ON MDS CODES VIA CAUCHY MATRICES

by

Ron M. Roth and Abraham Lempel

Technical Report #490
January 1988
ON MDS CODES VIA CAUCHY MATRICES

RON M. ROTH AND ABRAHAM LEMPEL

Department of Computer Science
Technion, Israel Institute of Technology
Haifa 32000 - Israel

ABSTRACT

The special form of Cauchy matrices is used to obtain a tighter bound for the validity region of the MDS Conjecture and a new compact characterization of generalized Reed-Solomon codes. The latter is further used to obtain constructions and some nonexistence results of long $[2k, k]$ double-circulant MDS codes.
I. INTRODUCTION

An \([n,k,d]\) linear code over \(F = GF(q)\) is called maximum-distance-separable (in short, MDS) if it attains the Singleton bound \(d \leq n - k + 1\) [10, Ch. 11]. A \(k \times n\) matrix \(G\) over \(F\) is a generator matrix of an MDS code if and only if every \(k\) columns of \(G\) are linearly independent. If \(G\) is a systematic generator matrix, i.e., \(G = [I \ A]\), \(I\) being the identity matrix, then \(G\) generates an MDS code if and only if every square sub-matrix of \(A\) is nonsingular. Such matrices \(A\) will be called super-regular.

When \(k = 1\), there exist arbitrarily long MDS codes, e.g., repetition codes and, when \(k \geq q\), a code is MDS if and only if it has minimum distance 2. Therefore, we shall deal only with codes of dimension \(k\), \(2 \leq k \leq q - 1\). In this case, it is known that MDS codes cannot be arbitrarily long. Let \(N_{\text{max}}(k,q), 2 \leq k \leq q - 1\), be the maximal length of any MDS code of dimension \(k\) over \(GF(q)\). Then, \(q + 1 \leq N_{\text{max}}(k,q) \leq q + k - 1\). Furthermore, for some special cases of \(k\) and \(q\) it can be shown that \(N_{\text{max}}(k,q) = q + 1\). The MDS Conjecture states that the same equality holds for all \(q\) and \(2 \leq k \leq q - 1\), except when \(q\) is even and \(k \in \{3, q-1\}\), in which case \(N_{\text{max}}(k,q) = q + 2\).

MDS codes have the following geometric interpretation. Viewing the columns of \(G\) as points in the \((k-1)\)-st dimensional projective space \(PG(k-1,q)\), no \(k\) columns of \(G\) lie on a hyperplane, and so the columns of \(G\) form an \(n\)-arc [5, Chs. 8-10][6]: Therefore, \(N_{\text{max}}(k,q)\) is the maximal length of any \(n\)-arc in \(PG(k-1,q)\).

A well-known family of MDS codes is the set of generalized Reed-Solomon (in short, GRS) codes. Let \(\alpha_0, \alpha_1, \cdots, \alpha_{n-1}\) be distinct elements of \(F\) and let \(v_0, v_1, \cdots, v_{n-1}\) be nonzero elements of \(F\). The standard generator matrix of an \([n,k]\) GRS code takes the form

\[
G = [u_0 \ u_1 \ \cdots \ u_{n-1}],
\]

where

\[
u_i = v_i(1 \ \alpha_i \ \cdots \ \alpha_i^{k-1})', \quad 0 \leq i \leq n-1.
\]

In addition, the generator matrix of a GRS code can also contain a column of the form \((0 \ 0 \ \cdots \ 0 \ v)'\), \(v \neq 0\). Such a column is said to correspond to the infinity "element". In
geometric terms, a GRS code corresponds to a normal rational curve [13][14].

A matrix of the form \(G = [I \ A] \) generates a GRS code if and only if \(A = [a_{ij}] \) is a Cauchy matrix [11], i.e.,

\[
a_{ij} = \frac{c_i d_j}{x_i + y_j}, \quad 0 \leq i \leq k-1, \quad 0 \leq j \leq n-k-1,
\]

where the \(x_i \) are distinct elements of \(F \), the \(y_j \) are distinct elements of \(F \), \(x_i + y_j \neq 0 \) for all \(i \) and \(j \), and \(c_i, d_j \neq 0 \). In analogy with the infinity-column in a GRS standard generator matrix, a Cauchy matrix can contain either an infinity-row of the form \(c \cdot (d_0 d_1 \cdots d_{n-k-1}) \), or an infinity column of the form \(\mathbf{d} \cdot (c_0 c_1 \cdots c_{k-1})' \). This extension of the definition of Cauchy matrices preserves super-regularity.

Note that, by definition, a GRS code with \(2 \leq k \leq q - 1 \) may be of length \(q + 1 \) at most. For \(2 \leq k \leq q - 1 \), let \(N_{\text{min}}(k,q) \) be the minimal integer, if any, such that every \([n,k] \) MDS code over \(F \) with \(n \geq N_{\text{min}}(k,q) \) is GRS; if no such integer exists, \(N_{\text{min}}(k,q) \triangleq q + 2 \). Clearly, \(N_{\text{min}}(2,q) = 2 \), and so \(N_{\text{max}}(2,q) = q + 1 \). To obtain an upper-bound on \(N_{\text{min}}(k,q) \) for larger values of \(k \) we make use of the following result:

Theorem 1. (Segre [13]). If \(q \) is odd, every \([n,3] \) MDS code over \(GF(q) \) with \(q - \frac{1}{4}(\sqrt{q} - 7) < n \leq q + 1 \) is GRS.

Note that there exist \([q+1,3] \) MDS codes over \(GF(q) \), \(q \) even, which are not GRS.

II. BOUNDS ON THE LENGTHS OF MDS CODES

Lemma 1. Given a \(k \times r \) Cauchy matrix \(A = [a_{ij}] \) over \(F = GF(q) \), we can always assume \(a_{0j} = d_j \) and \(a_{1j} = d_jy_j^{-1} \), \(0 \leq j \leq r-1 \).

Proof. Let \(C \) be an \([r+k,k] \) GRS code with a given standard generator matrix \(G \) of the form (1). First, we show that \(C \) has another standard generator matrix \(\overline{G} \) with \(u_0 \) corresponding to infinity and \(u_1 \) corresponding to zero. Assume that the first column of \(G \) corresponds to some
element \(\alpha_0 \in F \). By [10, p. 305, Problem 7], there exists a \(k \times k \) nonsingular matrix \(T \) such that the \(i \)-th column in \(\tilde{G} = T \cdot G \) is given by

\[
\tilde{u}_i = v_i (1 - \alpha_i - \alpha_0) \cdots (\alpha_i - \alpha_0)^{k-1} y_i,
\]

except for the infinity column of \(G \), if any, remaining unchanged. Thus, the first column of \(\tilde{G} \) corresponds to the zero element. Reversing the order of the rows of \(\tilde{G} \), we obtain a standard generator matrix \(\tilde{G} \) with its first column corresponding to infinity. As before, there exists now a linear transformation on the rows of \(\tilde{G} \) yielding a standard generator matrix \(\bar{G} \) with the desired first two columns.

Second, let \([I \ A]\) be the (unique) systematic generator matrix of \(C \). Then \(A \) is a Cauchy matrix and its rows, being in a one-to-one correspondence with the first \(k \) coordinates of \(C \), can be associated with the first \(k \) columns of any standard generator matrix of \(C \). In particular, associating the rows of \(A \) with the first \(k \) columns of \(\bar{G} \) yields \(a_{0j} = c_0 d_j \) and \(a_{1j} = c_1 d_j y_j^{-1} \). Now, normalizing the parameters involved, we can always set \(c_0 = c_1 = 1 \).

Lemma 2. For \(3 \leq k \leq q - 2 \),

\[
N_{\min}(k+1, q) \leq N_{\min}(k, q) + 1.
\]

Proof. The theorem holds trivially if \(N_{\min}(k, q) \geq q + 1 \). Therefore we assume \(N_{\min}(k, q) \leq q \). Let \(G = [I \ A] \) be a \((k+1) \times n\) systematic generator matrix of an MDS code with \(N_{\min}(k, q) + 1 \leq n \leq N_{\max}(k+1, q) \) and let \(a_i = (a_{i0} \ a_{i1} \cdots \ a_{in-k-2}) \) denote the \(i \)-th row of \(A \), \(0 \leq i \leq k \). For \(2 \leq m \leq k \), let \(G_m = [I \ A_m] \) be the \(k \times (n-1) \) matrix obtained by deleting the \(m \)-th row and the \(m \)-th column from \(G \). Clearly, each \(G_m \) generates an \([n-1, k]\) MDS code and, since \(n-1 \geq N_{\min}(k, q) \), each such code is GRS. Therefore, each \(A_m \) is a Cauchy matrix. By Lemma 1, \(a_{0j} = d_j \) and \(a_{1j} = d_j y_j^{-1} \), and so the same \(d_j \) and \(y_j \) are shared by all the matrices \(A_m \). Moreover, since each \(a_i \), \(2 \leq i \leq k \), belongs to each \(A_m \) with \(m \neq i \), we have \(a_{ij} = c_i d_j (x_i + y_j)^{-1} \) for some \(x_i \) and \(c_i \), implying that \(A \) is a Cauchy matrix.

The analogue of Lemma 2 for \(N_{\max}(k, q) \) takes the form \(N_{\max}(k+1, q) \leq N_{\max}(k, q) + 1 \), \(k \geq 2 \). This follows from the fact that any \(k \times ((n-1)-k) \) sub-matrix of a \((k+1) \times (n-(k+1))\)
Lemma 3. Let $F = GF(q)$ and suppose that for some k, $2 \leq k \leq q - 2$, there exists an integer N, $k + 3 \leq N \leq q + 1$, such that every $[N,k]$ MDS code over F is GRS. Then,

(i) $N_{\min}(k,q) \leq N$;
(ii) $N_{\max}(k,q) = q + 1$.

Proof. (i) Let $G = [I \ A]$ generate an $[n,k]$ MDS code with $n \geq N$. By assumption, every $k \times (N-k)$ sub-matrix of A must be a Cauchy matrix. Applying the proof of Lemma 2 to the columns of A, we conclude that A is a Cauchy matrix.

(ii) The proof of this part follows immediately from part (i). □

Theorem 2. For odd q and $3 \leq k \leq q - 1$,

$$N_{\min}(k,q) \leq q - \left \lfloor \frac{1}{4}(\sqrt{q} + 1) \right \rfloor + k,$$

where $\left \lfloor a \right \rfloor$ stands for the least integer not smaller than a.

Proof. It is easy to verify that Theorem 1 and Lemma 3 imply

$$N_{\min}(3,q) \leq q - \left \lfloor \frac{1}{4}(\sqrt{q} + 1) \right \rfloor + 3. \quad (2)$$

From Lemma 2, by induction on k, we obtain

$$N_{\min}(k,q) \leq N_{\min}(3,q) + k - 3. \quad (3)$$

The theorem now follows from (2) and (3). □

The above result was obtained by Thas in [14] via geometric arguments.

Lemma 4. Suppose $N_{\min}(k,q) \leq q + 1$ for some k, $3 \leq k \leq q - 2$. Then,

$$N_{\max}(k+1,q) = q + 1.$$

Proof. Assume that $N_{\max}(k+1,q) \geq q + 2$ and let C be a $[q+2,k+1]$ MDS code generated by $[I \ A]$. Since by the conditions of the lemma, every $[q+1,k]$ MDS code over $GF(q)$ is GRS, it follows that every $k \times (q+1-k)$ sub-matrix of A is a Cauchy matrix. As in the proof of Lemma
2. A must be a Cauchy matrix which is impossible since C is of length \(q + 2 \).

Theorem 3. For odd \(q \) and \(2 \leq k < \frac{1}{4}(\sqrt{q} + 13) \),

\[
N_{\text{max}}(k,q) = q + 1.
\]

Proof. The theorem is known to be valid for \(k = 2 \) and \(k = 3 \). Assume now that \(k \geq 4 \). Then,

\[
4 \leq k \leq \left\lceil \frac{1}{4}(\sqrt{q} + 1) \right\rceil + 2 \leq q - 1
\]

and, by Theorem 2,

\[
N_{\text{min}}(k-1,q) \leq q - \left\lceil \frac{1}{4}(\sqrt{q} + 1) \right\rceil + k - 1 \leq q + 1.
\]

The theorem now follows from Lemma 4. \(\Box \)

Theorem 3 slightly improves the Thas bound [14] and, thus, extends the validity range of the MDS Conjecture\(^1\).

Lemma 5. For \(k \geq 2 \),

\[
N_{\text{max}}(N_{\text{max}}(k,q) - k, q) \geq N_{\text{max}}(k,q) \geq N_{\text{max}}(N_{\text{max}}(k,q) - k + 1, q).
\]

Proof. Let \(k + 1 \leq N_0 \leq N_{\text{max}}(k,q) \leq N_1 \). Then there exist MDS codes \(C_0 \) and \(C_0^\perp \) with parameters \([N_0,k] \) and \([N_0,N_0-k] \), respectively. Hence,

\[
N_0 \leq N_{\text{max}}(N_0 - k, q).
\]

Now, suppose \(N_1 + 1 \leq N_{\text{max}}(N_1 - k + 1, q) \). Then there exist MDS codes \(C_1 \) and \(C_1^\perp \) with parameters \([N_1+1,N_1-k+1] \) and \([N_1+1,k] \). This implies the contradiction \(N_1 < N_{\text{max}}(k,q) \) and, hence,

\[
N_1 \geq N_{\text{max}}(N_1 - k + 1, q).
\]

The lemma is obtained by setting \(N_0 = N_1 \). \(\Box \)

Lemma 5 implies the following corollary.

\(^1\) Recently, Thas has improved the range of \(k \) for which the MDS Conjecture holds to \(k < \frac{1}{4}(\sqrt{q} + 934) \) when \(q \) is odd.
Corollary 1. Theorem 3 holds also for \(q - \sqrt[4]{q} + 5 < k \leq q - 1 \).

This restores symmetry in the validity region of the MDS Conjecture.

In analogy with Lemma 5, we have:

Lemma 6. For \(3 \leq k \leq N_{\min}(k,q) - 4 \),

\[N_{\min}(N_{\min}(k,q) - k,q) \leq N_{\min}(k,q) \leq N_{\min}(N_{\min}(k,q) - k - 1,q) . \]

Proof. Let \(k + 4 \leq N_0 \leq N_{\min}(k,q) \leq N_1 \). Suppose \(N_0 - 1 \geq N_{\min}(N_0 - k - 1,q) \). Then every MDS code with parameters \([N_0 - 1, N_0 - k - 1] \) is GRS. Since the dual of a GRS code is GRS, every MDS code with parameters \([N_0 - 1, k] \) must be GRS as well. By Lemma 3, we obtain the contradiction \(N_{\min}(k,q) \leq N_0 - 1 < N_0 \) and, thus,

\[N_0 \leq N_{\min}(N_0 - k - 1,q) . \]

Now, since every MDS code with parameters \([N_1,k] \) is GRS, the same must hold for all \([N_1, N_1 - k] \) MDS codes. Hence, by Lemma 3,

\[N_1 \geq N_{\min}(N_1 - k,q) . \]

The lemma is obtained by setting \(N_0 = N_1 \). \(\square \)

In view of Theorem 3, the values of \(N_{\max}(k,q) \) for small \(k \) are given in Table 1 (see also [6]; the range for \(k = 6 \) is obtained using a former version of Theorem 1 [6, §1(8)] which appears to be better for small \(q \)).

III. APPLICATION TO SUPER-REGULAR MATRICES

The results of the previous section on MDS codes can be expressed in terms of super-regular matrices with the sub-class of Cauchy matrices corresponding to GRS codes. For instance, the analogue of Lemma 3 takes the form:

Suppose there exist integers \(s \geq 1, i \geq 3 \) such that every \(s \times t \) super-regular matrix over \(F = GF(q) \) is a Cauchy matrix. Then, for every \(r \geq t \), each \(s \times r \) matrix is a super-regular
matrix if and only if it is a Cauchy matrix.

The implication of this statement, and its dual, is illustrated in Figure 1 for the case \(t = 3 \) and \(s = N_{\text{min}}(3,q) - 3 \).

Let \(A = [a_{ij}] \) be a \(k \times r \) matrix over \(F \) with \(a_{ij} \neq 0 \) for all \(0 \leq i \leq k-1 \) and \(0 \leq j \leq r-1 \), and let \(A^c = [a_{ij}^{-1}] \); that is, every entry of \(A^c \) is the inverse of the corresponding entry of \(A \).

Lemma 7. Let \(A \) be a \(k \times r \) matrix over \(F \) with non-zero entries. Then, \(A \) is a Cauchy matrix if and only if \(A^c \) satisfies the following two conditions:

(i) Every \(2 \times 2 \) sub-matrix of \(A^c \) is nonsingular.

(ii) Every \(3 \times 3 \) sub-matrix of \(A^c \) is singular.

Proof. The lemma holds trivially if \(\min(k,r) \leq 2 \). Therefore we assume that \(k, r \geq 3 \). First, we prove the "only if" part. Suppose \(A \) is a Cauchy matrix. Then, the first row of \(A^c \) is given by

\[
a_0^c = \left(\frac{1}{d_0}, \frac{1}{d_1}, \ldots, \frac{1}{d_{r-1}} \right);
\]

the second row of \(A^c \) is given by

\[
a_1^c = \left(\frac{y_0}{d_0}, \frac{y_1}{d_1}, \ldots, \frac{y_{r-1}}{d_{r-1}} \right);
\]

<table>
<thead>
<tr>
<th>(k)</th>
<th>range of (q) ((q \geq k))</th>
<th>(N_{\text{max}}(k,q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>all (q)</td>
<td>(q + 1)</td>
</tr>
<tr>
<td>3</td>
<td>odd (q)</td>
<td>(q + 1)</td>
</tr>
<tr>
<td>3</td>
<td>even (q)</td>
<td>(q + 2)</td>
</tr>
<tr>
<td>4</td>
<td>all (q)</td>
<td>(q + 1)</td>
</tr>
<tr>
<td>5</td>
<td>all (q)</td>
<td>(q + 1)</td>
</tr>
<tr>
<td>6</td>
<td>(q \leq 11) or odd (q \geq 113)</td>
<td>(q + 1)</td>
</tr>
<tr>
<td>6</td>
<td>even (q) or odd (q \leq 109)</td>
<td>(\leq q + 2)</td>
</tr>
</tbody>
</table>

Table 1: \(N_{\text{max}}(k,q) \) for some values of \(k \).
and the i-th row of A^c, $2 \leq i \leq k-1$, is given by

$$a_i^c = \left(\frac{x_i + y_0}{c_i d_0}, \frac{x_i + y_1}{c_i d_1}, \ldots, \frac{x_i + y_{r-1}}{c_i d_{r-1}} \right).$$

Therefore,

$$a_i^c = \frac{x_i}{c_i} a_0^c + \frac{1}{c_i} a_1^c, \quad 2 \leq i \leq k-1,$$

which means that every row in A^c is a linear combination of its first two rows, thus proving (ii). Condition (i) follows from the fact that a 2×2 sub-matrix of A^c is nonsingular if and only if the corresponding 2×2 sub-matrix of A is nonsingular.

For the "if" part, suppose A^c is a $k \times r$ matrix with nonzero entries satisfying (i) and (ii). Then, the first two rows of A^c are linearly independent and their entries can still be expressed as in (4) and (5), with nonzero d_j and nonzero and distinct y_j. Now, (ii) implies that every row a_i^c,
2 \leq i \leq k-1, is linearly dependent on the first two rows of \(A^c \), i.e.,
\[
a^c_{ij} = \alpha_i a^c_{0j} + \beta_i a^c_{1j}, \quad 0 \leq j \leq r-1, \quad 2 \leq i \leq k-1,
\]
for some \(\alpha_i, \beta_i \neq 0 \). Define \(c_i \triangleq \beta_i^{-1} \) and \(x_i \triangleq \alpha_i \beta_i^{-1}, \quad 2 \leq i \leq k-1 \). Since every two rows of \(A^c \) are linearly independent, the \(x_i \) are distinct. \(\square \)

This lemma, together with Theorem 2, imply the following result.

Theorem 4. Let \(F = GF(q) \), \(q \) odd, and let \(A \) be a \(k \times r \) matrix over \(F \) with \(\max(k,r) > q - \frac{1}{4}(\sqrt{q} + 5) \). If all the entries of \(A \) are nonzero, then \(A \) is super-regular if and only if every \(2 \times 2 \) sub-matrix of \(A^c \) is nonsingular and every \(3 \times 3 \) sub-matrix of \(A^c \) is singular.

IV. DOUBLE-CIRCULANT MDS CODES

A \(k \times k \) matrix \(A = [a_{ij}]_{0 \leq i,j \leq k-1} \) over \(F \) is called circulant if \(a_{ij} = a_{0,j-i} \triangleq a_{j-i} \) for all \(0 \leq i,j \leq k-1 \), where indices are taken modulo \(k \). The polynomial \(a(x) = a_0 + a_1 x + \cdots + a_{k-1} x^{k-1} \) is called the defining polynomial of \(A \). Under the correspondence \(u \leftrightarrow u(x) \), where \(u = (u_0 u_1 \cdots u_{k-1}) \in F^k \) and \(u(x) = u_0 + u_1 x + \cdots + u_{k-1} x^{k-1} \), it is easy to verify [10, p. 506] that \(v = u A \) if and only if \(v(x) = u(x) \cdot a(x) \mod x^k - 1 \) where \(a(x) \) is the defining polynomial of a circulant matrix \(A \). It follows that the set of \(k \times k \) circulant matrices and the ring of polynomials modulo \(x^k - 1 \) over \(F \) are isomorphic. In particular, a circulant matrix \(A \) is invertible if and only if its defining polynomial is relatively prime to \(x^k - 1 \).

A \([2k,k,d] \) linear code over \(F \) is called double-circulant if it is generated by a matrix \(G = [I \ A] \) where \(A \) is a circulant matrix [10, p. 497]. Double-circulant codes are discussed extensively in the literature [1][2][7][8][10, Ch. 16, §7]. A sub-class of double-circulant codes meets the Gilbert-Varshamov bound [9].

As mentioned before, there exist non-GRS \([q+1,3]\) MDS codes over \(GF(q) \) for even \(q \). Moreover, there exists an example, obtained by Casse and Glynn [6], of a non-GRS MDS code over \(GF(9) \). This is a \([10,5,6]\) double-circulant MDS code generated by \(G = [I \ A] \), where the defining polynomial of \(A \) corresponds to
Two codes are equivalent if one can be obtained from the other by permuting the coordinates or by multiplying each coordinate by a nonzero scalar.

Lemma 8. [10, p. 319]. An \([n,k,d]\) code \(C\) is MDS if and only if any subset of \(d\) coordinates serves as the support of a minimum-weight codeword of \(C\).

Lemma 9. Every \([2k,k]\) cyclic MDS code over \(F = GF(q)\) is equivalent\(^2\) to a \([2k,k]\) double-circulant code.

Proof. Let \(C\) be a cyclic \([2k,k]\) MDS code over \(F\). By Lemma 8, \(C\) contains a nonzero codeword \(c\) of the form

\[
c = (1 \ 0 \ c_3 \ 0 \ c_5 \ \cdots \ 0 \ c_{2k-1})
\]

That is, \(c_{2i} = 0\) and \(c_{2i+1} \neq 0\) for all \(0 \leq i \leq k-1\) except for \(c_0 = 1\). Let \(c(x)\) be the polynomial corresponding to \(c\). Then, under polynomial multiplication modulo \(x^{2k} - 1\), \(x^m c(x) \in C\) for all \(m\). In particular, the \(k\) codewords \(x^{2i} c(x), 0 \leq i \leq k-1\), form the matrix

\[
G = \begin{bmatrix}
1 & c_1 & 0 & c_3 & \cdots & 0 & c_{2k-1} \\
0 & c_{2k-1} & 1 & c_1 & \cdots & 0 & c_{2k-3} \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & c_3 & 0 & c_5 & \cdots & 1 & c_1
\end{bmatrix}
\]

which is a permuted generator matrix of a double-circulant code. \(\square\)

As shown later, the converse of Lemma 9 is not true. Namely, not every double-circulant MDS code is equivalent to a cyclic code.

\(^2\) Two codes are equivalent if one can be obtained from the other by permuting the coordinates or by multiplying each coordinate by a nonzero scalar.
For the lengths of interest it is known that there exist MDS cyclic codes with the following parameters:

1. \(n = q-1 \) and \(1 \leq k \leq n \). The (ordinary) Reed-Solomon codes are such.

2. \(n = q \) and \(k \in \{1, q-1, q\} \). When \(q \) is not a prime, there exist no cyclic MDS codes of length \(q \) for other values of \(k \) \[15\][12].

3. \(n = q+1 \) and either \(k \) is odd or \(q \) is even. There exist no cyclic MDS codes of length \(q+1 \) if \(q \) is odd and \(k \) is even \[10, p. 324\][3].

By Lemma 9, there exists a \([q-1, \frac{1}{2}(q-1)]\) double-circulant MDS code over an odd-size field \(F = GF(q) \). We present now a construction of such codes. A similar construction using Hankel matrices is given in \[11\].

For odd \(q \), let \(\alpha \) be an element of order \(\frac{q-1}{2} \) (that is, \(\alpha \) is a square of a primitive element of \(F \)) and let \(b \) be a nonsquare in \(F \). Consider the \(\frac{1}{2}(q-1) \times (q-1) \) matrix \(G = [I \ A] \), where \(A = [a_{ij}] \) is a circulant matrix given by

\[
a_{ij} = \frac{1}{1-b \cdot \alpha^{j-i}}, \quad 0 \leq i, j \leq \frac{q-3}{2}.
\]

Since \(\alpha \) is a square, \(b \cdot \alpha^m \neq 1 \) for all \(m \) and so the \(a_{ij} \) are well defined. Also, note that

\[
a_{ij} = \frac{\alpha^i}{\alpha^j - b \cdot \alpha^m}, \quad 0 \leq i, j \leq \frac{q-3}{2},
\]

implying that \(A \) is a Cauchy matrix with \(x_i = c_i = \alpha^i \), \(y_j = -b \cdot \alpha^j \), and \(d_j = 1 \). Therefore, the code generated by \(G \) is GRS and, thus, MDS.

This construction can be generalized to produce any \([2k,k]\) double-circulant MDS code with \(k \) being a proper divisor of \(q-1 \).

Theorem 5. Let \(C \) be a \([2k,k]\) double-circulant code over \(F = GF(q) \), generated by \([I \ A]\), and let \(\sum_{i=0}^{k-1} a_i x^i \) be the defining polynomial of \(A \) with \(a_i \neq 0 \) for all \(i \). Then \(C \) is GRS if and only if the sequence \(\sigma_j = a_j^{-1} \), \(0 \leq j \leq k-1 \), satisfies the following two conditions:
(a) there exist $\mu, \eta \in F$ such that
\[\sigma_{j+2} + \mu \sigma_{j+1} + \eta \sigma_j = 0, \quad 0 \leq j \leq k-1, \]
with indices taken modulo k, and
(b) the quotients $\frac{\sigma_{j-1}}{\sigma_j}, 0 \leq j \leq k-1$, are distinct.

Proof. The "only if" part is a direct corollary of Lemma 7. We can use the latter also to prove the "if" part. Clearly, (a) implies that every row of A^c is a linear combination of its first two rows, thus yielding Condition (ii) of Lemma 7. To prove that (b) implies Condition (i) of Lemma 7, assume, to the contrary, that A^c contains a singular 2×2 matrix, that is, $\sigma_{r+l} = b \cdot \sigma_r$ and $\sigma_{s+l} = b \cdot \sigma_s$ for some $r < s$, $0 < l < k$, and a nonzero $b \in F$. Now, for any l, there exist $c, d \in F$ such that for all j, $\sigma_{j+l} = c \sigma_j + d \sigma_{j+1}$. Thus, if $d \neq 0$, the two equations obtained by letting $j = r$ and $j = s$ yield
\[\frac{\sigma_{r+1}}{\sigma_r} = \frac{\sigma_{s+1}}{\sigma_s} = \frac{b - c}{d}; \]
if $d = 0$ we have for all j,
\[\frac{\sigma_{j+l}}{\sigma_{j+l+1}} = \frac{\sigma_j}{\sigma_{j+1}}. \]
In either case our assumption violates (b). \square

Let $P(x) = x^2 + \mu x + \eta$ denote the characteristic polynomial of the sequence $S = \{\sigma_j\}_{j=-\infty}^{\infty}$ of period k of Theorem 5. Our next goal is to investigate the existence of such polynomials.

Consider the case of $q = 2^h$ and $k = \frac{q}{2}$. If $P(x)$ is irreducible over F, then it is easy to show that the exponent of $P(x)$, which equals the period k of S, must divide $q^2 - 1$ [4, Ch. 3]. This can happen only if $q = 2$ and $k = 1$, corresponding to the [2,1,2] repetition code over $GF(2)$.

Assume now that $P(x)$ is reducible over F. If the roots of $P(x)$ are distinct, then $k | q - 1$ and, again, we must have $k = 1$; if $P(x)$ has a double root in F, then $k | 2(q - 1)$ and the value
$k = 2$ is also admissible, corresponding to a $[4,2,3]$ double-circulant code over $GF(4)$, generated by

$$
G = \begin{bmatrix}
1 & 0 & a_0 & a_1 \\
0 & 1 & a_1 & a_0
\end{bmatrix},
$$

where a_0 and a_1 are nonzero and distinct. Note that there is no equivalent cyclic code in this case (see our remark following Lemma 9). This settles the problem of existence of double-circulant GRS codes of length q when q is even. Regarding the more general class of MDS codes, an exhaustive search has shown that there are no $[q,q/2]$ double-circulant MDS codes over $GF(8)$ and $GF(16)$, suggesting:

Conjecture. There are no $[q,q/2]$ double-circulant MDS codes over $GF(q)$ for $q = 2^h$, $h \geq 3$.

Finally, we consider the case of odd q and $k = \frac{q}{2}(q+1)$. First, let $q \equiv 3 \pmod{4}$. Here k is even and, thus, there exist no $[q+1,\frac{1}{2}(q+1)]$ cyclic MDS codes in this case. We show that there exist no GRS double-circulant codes as well. If $P(x)$ is irreducible over F and β is a root of $P(x)$ in $\Phi \cong GF(q^2)$, β must have order $\frac{q+1}{2}$ and $\beta^{\frac{q}{2}(q+1)} = -1$. It is easy to verify that $S = \{\sigma_j\}_{j=-\infty}^{\infty}$ is a sequence satisfying Condition (a) of Theorem 5 if and only if there exists $\gamma \in \Phi$ such that, for all j,

$$
\beta \sigma_j - \eta \sigma_{j-1} = \gamma \cdot \beta^j.
$$

Hence, $\beta \sigma_0 - \eta \sigma_{-1} = \gamma$ and $\beta \sigma_{\frac{1}{2}(q+1)} - \eta \sigma_{\frac{1}{2}(q-3)} = -\gamma$, implying that $\sigma_{\frac{1}{2}(q+1)} = -\sigma_0$ and $\sigma_{\frac{1}{2}(q-3)} = -\sigma_{-1}$, thus violating Condition (b) of Theorem 5. If $P(x)$ has two distinct roots in F, then $\frac{1}{2}(q+1)|q-1$, implying $q = 3$, and there exist no corresponding double-circulant MDS codes. The same holds if $P(x)$ has a double root in F, in which case $\frac{1}{2}(q+1)|p(q-1)$, where p is the characteristic of $GF(q)$. Hence, there exist no $[q+1,\frac{1}{2}(q+1)]$ double-circulant GRS codes over $GF(q)$ when $q \equiv 3 \pmod{4}$, and we propose

Conjecture. When $q \equiv 3 \pmod{4}$, there exist no $[q+1,\frac{1}{2}(q+1)]$ double-circulant MDS codes over $GF(q)$.

Technion - Computer Science Department - Technical Report CS0490 - 1988
The case \(q \equiv 1 \pmod{4} \) is more promising since now there exist cyclic \([q+1, \frac{1}{2}(q+1)]\) MDS codes. The following is a construction of a double-circulant GRS code for this case. Let \(\beta \in \Phi \) be an element of order \(k = \frac{q+1}{2} \). Define \(P(x) \) by setting \(\eta = \beta \cdot \beta^q = \beta^{q+1} = 1 \) and \(\mu = -(\beta + \beta^q) \neq -\text{Tr}(\beta) \). Clearly, \(P(x) \) is the minimal polynomial of \(\beta \). Since
\[
\beta^{\frac{q}{2}(q^2-1)} = \left[\beta^{\frac{q}{2}(q+1)} \right]^{q-1} = 1,
\]
\(\beta \) is a square in \(\Phi \). Also, since \((\frac{1}{2}(q+1), q-1) = 1 \),
\[
\beta^i \in GF(q) \text{ if and only if } i \equiv 0 \pmod{\frac{q+1}{2}}.
\] (7)
It follows that \(\{\beta^i\}_{i=0}^{k-1} \) is a subgroup of the multiplicative group of squares of \(\Phi \) with cosets
\[
H_a = \{a \cdot \beta^i\}_{i=0}^{k-1}, \ a \in GF(q) - \{0\}.
\] (8)

Let \(S = \{\sigma_j\}_{j=-\infty}^{\infty} \) be a sequence over \(F \) defined by (6), where \(\gamma \) is a nonsquare in \(\Phi - \{0\} \). Suppose \(S \) contains a zero component. Then there exists an index \(j \) such that (6) reduces to \(\beta \sigma_j = \gamma \cdot \beta^j \), or \(\gamma = \beta^{1-j} \sigma_j \). This is a contradiction, since both \(\sigma_j \) and \(\beta^{1-j} \) are squares in \(\Phi \).

Thus, all the \(\sigma_j \) are nonzero. Also, the ratios \(\frac{\sigma_{j-1}}{\sigma_j} \), \(0 \leq j \leq k-1 \), are distinct; for if \(\sigma_{r-1}\sigma_r^{-1} = \sigma_{s-1}\sigma_s^{-1}, \ 0 \leq s < r \leq k-1 \), then from \(\beta \sigma_r - \sigma_{r-1} = \gamma \cdot \beta^r \) and \(\beta \sigma_s - \sigma_{s-1} = \gamma \cdot \beta^s \) we have
\[
\beta^{r-s} = \frac{\beta \sigma_r - \sigma_{r-1}}{\beta \sigma_s - \sigma_{s-1}} = \frac{\sigma_r}{\sigma_s} \in F,
\]
which, by (7), implies \(r \equiv s \pmod{\frac{q+1}{2}} \), namely, the contradiction \(r = s \).

It can be verified that for each sequence \(S \) obtained by the above construction there exists a cyclic shift with \(\sigma_j = \sigma_{-j} \), in which case the resulting circulant matrix \(A \) is symmetric. Such a shift of \(S \) yields a so-called characteristic (or, natural) phase of \(S \), given by
\[
\sigma_j = a \cdot \text{Tr}(\beta^{-j}) , \ a \in F.
\]

The construction described above can be generalized to every odd \(k \) which is a proper divisor of \(q+1 \), including the case of \(q \equiv 3 \pmod{4} \) and the case of even \(q \). In either case \(\beta \) is an ele-
ment of order k in Φ and γ is an element of $\Phi - \{0\}$ not contained in any of the cosets H_a given in (8).

As an example, consider the $[10,5,6]$ code over $GF(9)$, generated by

$$G = [I \ A] = \begin{bmatrix} 1 & 0 & 0 & 0 & \delta & \delta^6 & 1 & 1 & \delta^6 \\ 0 & 1 & 0 & 0 & \delta^6 & \delta & \delta^6 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & \delta^6 & \delta & \delta^6 & 1 \\ 0 & 0 & 0 & 1 & \delta^6 & 1 & 1 & \delta^6 & \delta & \delta \end{bmatrix} \tag{9}$$

where δ is a root of $x^2 + 2x + 2 = 0$ and $P(x) = x^2 + \delta^3x + 1$. This code is GRS, and it is interesting to observe that in the Casse-Glynn construction the elements of the first row of their A form a permutation of those in (9) in such a way that their reciprocals do not satisfy a second-order linear recurrence. An exhaustive search has shown that for $q \in \{5,13,17,25\}$ there exist no $[q+1,\frac{q(q+1)}{2}]$ double-circulant codes over $GF(q)$ with a symmetric matrix A which are both MDS and non-GRS. This makes the above example of $q = 9$ even more interesting.

REFERENCES

