximal events in \(S\). As in Definition 2.2, in a nonsynchronous communication model, the global snapshot characterizing \(S\) includes for every communication channel the set of messages sent on it by events from \(S\) and received by events outside \(S\).

This is a global state in a sense that without a global clock no one can disprove the claim that the program really passed through a synchronous interval of time in which exactly all the events in the slice have already executed and the values of all the variables (and set of messages in transit) agree with the related snapshot.

It is possible that two or more different global states of a program have exactly the same snapshots in a single program execution. For example, a loop inside a program may cause the set of variables (propositions, sets of messages) to repeatedly have the same values during a single execution. However, different global states occur because the set of events accumulated into the appropriate slices is extended each time events are executed. Thus different slices may be characterized by the same snapshot.
2.6. Definition. Let $p \subseteq \text{SLICES}(E,\prec) \times \text{SLICES}(E,\prec)$ be a relation such that $s \prec t$ iff $s \subset t$. That is, s has fewer events than t and can be said to precede t. Note that s and t must be finite by the definition of $\text{SLICES}(E,\prec)$.

2.7. Definition. Let $\text{TRAN}(E,\prec) \subseteq p$ be the transition relation between slices such that

$$\text{TRAN}(E,\prec) = \{(s, t) : s \prec t \land \left(\neg \exists r (s \prec r \land r \prec t) \lor (s = t \land \exists r (s \prec r)) \right)\}$$

That is, two global states s and t are related by $\text{TRAN}(E,\prec)$ if t is different from s by the execution of a single additional event (by a single process, or by several if it is a synchronous event) or if they are both the same maximal slice according to the relation p [R]. If $(s, t) \in \text{TRAN}(E,\prec)$, s is said to immediately precede t. (p is the transitive closure of $\text{TRAN}(E,\prec)$).

The relation $\text{TRAN}(E,\prec)$ between global states generates a branching structure (DAG) because for a single state, we generally have more than one successor. The alternative possible successors are caused by the occurrence of unrelated (according to the partial order) events in different processes and not by nondeterminism inside a process.

According to the interleaving view, we look at sequences of events. Each sequence is a total order between the (beginning of the) events. Therefore, in this view, between each of the events in a sequence, even in different processes, there exists an order. Each event starts from a global state of the program and ends with a new global state.

2.8. Definition. A single maximal sequence (s_0, s_1, s_2, \ldots) such that $\forall i \geq 0, s_i \in \text{SLICES}(E,\prec)$ and $(s_i, s_{i+1}) \in \text{TRAN}(E,\prec)$ is called an interleaving sequence or a path. (Maximality of a sequence means that it is not a proper prefix of another sequence). A finite and contiguous portion of such a path will be called in the sequel a finite path.

The interleaving model can describe an idealization of a reality in which there is a global clock and the events are "timeless", or an implementation of processes using multiprogramming, with no actual parallel execution. Note that if events are not instantaneous and can overlap in time, then none of the interleavings need describe what "actually" occurred. The model is justified by the assertion that the program will behave "as if" one (or more) of the interleavings represents reality.

An interesting property of the relation p that will be used later is:

2.9. Proposition. If $x \prec y$ (thus $x \subseteq y$ and x and y are finite) then there is a finite path from x to y.

Proof. consider x and y as sets of events, then by acyclicity of the partial order (since it is transitive closed and irreflexive) there is a minimal event e in $y - x$. Since all its predecessors are included in x, $x' = x \cup \{e\}$ is a slice. The rest of the proof follows by a simple induction on the finite set $y - x$.

2.10. Definition:
PATHS(E,<)\(\equiv\{(s_0,s_1,s_2,\ldots) : \forall i \geq 0, s_i \in \text{SLICES}(E,<) \land (s_i,s_{i+1}) \in \text{TRAN}(E,<)\}.

It can be easily seen \([L1, R]\) that the set of paths generated by the relation PATHS(E,<) is exactly the set of interleaved sequences which are related to a single (partial order) execution. Note that such a relation is constructed separately for each partial order execution.

2.11. Definition. An acceptable path \(x\) on a set of events \(E\) satisfies the condition that for each event \(e \in E\) there exists a global state \(s_i\) on \(x\) which (as a slice) contains \(e\). This means that each event from \(E\) appears eventually on each acceptable path. Let ACCEPTABLE(E,<) be the set of acceptable paths on \(E\) from PATHS(E,<). This will also be called an interleaving set.

The criterion of being acceptable (which is called just in \([R]\)) differs from the usual fairness definitions \([LPS]\) \([Fr]\) in that the partial orders are already assumed given from the underlying semantics, and these already may or may not be "fair" according to the other definitions.

The following proposition appears without a proof in \([R]\):

2.12. Proposition. Given that (1) \(E\) is countable and (2) for each \(e \in E\), the set \(\{e' : e' < e\}\) is finite, it follows that the set of acceptable paths is not empty.

Proof. We first show that any finite path \(p\) can be always extended to include an event \(e \in p\). Consider the finite set \(S\) of those events which precede \(e\) according to the partial order. This finite set is a slice by Definition 2.4. Consider the union of \(S\) with the last slice in the finite path \(p\). A union of two slices is a slice, and by Proposition 2.9 there is a finite path between the last slice in \(p\) and the union. This path can then be further extended to include \(e\).

Now, since the set of events is countable by (1), consider the path which is generated by always extending it in the following way: given any finite prefix, choose the next smallest event (according to some enumeration) which is not yet in any slice in the current prefix. Then extend the last slice in the prefix to contain this event. This path will be acceptable.

2.13. Definition. A set of sequences is suffix closed \([A, E]\) if every suffix of a sequence which appears in the set is also in the set.

2.14. Definition. A set of sequences is fusion closed if whenever \(x_1sy_1\) and \(x_2sy_2\) are sequences in the set (where \(x_i\) is a prefix of a sequence, \(s\) is a state and \(y_i\) is a suffix of a sequence) then \(x_1sy_2\) is also a sequence in the set.

A structure which allows the sequence quantifiers to range over a semantically defined set of sequences which is suffix and fusion closed is called an Abrahamson structure \([A, CVW]\).

2.15. Proposition. The set of paths that constitute an interleaving set is suffix closed and fusion closed.

Proof. Follows easily from the fact that if a path is acceptable, then all of its suffixes are also acceptable. \(\square\)
3. Towards the new TL.

In this section, a formal definition of the syntax and the semantics of ISTL is given and a few possible extended logics are briefly described. The modals are those of CTL [EH1] but we build the interleaving sets into the semantics. For simplicity, we define a propositional ISTL.

3.1. Syntax of ISTL.

Define : P - A set of atomic propositions.

1. For each proposition p \(\in \) P, p is in ISTL.
2. if Q, W are in ISTL then Q \& W, QvW and \(\neg Q \) are in ISTL.
3. if Q is in ISTL then AGQ, AFQ, EGQ, EFQ, AXQ and EXQ are in ISTL.
4. if Q and W are in ISTL then E(QUW), A(QUW) are in ISTL.

We call the following symbols sequence modalities: G='always', F='sometimes', X='next' and U='until'.

The sequence quantifiers are: A='on every sequence', E='there exists a sequence'.

Define : \(\text{first}(x) \) - The first state in a sequence \(x \).
\(x^i \) - The suffix of the sequence \(x \) starting from its \(i \)th state (\(x \) begins with \(s_0 \)).

We first define the semantics for a single substructure (partial order and event set) and then define the semantics for the collection of substructures.

3.2. Definition. A substructure \(M \) has the form \((E, <, L)\) where \((E, <)\) is a partial order whose set of slices is \(\text{SLICES}(E, <) \) and L is an assignment function \(L: \text{SLICES}(E, <) \times P \rightarrow \{ \text{true}, \text{false} \} \).

Define \(I^M=\text{ACCEPTABLE}(E, <) \) and \(S^M=\text{SLICES}(E, <) \) which are the interleaving set and the set of slices, respectively, associated with the structure \(M=(E, <, L) \).

Now the satisfaction relation is defined for a single substructure:

3.3. Definition. A substructure \(M=(E^M, <^M, L^M) \) and a slice \(s \in S^M \) satisfies a formula \(f \), (written \(s \models_M f \)) iff:

1. \(s \models_M p \) for \(p \in P \) iff \(L^M(s, p)=\text{true} \).
2a. \(s \models_M Q \& W \) iff \(s \models_M Q \) and \(s \models_M W \).
2b. \(s \models_M Q \lor W \) iff \(s \models_M Q \) or \(s \models_M W \).
2c. \(s \models_M \neg Q \) iff not \(s \models_M Q \).
3a. \(s \models_M \text{AG}Q \) iff for each sequence \(x \in I^M \) with \(\text{first}(x)=s \), for each \(i \geq 0 \), \(\text{first}(x^i) \models_M Q \).
3b. $s \models M \text{AFQ}$ iff for each sequence $x \in M$ with $\text{first}(x) = s$, there exists $i \geq 0$ such that $\text{first}(x^i) = Q$.

3c. $s \models M \text{EGQ}$ iff there exists a sequence $x \in M$ with $\text{first}(x) = s$ and for each $i \geq 0$, $\text{first}(x^i) = Q$.

3d. $s \models M \text{EFQ}$ iff there exists a sequence $x \in M$ with $\text{first}(x) = s$ and there exists $i \geq 0$ such that $\text{first}(x^i) = Q$.

3e. $s \models M \text{EXQ}$ iff there exists a sequence $x \in M$ with $\text{first}(x) = s$ and $\text{first}(x^1) \neq Q$.

3f. $s \models M \text{AXQ}$ iff for each sequence $x \in M$ with $\text{first}(x) = s$, $\text{first}(x^1) \neq Q$.

4a. $s \models M (\text{QU}W)$ iff there exists a sequence $x \in M$ with $\text{first}(x) = s$ and there exists $i \geq 0$ such that $\text{first}(x^i) = W$ and for each $0 \leq j < i$, $\text{first}(x^j) = Q$.

4b. $s \models M (\text{QU}W)$ iff for each sequence $x \in M$ with $\text{first}(x) = s$, there exists $i \geq 0$ such that $\text{first}(x^i) = W$ and for each $0 \leq j < i$, $\text{first}(x^j) = Q$.

3.4. Definition. $\models f$ iff $\models f$ for each $s \in S$. (Many typical formulas will be trivially true for all but initial states by adding $\text{at}(\text{START}_i)$ as a conjunct for each process i to the left of an implication.)

3.5. Semantics. An ISTL structure is a triple (V, W, F) where V is a set of worlds, W is a set of triples $M = (E^M, <^M, L^M)$, each of which is a substructure as defined above, and F is a function $F: V \rightarrow W$. Let \mathcal{A} be an ISTL structure (V, W, F). An ISTL structure \mathcal{A} satisfies a formula f (written $\mathcal{A} \models f$) iff $\models f$ for each $v \in V$.

The semantic implication $\Sigma \models f$, where Σ is a set of ISTL formulas, f is a single ISTL formula and \mathcal{A} is an ISTL structure, is as follows:

3.6. Definition. $\Sigma \models f$ iff for every structure \mathcal{A}, whenever $\mathcal{A} \models \Phi$ for each $\Phi \in \Sigma$, then $\mathcal{A} \models f$.

We do not need all sequence modalities G, F, U and X as there is a simple translation which uses semantical equivalences and shows that one needs only U and X [CE].

The assignment function L for each substructure assigns values to any propositional variable in any slice. It is common to be interested only in the snapshot which characterizes each slice (Definition 2.5). Nevertheless, the definition of L is general and allows a predicate to be dependent upon the entire slice (for example, a predicate which is true when the number of events in a slice is even). When a fixed number of processes is considered, the extension to a first order logic can be done just as for linear temporal logic [MP1]. Of course, for a first order
logic, the assignment function assigns values to each of the program variables. This contrasts with POTL where the extension to first order is more difficult because of the nonavailability of some variables in local states.

3.7. Example. Let \mathcal{A} be a set of structures of all the partial orders and event sets obtained from the execution of a distributed program $PR=\{P1||P2\}$. Assume that Q is a proposition on global states. The propositions $at(START_1)$ and $at(START_2)$ have the meaning that control of $P1$ and $P2$ respectively is before the beginning of the process. (That is, according to the usual interpretation, the empty slice). Let f be the formula $(at(START_1) \land at(START_2)) \rightarrow EQ$.

The meaning of $A \models f$ is: For every substructure $M \in W$ and for every slice s appearing on some path of I^M, it holds that $s \models f$. According to definition 3.3, $s \models f$ means: if s is a state that satisfies $(at(START_1) \land at(START_2))$ then there exists a path in I^M starting with s on which there is a state which satisfies Q. Thus, the meaning of $A \models f$ is "for every partial order execution, there exists a path from the global initial state that reaches a state which satisfies $Q"$.

The expressive power of ISTL depends on the set of modalities chosen. Restricting the set of modalities from the previous definition to various subsets generates a hierarchy of logics similar to that in [EH1]. ISTL* may be defined with the syntax of CTL* [EH1] but again building the interleaving sets into the semantics. The difference between the logics is that ISTL forces path quantifiers A and E to be followed by exactly one of the path modalities F, G, X and U (which are the same as the LTL modalities \Diamond, \Box, O and Until) while in ISTL* no such restriction is required. In later sections, some examples from ISTL* are given.

By Definition 3.5, a set of structures A will satisfy a formula f, if each one of the structures in A satisfies f. Therefore, if a set of structures represents all the executions of a program, a formula here will be considered valid in a program if it is satisfied by each of its partial order executions. This is a property of "always talking about all the executions", similar to LTL, and opposed to UB which can talk about the existence of an execution. A possible extension which makes it possible to express the existence of a partial order execution is considered below in a version called QISTL (QISTL*). A new level of quantifiers which allows both expressing "for every partial order" and "there exists a partial order" is added. The Q stands for "quantified" because this logic allows quantification of ISTL formulas over the set of all partial order executions.

3.8. Syntax.
1. If Q is in ISTL, then $\exists Q$ and $\forall Q \in QISTL$.
2. If Q, W are in QISTL then $Q \land W$, $Q \lor W$ and $\neg Q$ are in QISTL.

3.9. Semantics.
Let \mathcal{A} be a structure (V, W, F).

1a. $\mathcal{A} \models \exists Q$ iff there exists $v \in V$ such that $F(v) \models Q$.

1b. $\mathcal{A} \models \forall Q$ iff for each $v \in V$ it holds that $F(v) \models Q$. (By the previous semantics, this was written as $\mathcal{A} \models Q$.)

2a. $\mathcal{A} \models Q \land W$ iff $\mathcal{A} \models Q$ and $\mathcal{A} \models W$.

2b. $\mathcal{A} \models Q \lor W$ iff $\mathcal{A} \models Q$ or $\mathcal{A} \models W$.

2c. $\mathcal{A} \models \neg Q$ iff not $\mathcal{A} \models Q$.

Now we can write assertions about the existence of a partial order and event set in which a temporal property holds. For example: $\exists (at\text{(START)} \rightarrow EFx=y)$ means "there exists a (partial order) execution in which one of the paths leads to a global state in which $x = y$".

4. Connection with other logics

In this section, an example of constructions of Kripke structures for various logics are presented and compared. It is clear that grouping the paths into interleaving sets allows us to assert new properties which are based on the underlying partial order. We will demonstrate this in a pair of examples.

4.1. Example. Consider the CCS [M] expressions "a;b+b;a" which means that the system chooses nondeterministically either to execute sequentially a and then b or to execute b and then a, and the expression "a || b" which means that a and b are executed concurrently. With respect to linear and branching structures these expressions are indistinguishable, as depicted in Figure 1. Recently, it is has been argued [BC, DDM], that one should distinguish between nondeterminism and concurrency. If we assume the usual partial order with a total ordering of sequential events, as depicted in Figure 2, a;b+b;a has two singleton interleaving sets. On the other hand, a || b has a single interleaving set consisting of two interleavings.

Assume that the predicate a asserts that the event a occurred and similarly b asserts that b occurred. The formula $\neg a \land \neg b \rightarrow EX(\neg a \land b)$ asserts that in every partial order execution, the event b is immediately executed after the global state in which none of the events has been executed. This formula is satisfied by the single interleaving set of a || b, but not by one of the interleaving sets of a;b+b;a. Therefore, the ISTL formula distinguishes between these CCS expressions. Obviously, any logic based on the linear or branching structure cannot have a formula distinguishing between the expressions.

4.2. Example It is impossible to assert in POTL directly on the global states [KP]. On the other hand, sometimes it is possible, though awkward, to express global properties in POTL by combining local assertions. However, we will see that propositional ISTL suffices to express many
properties, while for the same properties it is necessary to transfer into \textit{first order} POTL.

Assume that the two variables x and y belong to different processes and range over the natural numbers. Using ISTL, one can define a proposition R which is true exactly in states where $x > y$. However, in POTL that collection of global states must be identified by using boolean and temporal operators to combine assertions about the local states. It is sufficient to show that there is no set of locally definable propositions which can be combined using boolean operators to assert that $x > y$. Assume to the contrary that there is such a propositional formula Q which is true exactly when $x > y$. Using a boolean combination of a finite set of propositional variables, each describing a property of x (or y), it is only possible to classify the set of possible local values of x (or y) into a \textit{finite} set of classes. Thus, Q cannot distinguish between global states having different values of the variable x (or y) that belong to the same class. Since the domain of the variables x and y is the natural numbers, there exist at least two infinite classes: S_1 of x values, and S_2 of y values. Pick any value a in S_2. Since S_1 is infinite, there must be some value b in S_1 greater than a. By the same reasoning, there is some c in S_2 which is greater than b in S_1. By construction, Q must give the same result for the relation between a and b, and the relation between b and c. This contradicts the fact that Q expresses the property $x > y$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{Branching and linear structures for $a;b+b;a$ and $a\parallel b$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2.png}
\caption{The interleaving sets for $a;b+b;a$ and $a\parallel b$.}
\end{figure}
In order to show that ISTL\(^*\) strictly includes linear temporal logic, we first show how to embed a linear assertion in ISTL\(^*\).

4.3. Definition

A set LPF of linear path formulas is a subset of the ISTL\(^*\) formulas defined as:

1. For each atomic proposition \(p \in P \) \(p \in \text{LPF} \).
2. If \(Q \in \text{LPF} \) then \(GQ, FQ, XQ, \neg Q \in \text{LPF} \).
3. If \(Q, W \in \text{LPF} \) then \(Q \wedge W, Q \vee W, QU \in \text{LPF} \).

We will note by \(L' \) the LPF \(L \) transformed into an LTL formula where every \(G \) is changed into \(\Box \), every \(F \) is changed into \(\Diamond \) and every \(X \) is changed into \(\diamond \).

To compare LTL with ISTL\(^*\), notice that in LTL a formula is checked against a set of all the linear structures generated by a program. Consider then a set of LTL structures \(B \) which includes all the paths from the interleaving sets of an ISTL\(^*\) structure \(A=(V, W, F) \). That is, \(B= \bigcup_{M \in W} I_{M} \). Satisfaction of an LTL formula \(L \) over \(B \) is defined such that \(B \models L \) iff each of the sequences (paths) in \(B \), taken as a linear structure, satisfies \(L \). It is immediate from the semantic definition of LTL and ISTL\(^*\) that the following connection holds:

4.4. Proposition

\(B \models L' \iff A \models AL \). (A similar proposition referring to CTL\(^*\) is proven in [EH1]). Therefore, it is implied that any verification method used for LTL (For example [MP2, MP3]) is applicable also to ISTL\(^*\), although of course it will not be complete for ISTL\(^*\).

5. Deduction in the new framework.

In order to use the variants of ISTL for proving correctness of programs, one needs a sound (and preferably complete) deductive system. The axioms and consequence rules used for verifying a program in the logic can be divided into several categories [MP3]: (1) Those axioms and consequence rules that stem directly from the definition of the logic and set of models. (2) Those axioms and consequence rules that follow from the syntactical structures of a specific program and (3) the axioms that are particular to the domain of interest (e.g., integers, strings, trees). It is convenient to look at each part of the deductive system as an "increment" to the consequence rules and axioms.

First we consider the rules from the basic definition of the logic. From Proposition 2.15 it follows that the ISTL structures are a subset of Abrahamson structures. Therefore, any valid CTL formula which is valid over Abrahamson structures is also valid for ISTL. However, since ISTL structures are a proper subset of Abrahamson structures, a sound and complete axiom system for CTL under Abrahamson structures is sound for ISTL but not complete. In our context, the additions which follow from the special structures must be considered. The same connection holds between CTL\(^*\) and ISTL\(^*\). In [CVW] it is proven that a CTL\(^*\) formula is satisfiable over
the class of Abrahamson structures iff it is satisfiable over probabilistic structures [LS]. Therefore, the sound and complete deductive system for probabilistic structures in [LS] is sound for ISTL* too.

Most deductive systems [BMP, EH2] are given for an R-generable definition of the structures rather than for Abrahamson structures. The R-generable structures are also a subset of Abrahamson structures but differ from the set of interleaving sets. The R-generable structures satisfy a semantical property called limit closure [E] in addition to the suffix and fusion closure that the Abrahamson structures satisfy. Therefore, the set of tautologies for R-generable structures is a superset of those for Abrahamson structures. Extending the set of axioms from [LS] into a complete deductive system for CTL* over the R-generable structures is an open problem. In much the same way, one might like to add to the deductive system of [LS] enough axioms and consequence rules in order to get a sound and complete system over the class of interleaving sets. For example, the consequence rule $p \rightarrow AGp \vdash EFp \rightarrow AFp$ should be added to the deductive system. This will be justified semantically using the next theorem:

5.1. **Theorem.** The following formula is a semantic implication both in ISTL and in ISTL*:

$$p \rightarrow AGp \vdash (EFp \rightarrow AFp).$$

Proof. For each ISTL substructure M, assume that for each slice in each interleaving set it holds that $p \rightarrow AGp$. Such a property p is called a *stable* property [CL][B]. Choose a slice $s \in S^M$ such that $s \models EFp$ holds. Then, one semantically concludes that $s \models EF(AGp)$. Given that "there is a path (call it pI) in I^M, starting from s, on which there exists a slice (call it t) such that any descendant slice of t satisfies $p"$, it must be proven that "for each path in I^M, starting from s, there is a slice satisfying $p\). Take any path $p2$ in I^M which also starts at s. Since the set of paths satisfy the acceptability property from Definition 2.11, it follows that there is a slice r on $p2$ which contains all the events of t (in addition it may contain some more events). From Proposition 2.9 it follows that r is a descendant of t. Since by the stability of p, any descendant of t satisfies p, then r satisfies p. That is, $s \models AFp$. □

A second category of rules should be added. Clearly, in verifying programs over a given programming language, it is necessary to have a set of consequence rules and axioms which relate the program syntax with the logic. Part of these rules can be given in a "generic" way, not referring to specific variables or labels of a program. An example is the proof rule to be seen in Example 7.1. Another source for deduction rules comes from a specific program, by giving a formula which specifies some properties of the program (which is called the *program part* in [MP3]).

Finally, the third source for deduction rules is the domain of interest. When defining a first order version of a logic over a specific domain (the integer numbers for example), one must
include (non-temporal) consequence rules and axioms which define the semantics of the rela-
tions and functions of this domain. These issues, which are orthogonal to the particular features
of ISTL, will not be considered further here.

One of the features of the new TL is in expressing properties which make use of the ability
to choose one path out of all the paths that correspond to a single execution. Recall that there is
no way to externally determine which of these paths, if any, actually occurred, since a global
clock is not used. Thus, we are free to choose one that satisfies our specification. A criterion for
distributed correctness under a temporal specification might therefore be the existence of a path
in every execution which satisfies the desired property. For some properties, for example the
total correctness of a distributed program, this criterion is sufficient as will be proven in the
sequel. For other purposes, the use of such an approach depends on the way the program is
abstracted.

Theorem 5.1 can be used in concluding that a property is satisfied by all the (acceptable)
paths of an execution of a given program even though the property is proven only for a single
path of that execution. It explains why it is common (as will be demonstrated in the next sec-
tion) to reason about a possible execution sequence out of several "equivalent" ones [L6] (gen-
erated from the same partial order) or techniques such as "flipping" between independent events
[D] and "atomizing" together sequential events [AFR]. These proof techniques follow a uniform
pattern: first prove that a property P is stable, then show that there is an interleaving sequence
out of every partial order execution in which P is eventually satisfiable and finally deduce that P
occurs eventually on every interleaving sequence. Example 7.1 of the next section demonstrates
how a temporal deductive system (similar to [AFR]) uses this property. A proof rule which is
based on proving a total correctness property for one path is used to conclude total correctness
for all the paths.

Although the use of Theorem 5.1 provides an important tool for verification, there are other
ways to exploit the properties of ISTL with formulas of special types. Combining Definition 4.3
dealing with linear path formulas and the next proposition is helpful when dealing with proper-
ties about a subset of the program variables which are local to a certain process:

6.1. Proposition. For any linear path formula $L \in \text{LPF}$, if (a) L does not contain the X (NEXT-
TIME) modal and (b) all of the events which can affect the logical values of the atomic proposi-
tions (or the variables in a first order extension) of L are totally ordered (for example, events that
occur in the same process or events that change the value of a single physical location), then
$EL \rightarrow AL$.
Proof. With respect to propositions or variables that can be changed only by a subset of the events which are totally ordered, the different paths in the interleaving set are identical except for stuttering \([L2]\) (that is, the repeating of identical states a finite number of times). The absence of the NEXTTIME operator in the formula \(L\) prevents forming a path formula that is satisfied by one such path and not by all others. \(\square\)

In order to exploit this property, notice that in the common partial order \([L1, L5]\) those events local to the same process are totally ordered in every generated interleaving set. Therefore, by using the program's text to check that a set of variables is local to a process and making an assertion \(L\) only about them, one may conclude \(AL\) by proving that \(EL\) holds.

The following discussion deals with alternative ways of giving specifications. Let us compare two approaches to correctness: one that says that any property must be tested for all the possible interleaving sets of any execution (this approach is taken in LTL) and the approach that it is sufficient to show that a property is true for at least one path from each execution. Below, it is argued that the latter approach sometimes is suitable even in cases where \(\neg(AL \rightarrow EL)\).

The specification of a distributed system is very sensitive to the inclusion or absence of **external observers** (sometimes called the **environment**) from the model. An external observer is evidence of the order among events which are otherwise unordered according to the partial order semantics of the program. Such an observer can be for example a shared database, a shared resource, or a human who can watch two printers of two different processes at the same time.

Assume that \(EL\) (for a linear path formula \(L\)) holds in a structure representing a certain program, but \(E\neg L\) holds too. (That is, there is a path that satisfies \(L\) and another path that does not satisfy \(L\).) If the execution satisfying \(E\neg L\) is undesirable, it is due to some improper interaction between the program and an external observer. When all such observers are made part of the system, it imposes an additional ordering upon some events that compose the two different paths. Then, two such paths belong to different executions and the undesirable one is now ruled out by the implied universal quantification over all executions rather than by the local universal quantifier \(A\) over paths in a single interleaving set.

We call a system in which all possible observers are included by means of adding their interface events to the partial order and event set a **completely abstracted system**. (Lamport \([L3, L4]\) discusses the issue of "interface specification" as a method to force a specification to be correct under each possible interaction with the user.) A criterion for such a distributed system to satisfy a temporal specification which is stated in terms of an interleaved sequence is that for every execution there exists a path that satisfies it.

The related notion of "linearization" \([D, HW, Pr]\) plays an important role in reasoning about parallel and distributed algorithms. Linearization means completing the partial order to a total
order which contains it. In reasoning about parallel and distributed algorithms it is common to take each of the sequences (which represent computations in the interleaving model) and interchange unrelated events [DH, HW, L6]. A similar argument appears when using what is called "logical variables" in a program that has shared variables. Here, an assignment to local logical variables is sometimes said to be attached to the preceding or successive event [HS]. Here, too, a program may be specified by a (relatively weak) formula EL for a linear path formula L, even when AL does not follow logically from it.

6.2. Example. Assume two users P_1 and P_2 are using a shared database, and for consistency, it is required that the transactions they make are non-overlapping. The safety (mutual exclusion) property

$$(at(START_1) \land at(START_2)) \Rightarrow \Box \neg (in(CS_1) \land in(CS_2))$$

is equivalent to the ISTL* property

$$A[(at(START_1) \land at(START_2)) \Rightarrow G \neg (in(CS_1) \land in(CS_2))]$$

But this enforces a strict requirement which is needed only when the database is not part of the system itself and acts as an outside observer. If we embed the database as a process in the system to which different processes may refer by read and write communication commands, we may use the weaker property

$$E[(at(START_1) \land at(START_2)) \Rightarrow G \neg (in(CS_1) \land in(CS_2))]$$

which says that it is sufficient to linearize the events in such a way that they behave as if mutual exclusion occurs in each execution. This may be useful in case some transactions or part of them can overlap in time without both causing concurrent change to the database. If indeed the entire critical section uses the database and the database is abstracted as a sequence of events then EL and AL are equivalent requirements by Proposition 6.1 since the executions of the critical sections are totally ordered.

This does not prevent using mixed assertions with both existential and universal sequence quantifiers on a distributed system if one wishes to, as shown in the next example.

6.3. Example. In a recent paper on properties that a fairness definition must fulfill [AFK], one of the requirements is that if one of the paths in a single partial order computation satisfies the fairness condition then so do the rest of the paths in that execution, and if one does not, then none of the paths satisfies the fairness condition. This is equivalent to the assertion $(EL \Rightarrow AL)$ where L is the fairness constraint. This requirement is reasonable since if a fairness constraint is used in a termination proof to rule out certain executions, it is not possible that a single partial order execution is "partially ruled out".

Comment: An ISTL* formula of the form $E(p \Rightarrow q)$ where p is a state formula (contains no
7. Applications of the logic.

Theorem 5.1 formalized the justification for an approach to correctness which says that "a program is correct under a temporal specification" if there exists at least one path for each execution that satisfies the specification. This was also discussed in Section 6. It will be shown through several examples that such an interpretation is useful and the new logic provides a convenient specification tool:

7.1. Temporal semantics for a distributed language. The Hoare-like axioms and rules of inference for CSP [AFR] have an interesting approach to proving partial correctness. We may give TL axioms and rules which will be similar. (The rule here deals with total correctness instead of partial correctness. There is no problem in defining a partial correctness version for temporal logic). We can see that the rules in [AFR] choose a distinguished path in which the events occur in a convenient order. Consider the rule (which is somewhat simplified, but equivalent with respect to soundness and completeness of the resulting deductive system, as noted in [AFR]):

\[
\begin{align*}
(p \text{a}a' & \text{a}'(t1), (t1)S1(t2), (t2)S2(q) \\
\{p\}(a;S1) & \ll (a';S2)(q)
\end{align*}
\]

in which a and a' are a pair of communication commands, and S1 and S2 are non-communication program segments. We call \((a;S1)\) and \((a';S2)\) bracketed sections because as a consequence of this rule of inference they behave as a single atomic event.

The rule states that we can choose a path in which we first execute the communication event \(a a'\), then \(S1\) in the first process, and then \(S2\) in the second. If the antecedents of the rule can be proven for that situation, the conclusion will hold no matter which interleaving (if any) actually occurred. We can look at it as if we "bend" time according to our needs and use the fact that no one can tell us we are wrong without any evidence (the missing global clock!).

In terms of ISTL the analogous consequence rule depends on the syntax of the verified program which must satisfy the above conditions on a, a', S1 and S2.

\[
\begin{align*}
(at(a) & \land (at(a') \land p)) \rightarrow EF(after(a) \land after(a') \land t1), \\
(at(S1) & \land (at(S2) \land t1)) \rightarrow EF(after(S1) \land after(S2) \land t2), \\
(after(S1) & \land (at(S2) \land t2)) \rightarrow EF(after(S1) \land after(S2) \land q)
\end{align*}
\]

\[
\begin{align*}
(at(a) & \land (at(a') \land p)) \rightarrow EF(after(S1) \land after(S2) \land q)
\end{align*}
\]

/* \{p\}(a;S1)\ll(a';S2){q} */
Suppose that using the rule we have proven a property of the form
\[(\text{at}(P_1) \land \ldots \land \text{at}(P_n) \land \Phi) \rightarrow \text{EF}(\text{after}(P_1) \land \ldots \land \text{after}(P_n) \land \Psi).\]

Observe that the property
\[\text{after}(P_1) \land \ldots \land \text{after}(P_n) \land \Psi\]
is stable because a terminating global state is stable. That is,
\[(\text{after}(P_1) \land \ldots \land \text{after}(P_n) \land \Psi) \rightarrow \text{AG}(\text{after}(P_1) \land \ldots \land \text{after}(P_n) \land \Psi)\]
Using Theorem 5.1 it follows that
\[(\text{at}(P_1) \land \ldots \land \text{at}(P_n) \land \Phi) \rightarrow \text{AF}(\text{after}(P_1) \land \ldots \land \text{after}(P_n) \land \Psi)).\]

7.2. The decomposition of programs into layers [EF]: Instead of decomposing programs into processes, we can decompose programs into communication-closed layers: A single layer is made of several program segments, each one in a different process, which communicate with each other in order to complete a common task. A (distributed) program may be composed of several layers executed sequentially - first the code in each process for the first layer, then the code for the second, etc.

If there are no communications across layer boundaries (i.e., from a segment of one layer in one process to a segment of another in a different process), then the program executes as if there is a synchronization at the time that each layer begins. This is a pleasant property, since a process can begin executing a new layer while the other processes are still in the first layer, and the program will behave as if the processes all began executing the new layer together.

Looking at properties that all the paths satisfy does not seem to give us any insight into how to reason about this phenomenon. However if we look at the partial order model, we can easily prove the following:

7.2.1. Proposition. In any terminating execution of a layered program, there exists a slice S which defines a global state G in which all the processes have finished the first layer, and are about to enter the second one.

Proof. Take the set of events S that are executed according to the code of the first layer. We have to show that these events form a slice. It is sufficient to show that there cannot be two adjacent events $e_1 < e_2$ such that $e_1 \in S$ and $e_2 \in S$. By the choice of S, it is evident that such two events cannot belong to the same process, and because there is no communication across layer boundaries, two such events are ruled out. \(\square \)

This means, by the previously mentioned connection between the partial order model and the interleaving model, that for each one of the executions, there exists a path which behaves as if there was a synchronization. Because we cannot say which of the interleavings satisfying the same partial order "really occurred" without a global clock, this distinguished path is as good as
any other.

A layered program \(PR=[S1;Q1\|S2;Q2] \) will satisfy the ISTL formula:
\[
(at(S1)\land at(S2)) \rightarrow [EF(at(Q1)\land at(Q2)) \lor AG(\neg after(S1)) \lor AG(\neg after(S2))]
\]

There are two layers \(S=[S1;S2] \) and \(Q=[Q1;Q2] \). We start at labels \(S1 \) and \(S2 \); that is, at the beginning of the program. Then in each execution which eventually completes the two segments \(S1 \) and \(S2 \), there is a corresponding path with a global state in which we are exactly before entering both \(Q1 \) and \(Q2 \). Formally, the expression means that for each (partial order) execution, from a state that starts when the processes are at the beginning of the code, there is an interleaved path constructed from the partial order such that the layers do synchronize.

Here again, as in the previous example, one may use Theorem 5.1 to prove total correctness for a layered program by showing the correctness only for those paths with a state that synchronizes the beginnings of the layers.

7.3. The Chandy and Lamport snapshot algorithm [CL]. After the execution of the superimposition of this algorithm on another (basic) algorithm, a global state of the combined superimposed algorithm is recorded. The recorded global state is used for detection of properties which are stable. The global state recorded does not necessarily appear on every interleaved path defined by the program. The important property is that for each (partial order) execution there exists a path that contains the global state which is eventually recorded.

This aspect of the correctness of the snapshot algorithm can be stated:
\[
(at(\text{START}_1) \land at(\text{START}_2) \land \ldots \land at(\text{START}_n) \land EF(\text{finished} \land rf)) \rightarrow EFf
\]

where \(f \) is a formula describing some global property, and \(rf \) is a formula that says "property \(f \) is recorded". The predicate ‘finished’ is true when the snapshot part has been completed. In terms of ISTL this means: For every (partial order) execution, if there is an interleaving sequence which reaches a state in which the snapshot part is completed and \(rf \) is true, then for the same execution there exists an interleaved sequence with a state in which \(f \) actually was true.

Other aspects of the correctness of the snapshot algorithm [B] include meta-theorems on the correspondence between the ISTL structures which correspond to the set of executions before and after the superimposition of the snapshot part.

One might like to deduce from the correctness claim of the snapshot algorithm and the fact that the property detected is stable (i.e., \(f \rightarrow AGf \)) that if the property was detected, then on any path in the set that represents the same execution, eventually \(f \) will hold forever. From the correctness condition, the stability of \(f \) and Theorem 5.1, we may deduce
\[
(at(\text{START}_1) \land at(\text{START}_2) \land \ldots \land at(\text{START}_n) \land EF(\text{finished} \land rf)) \rightarrow AFf.
\]

Again using stability
\[
(at(\text{START}_1) \land at(\text{START}_2) \land \ldots \land at(\text{START}_n) \land EF(\text{finished} \land rf)) \rightarrow AF(AGf).
\]
7.4. Concurrency. It is convenient that the logic can express the potential concurrency of independent events or operations. These can then be executed on independent processors, potentially increasing the efficiency of execution. In order to express that the two operations \(e_1 \) and \(e_2 \) which are not communicating operations can run concurrently the following assertion may be used:

\[
(at(START_1) \land at(START_2)) \rightarrow EF[(at(e_1) \land at(e_2)) \land \{EX(at(e_1) \land after(e_2)) \land EX(at(e_2) \land after(e_1))\}]
\]

In this specification, it is assumed that \(e_1 \) and \(e_2 \) are executed only once during the program, otherwise, the above formula asserts that there is an occurrence of \(e_1 \) and \(e_2 \) which is potentially concurrent. Thus we identify the operations \(e_1 \) and \(e_2 \) with events \(e_1 \) and \(e_2 \). The interpretation of the above formula is explained by the following proposition:

7.4.1. Proposition. In terms of slices, \(e_1 \) and \(e_2 \) are concurrent (unrelated by the partial order) iff there exist three slices \(S, S_1 \) and \(S_2 \) such that \(e_1, e_2 \notin S, S_1 = S \cup \{e_1\} \) and \(S_2 = S \cup \{e_2\} \).

Proof. \((\Rightarrow)\) Let \(S_1^* \) be the set of events preceding \(e_1 \) and \(S_2^* \) the set of events preceding \(e_2 \). From Definition 2.4 it follows that \(S_1^* \) and \(S_2^* \) are slices. The union of two slices is a slice. Since \(e_1 \) does not precede \(e_2 \), \(e_1 \notin S_2^* \) and similarly \(e_2 \notin S_1^* \). Therefore, assign

\[
S = S_1^* \cup S_2^* ; S_1 = S \cup \{e_1\} ; S_2 = S \cup \{e_2\}
\]

\((\Leftarrow)\) Given \(S, S_1 \) and \(S_2 \) as above, without loss of generality, assume to the contrary of the proposition that \(e_1 \) precedes \(e_2 \). Then according to Definition 2.4, \(S_2 \) (which does not include \(e_1 \)) cannot be a slice. \(\square\)

In the above example we interpret \(e_1 \) as the operation that is executed from the point that \(at(e_1) \) is true until after(\(e_1 \)) and similarly for \(e_2 \). \(S \) satisfies \(at(e_1) \land at(e_2) \). \(S_2 \) satisfies \(at(e_1) \land after(e_2) \) and \(S_1 \) satisfies \(at(e_2) \land after(e_1) \).

8. Conclusions.

A temporal framework for reasoning about global states which are constructed from partial orders is suggested. The major motivation for the new logic and interpretation is to rigorously express and prove within a uniform formalism properties which were previously explained informally. The novel property of ISTL and its extensions is that, whenever convenient, it allows us to use global states in proofs and specifications while thinking in terms of partial orders.

A correctness criterion which is very natural for dealing with partial orders and very natural to ISTL is linearization: For each partial order, choose a single total order which contains it to represent the computation. Various aspects of this correctness criterion appear in [D, HW, HS] and are defined rigorously in the new framework.
It is evident that the following property, which was formally proven in 5.1, is important to the understanding of many phenomena which are explained using the partial order model: A stable property which occurs on one interleaving sequence will eventually hold on any interleaving sequence which is a completion of the same partial order.

Even if interleaving sets are not directly needed to express a property (for example, total correctness is traditionally expressed in LTL) it might be convenient to move into ISTL. Properties which stem from the partial order are sometimes not interesting in themselves (like, for example, a possible global state in an execution in examples 7.2, 7.3) but are helpful as an intermediate stage in proving other, much more common, properties such as total correctness. A deductive system which makes use of the ability to reason about linearizations of partial orders can be used here (Example 7.1).

The logics and in particular the strongest version QISTL* are strong enough to allow using the syntactic proof systems of [MP2, MP3, AFR, EF]. The additional semantic structure suggests the addition of new proof rules which take advantage of the underlying partial orders, thus exploiting the convenience of global reasoning, without losing information about closely related execution sequences.

Finding sufficient consequence rules and axioms to guarantee completeness over our interpretation is an open problem. Another interesting issue here is that the underlying partial order semantics might further restrict the class of structures (for example, by allowing only a fixed number of processes). For each such restriction it might be interesting to find the corresponding "increment" of the deductive system.

Acknowledgements. We appreciate the extremely helpful conversations we have had on this subject with Allen Emerson, Nissim Francez, Janos Makowsky, Shlomit Pinter, Amir Pnueli, Wolfgang Reisig, and Pierre Wolper.

References:

[MP1] Z. Manna, A. Pnueli, Verification of concurrent programs: the temporal framework, In: The correctness problem in computer science, Edited by R.S. Boyer & J.S. Moore,

