THE DIOPHANTINE PROBLEM OF FROBENIUS: A CLOSE BOUND

by

H. Krawczyk and A. Paz

Technical Report #483

December 1987
The Diophantine Problem of Frobenius: A Close Bound

Hugo Krawczyk
Azaria Paz

Computer Science Dept.
Technion
Haifa, Israel

ABSTRACT

The conductor of n positive integer numbers a_1, a_2, \ldots, a_n, whose greatest common divisor is equal to 1, is defined as the minimal K, such that for every $m \geq K$, the equation $a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = m$, has a solution over the nonnegative integers. In this note we give a polynomial algorithm computing a close bound B for the conductor K of n given positive integers, when n is fixed. The bound B satisfies $B/n \leq K \leq B$.
INTRODUCTION

Definition: The conductor of \(n \) positive integer numbers \(a_1, a_2, \ldots, a_n \), whose greatest common divisor is equal to 1, is the minimal \(K \), such that for every \(m \geq K \), the equation

\[
 a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = m
\]

has a solution over the nonnegative integers. We denote this minimum by \(K = K(a_1, a_2, \ldots, a_n) \).

The Diophantine Problem of Frobenius is to determine the conductor of \(n \) given positive integers \([\text{Fro}].\)

In this paper we present an algorithm for the computation of a close bound \(B \) for the conductor \(K \). This bound has the property that \(B/n \leq K \leq B \). For fixed \(n \), the time complexity of the algorithm is bounded by a polynomial in the length of the input integers \(a_1, a_2, \ldots, a_n \).

Up to the present no polynomial algorithm for the computation of the conductor for \(n > 3 \) has been found, not even for the case where the number \(n \) of integers is not part of the input. For the case of \(n = 2 \), a very simple solution due to Sylvester is known [Syl]. While no such solution is known for \(n = 3 \), it is easy to show that a polynomial algorithm can be derived from the work of Brauer and Shockley [BS] combined with Lenstra's polynomial algorithm for solving integer linear programs with a fixed number of variables [Len]. We are not aware of any polynomial algorithm existing or implied in the literature for the \(n \geq 4 \) case. A non-polynomial algorithm for the computation of the conductor can be found in [Nij].

Several authors have tried to find a good upper bound for the conductor (see [Sel, Sch] for an extensive bibliography). Many such bounds have been found but all those bounds are of the order of magnitude of the square of the minimal \(a_i \) or higher. The bound we give in this note is, as far as we know, the first bound which is, for fixed \(n \), of the same order of magnitude as the conductor and computable in polynomial time.

THE MAIN RESULT

Let us denote by \(a_i, 1 \leq i \leq n \), the minimal integer \(\alpha \) such that there exists a solution over the nonnegative integers to the equation

\[
 a_1 x_1 + \cdots + a_{i-1} x_{i-1} + a_{i+1} x_{i+1} + \cdots + a_n x_n = \alpha a_i - 1
\]

Denote

\[
 B = (\alpha_i - 1) a_1 + (\alpha_{i-1} - 1) a_2 + \cdots + (\alpha_1 - 1) a_n
\]

Theorem 1: Let \(K \) be the conductor of \(n \) positive integers \(a_1, a_2, \ldots, a_n \), whose greatest common divisor is equal to 1, and let \(B \) be defined as above then

\[
 \frac{B}{n} \leq K \leq B
\]

Proof: First we prove the lower bound. We must show that \(B \leq n K \). We do this by showing for every \(i, 1 \leq i \leq n \), that \((\alpha_i - 1) a_i \leq K\). If this is not true, then it follows from the definition of \(K \) that the equation \(a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = (\alpha_i - 1) a_i - 1 \), has a
solution over the nonnegative integers, implying that the equation
\[a_1 x_1 + \cdots + a_{i-1} x_{i-1} + a_i x_i + a_{i+1} x_{i+1} + \cdots + a_n x_n = (\alpha_{i-1} - x_i) a_i - 1 \]
has such a solution, contradicting the minimality of \(\alpha_i \).

To prove the upper bound we shall show that for any \(m \geq B \), there exists a solution to the equation \(a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = m \). We prove this by showing that if for any \(m > B \) a solution exists, then a solution exists also for \(m - 1 \). Let \(\beta_1, \beta_2, \ldots, \beta_n \), be a solution for such an \(m \). As \(m > B \), there exists some index \(i, 1 \leq i \leq n \), such that \(\beta_i > \alpha_i - 1 \). On the other hand, by the definition of \(\alpha_j \), there exist nonnegative integers \(\alpha'_1, \ldots, \alpha'_{i-1}, \alpha'_{i+1}, \ldots, \alpha'_n \) such that
\[\alpha'_1 a_1 + \cdots + \alpha'_{i-1} a_{i-1} - \alpha_i a_i + \alpha'_{i+1} a_{i+1} + \cdots + \alpha'_n a_n = -1 \]

Combining the two equations we get that
\[\beta_1 + \alpha'_1, \ldots, \beta_{i-1} + \alpha'_{i-1}, \beta_i - \alpha_i, \beta_{i+1} + \alpha'_{i+1}, \ldots, \beta_n + \alpha'_n \]
is a (nonnegative) solution for \(m - 1 \).

Theorem 2: The bound \(B \) can be computed in polynomial time for every fixed value \(n \).

Proof: The equation (*) can be solved for any value of \(\alpha \) as a linear integer program, and therefore every \(\alpha_i \) can be found by binary-search of the minimal value of \(\alpha \) for which a solution to (*) exists. Using Lenstra's polynomial algorithm for the Integer Linear Programming [Len], we can compute the bound \(B \) in polynomial-time when \(n \) is fixed.

Remark 1: In the proof of Theorem 1 we have shown that \((\alpha_i - 1) a_i \leq K \). Combining this with the well-known bound \(K \leq (a_{\min} - 1)(a_{\max} - 1) \) [Bra] (where \(a_{\min}, a_{\max} \) are the minimal and maximal elements, respectively, among \(a_1, a_2, \ldots, a_n \)), we get that \(\alpha_i < a_{\max} \), a bound that can be used for initialization in the above binary search for \(\alpha_i \).

Remark 2: The above bound also induces a bound for the number of nonnegative integers \(m \) for which no solution exists to the equation \(a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = m \). This number, denoted by \(N \) was also investigated in the literature [NW] and it is easy to prove that \(K/2 \leq N \leq K \). Thus, our bound provides also a close bound for \(N \). Namely, \(B/2n \leq N \leq B \).
REFERENCES

