GENERALIZED LOWER BOUNDS DERIVED FROM HASTAD'S MAIN LEMMA
(Revised Version)

by

SHLOMO MORAN
Technical Report #438
November 1986
GENERALIZED LOWER BOUNDS DERIVED FROM
HASTAD'S MAIN LEMMA

(Revised Version)

by

Shlomo Moran

Department of Computer Science, the
Technion, Haifa 32000, Israel.

ABSTRACT

In [H] it is proven, among other things, that the size of any depth k circuit computing the parity or the majority function is $\Omega(2^{0.1(0.3^k)^{0.1}})$. In this note we generalize the proof given there to yield similar lower bounds for arbitrary symmetric functions of $\{0,1\}^n$. This improves results in [FKPS], where it was shown that the non-existence of polynomial-size, constant-depth circuits for the majority function implies the non-existence of such circuits for other symmetric functions.

\footnote{Part of this work was done while the author was at IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598}
1. INTRODUCTION

Let S be a subset of $\{0,1\}^n$. S is symmetric if for every $w=(w(1),..,w(n)) \in \{0,1\}^n$ and for every permutation π of $\{1,...,n\}$, w is in S iff $w'=\pi(w(1),..,w(n))$ is in S. An integer j is a boundary of a symmetric set S if 1^i0^{n-i} is in S but $1^{i+1}0^{n-i+1}$ is not, where $i=j-1$ or $i=j+1$. We show that if cn is a boundary of S, then the size of every depth k circuit recognizing S is at least $2^{n(0.6b\alpha)^{1+c}}$, where $b=\min\{c,1-c\}$. For $c=0.5$ this gives the lower bounds obtained by Hastad for the parity and majority functions [H]. The proof is based on certain properties of boundaries, which enable us to generalize Hastad's proof of the lower bound for the majority function to a proof of a similar lower bound for any symmetric set with a boundary $n/2$, and then to generalize this later bound to a bound for any symmetric set with a boundary cn for arbitrary c. One application of this result is that if the size of any depth 2 circuit recognizing a symmetric set S is $\Omega(2^{n^c})$ for some $0<c<0.5$, then the size of every depth k circuit recognizing S is $2^{\Omega(1-(c/\log c)^{1-c})}$. This later result might not hold for non-symmetric sets; as in [H] there are examples of sets which can be recognized by a depth k circuit of polynomial size, but require exponential size on depth $k-1$ circuits.

Related Results: The first to prove super-polynomial lower bounds on the size of constant depth circuits for the majority function were Furst et al. in [FSS]. Their results were later improved by Yao [Y] and Hastad [H]. Fagin et al. had shown in [FKPS] that the results in [FSS] imply super polynomial lower bound on the size of constant depth circuits for other symmetric sets (see also [DGS]). Using our terminology, the result in [FKPS] that is related to this paper can be formulated as follows: Let a polynomial p, an integer d and an $\varepsilon>0$ be given. Then for all sufficiently large n, a subset of $\{0,1\}^n$ which has a boundary in the interval $[n^d,n-n^d]$ cannot be recognized by a d-depth, $p(n)$-size circuit. By incorporating the results of [Y] or [H] in [FKPS], it is possible to show that for any unbounded function $\alpha(n)$, for every polynomial p, for every constant d and for all sufficiently large n, no d-depth, $p(n)$-size circuit can recognize a subset of $\{0,1\}^n$ which has a boundary in $[(\log n)^{\alpha(n)},n-(\log n)^{\alpha(n)}]$. This provides a full characterization of the symmetric functions that cannot be computed by constant-depth, polynomial-size circuits.

The above mentioned result in [FKPS] is proved there by showing that the existence of a circuit contradicting it implies a circuit of depth $d+1$ and size $q(n)$ computing the majority function on $\{0,1\}^n$, where q is a polynomial depending on p, and δ is a constant which depends on both d and ε; the existence of this latter circuit contradicts the result in [FSS], which implies the result.

Our technique differs from the one in [FKPS] in that we directly generalize the proof of the lower bound for the majority function given in [H] to a similar proof for arbitrary symmetric function. Consequently, the bounds
In this section we formally define boundaries of symmetric sets, and prove their properties.

Definition: Let S be a symmetric subset of $(0,1)^n$. An integer $j \in \{0, n-1\}$ is a left boundary of S if j is in $\text{CH}(S)$ but $j-1$ is not. An integer $j \in \{0, n-1\}$ is a right boundary of S if $j+1$ is in $\text{CH}(S)$ but $j+1$ is not. j is a boundary of S if it is either right or left boundary of S.

Examples: For the parity function, all even j's between 0 and n are boundaries. The majority function has only one (left) boundary, namely $n/2$.

Lemma 1: Let ρ be a restriction satisfying $|\rho^{-1}(\ast)|=m$ and $|\rho^{-1}(1)|=l$, and let S be a symmetric subset of $(0,1)^n$. Then $S'=\{S \mid \rho\}$ is a symmetric subset of $(0,1)^m$, and for each $j \in \{0, l-1\}$, j is a right boundary of S' iff $j+l$ is a right boundary of S.

Proof: For simplicity, assume that $\rho(x_1)=\cdots=\rho(x_m)=\ast$ (and $\rho(x_i)\in \{0,1\}$ for $m<i\leq n$). Consider a string
If \(w' = (w(1), \ldots, w(m)) \) is in \(\{0, 1\}^m \). Then \(w' \) is in \(S' \) iff \(w = (w(1), \ldots, w(m), \rho(x_{m+1}), \ldots, \rho(x_n)) \) is in \(S \). By the symmetry of \(S \), \(w \) is in \(S \) iff every permutation \(\pi \) of \(\{1, \ldots, m\} \), \(w_{\pi} = (w(\pi(1)), \ldots, w(\pi(m)), \rho(x_{m+1}), \ldots, \rho(x_n)) \) is in \(S \). This implies that \(S' \) is symmetric. The proof is completed by noting that, by the symmetry of \(S' \) and \(S' \), \(w_{m,j} \) is in \(S' \) iff \(w_{n,j+1} \) is in \(S \), for \(j = 0, \ldots, m \).

Corollary: Assume that in the above lemma \(|\rho^{-1}(1)| = |\rho^{-1}(0)| \) (that is, \(l = (n - m)/2 \)). Then \(n/2 \) is a boundary of \(S \) iff \(m/2 \) is a boundary for \(S' \).

Lemma 2. If \(j \) is a boundary of \(S \), then every depth-2 circuit recognizing \(S \) has gates of bottom fan-in at least \(\min(j, n-j) \).

Proof: Consider first an OR of ANDs circuit, \(C \), that accepts \(S \). Let \(j \) be a left boundary of \(S \). Then \(w_{n,j} = 1^{\left\lfloor n/2 \right\rfloor} \) is in \(S \), and hence \(C \) has an AND gate \(G(w_{n,j}) \) that accepts (outputs 1) on \(w_{n,j} \). We claim that for \(i = 1, \ldots, j \), \(G(w_{n,j}) \) must have the literal \(x_i \) as an input: Otherwise, \(G(w_{n,j}) \) will accept also the word \(w' = 1^{j-i}0^{j-i}1^{n-j} \). But \(w' \) is a permutation of \(w_{n,j-1} = 1^{j-i}0^{n-j+1} \), contradicting the assumption that \(j \) is a left boundary of \(S \). Thus, we conclude that if \(j \) is a left boundary of \(S \) then the fan-in of \(G(w_{n,j}) \) is at least \(j \). Similarly, if \(j \) is a right boundary of \(S \) then \(G(w_{n,j}) \) must have an input literal \(x_i \) for \(i = j+1, \ldots, n \), and hence it has a fan-in at least \(n-j \).

Let now \(C \) be an AND of ORs circuit accepting \(S \). Then the OR of ANDs circuit \(C' \) obtained from \(C \) by interchanging AND and OR gates and replacing literals by their negations accepts the complement of \(S \), \(COM(S) \). Clearly, it is sufficient to prove the lemma for \(C' \). Let \(j \) be a left boundary of \(S \). Then \(j-1 \) is a right boundary of \(COM(S) \), and hence it corresponds to a gate with a bottom fan-in \(\geq n-j+1 \) in \(C' \). Similarly, if \(j \) is a right boundary of \(S \) then \(j+1 \) is a left boundary of \(COM(S) \), and hence it corresponds to a gate of fan-in \(\geq j+1 \) in \(C' \). We conclude that if \(j \) is a left boundary of \(S \) it requires a fan-in of \(\min(j, n-j+1) \) in either kind of circuit, and if \(j \) is a right boundary of \(S \) it requires a fan-in of \(\min(n-j, j+1) \) in either kind of circuit. The lemma follows.

3. LOWER BOUNDS FOR SYMMETRIC FUNCTIONS

Theorem 1: Let \(S \) be a symmetric subset of \(\{0, 1\}^n \), and assume that \(n/2 \) is a boundary of \(S \). Then every depth-\(k \) circuit recognizing \(S \) is of size \(\Omega(2^{0.1(0.3n)^{\omega-3}}) \), for \(k \leq \log n (\log \log n + D) \) for some constant \(D \).

Proof: The proof is similar to the proof of the lower bound for the majority function given in [H]: The base \(k = 2 \) is by Lemma 2, and the induction step is carried out by considering random restrictions \(\rho \) that satisfy \(|\rho^{-1}(1)| = |\rho^{-1}(0)| \) and using the corollary to Lemma 1. The full proof is given in the appendix.

Let \(B(S) \) be the set of boundaries of a symmetric set \(S \subseteq \{0, 1\}^n \). \(b(S) \) is the integer defined by:

\[
b(S) = \max_{j \in B(S)} \min(j, n-j).
\]
The next theorem implied that $b(S)$ is closely related to the size of depth k circuits recognizing S.

Theorem 2: Let S be a symmetric subset of $\{0,1\}^n$, and let $b(S)/n=b$ for some $0<b\leq 0.5$. Then every depth k circuit recognizing S is of size $\Omega(2^{0.1(0.6b)n^{k-1}})$.

Note: By substituting $b=0.5$ in the above Theorem we get the lower bounds for the parity and majority functions in [H].

Proof: By the definition of $b(S)$, either bn or $n-bn$ is a boundary of S. We prove the theorem for the case that bn is a boundary of S. The proof of the other case is similar.

Let p_0 be the restriction satisfying $p_0(x_i)=1$ for $1\leq i\leq 2bn$ and $p_0(x_i)=0$ otherwise. Then by Lemma 1 $S'=S|_{p_0}$ is a symmetric subset of $\{0,1\}^m$ for $m=2bn$, and $m\leq bn$ is a boundary of S'. This implies that every depth k circuit C recognizing S contains a subcircuit $C'=C|_{p_0}$ of depth k recognizing a set S' over $2bn$ variables satisfying the condition of Theorem 1. The Theorem follows by substitution.

The next lemma shows that, in a certain sense, the converse of Theorem 2 is also true.

Lemma 3 If the size of every depth ≥ 2 circuit recognizing S is at least 2^{cn} for some constant $0<c\leq 0.5$, then $b(S)/n>\geq c(2\log c)$.

Proof: Let $b(S)/n=b$. If $b\geq 1/3$ then, since $c<0.5$, we are done. So we may assume that $b\leq 1/3$.

By the definition of $b(S)$, S has no boundaries greater than bn or smaller than $n-bn$. This means that either S or $\text{COM}(S)$ does not contain permutations of $w_{a,j}$ for $bn<j<n-bn$. The total number of permutations of $w_{a,j}$ for $0\leq j\leq bn$ is $\sum_{i=0}^{bn} \binom{n}{i}$. Since $b\leq 1/3$, we have that for $i\leq bn$ it holds that $\binom{n}{i}\geq 2\binom{n}{i-1}$. Hence the sum above is dominated by the sum of the geometric series with ratio 0.5 and largest element $\binom{n}{bn}$, and hence by $2\binom{n}{bn}$. By symmetry, the number of permutations of $w_{a,j}$ for $n-bn\leq j\leq n$ is bounded by the same bound. Thus we have that either S or $\text{COM}(S)$ is of cardinality $M=4\binom{n}{bn}$, and hence S can be accepted by a depth 2 circuit of size M (one bottom gate per each word in S or per each word in $\text{COM}(S)$). Thus we have that for almost all n,

$$2^{cn}\leq M=4\binom{n}{bn}=\frac{4}{(b^n(1-b)^n)^n\sqrt{2\pi b(1-b)n}}<((b^{-b}(1-b)^{1-b})^n<2^{2b\log(1/b)n}$$

(the = sign is by Stirling formula, and the last inequality follows by the fact that $b\leq 1/3$, and hence $(1-b)^{-b}b^b$).

Thus, we get that $c<2b\log(1/b)$, which implies the lemma.

In [H] it is shown that there are sets that can be recognized by a polynomial size depth-k circuits but require exponential size for depth $k-1$ circuits. Our last result implies that such a set cannot be symmetric.

Theorem 3: Let S be a symmetric subset of $\{0,1\}^n$. Then if the size of every depth 2 circuit recognizing S is at least
We need few more definitions before presenting the proof of the above theorem. A logical formula in CNF is

\[b(S) \geq \frac{-c}{2 \log c} n. \]

The theorem follows by substituting this \(b(S) \) in Theorem 2. ☐

References

APPENDIX: PROOF OF THEOREM 1
Theorem 1: Let \(S \) be a symmetric subset of \((0,1)^n\), and assume that \(n/2 \) is a boundary of \(S \). Then every depth \(k \) circuit recognizing \(S \) is of size \(\Omega(2^{0.1(n^0.32\log n)}) \), for \(k \leq \log n / \log \log n + D \) for some constant \(D \).

We need few more definitions before presenting the proof of the above theorem. A logical formula in CNF is a depth 2 AND of OR’s Boolean circuit. A minterm of a logical formula \(G \) is a minimal set of literals such that assigning the value 1 to each of them fixes the value of \(G \) to 1. The size of a minterm is the number of literals in it. Since a Boolean function can be written as the Boolean sum of its minterms, the maximum size of a minterm of a formula is the maximum bottom fan-in in a depth 2 OR of AND’s circuit computing \(G \).

Let \(G \) be a logical formula in CNF and let \(p \) be a random restriction. \(G \mid p \) denotes the formula resulted from \(G \) by applying \(p \), and \(\min(G \mid p) \geq s \) denotes the event that this formula contains a minterm of size at least \(s \).

Next we state the Main Lemma of [H], which is the main tool used in the proof of Theorem 1.

Main Lemma [H]: For an integer \(t \geq 1 \) and a probability \(p \), let \(\alpha_{t,p} \) be the positive root of the equation:

\[\left(\frac{4p}{(1+p)\alpha_{t,p}} \right)^t = \left(\frac{2p}{(1+p)\alpha_{t,p}} \right)^{t+1} + 1. \]

Then for each formula \(G \) in CNF with bottom fan-in \(\leq t \) and for each integer \(s \) it holds that:

\[p_r [\min(G \mid p) \geq s] < \alpha_{t,p}. \]

For each \(t \), let \(p_t \) be defined by \(\alpha_{t,p_t} = 0.5 \). For large \(t \), \(p_t = \frac{\ln \Phi}{4t} \), where \(\Phi \) is the golden ratio. In particular, \(p_t > 0.1/t \).

As in [H], we prove first a theorem that is slightly weaker than Theorem 1.

Theorem 1A: Let \(S \) be a symmetric subset of \((0,1)^n\), and assume that \(n/2 \) is a boundary of \(S \). Then there are no circuits of depth \(k \) and at most \(2^{0.1n^{0.32}(k-1)} \) gates of depth at least \(2 \) and bottom fan-in at most \(0.1n^{0.32}(k-1) \) that accept
S, for $k \leq \log_{n}(\log_{n} \log_{n} + D)$ for some constant D.

Proof. Induction on k. For $k = 2$ use Lemma 2 with $j = n/2$.

Induction step: For contradiction, let k be the minimal integer such that there are circuits of depth k and n input variables contradicting the theorem (for some D, to become clear later), and let C be such a circuit. WLG assume that the bottom gates of C are OR gates. Consider a random restriction ρ of probability $p = n^{-1/(k-1)}$ on the variables of C. First we show that with probability $\geq 1/n$ we have that $|\rho^{-1}(\ast)|$ is large and $|\rho^{-1}(1)| = |\rho^{-1}(0)|$:

The expected size of $\rho^{-1}(\ast)$ is $n^{(k-2)/(k-1)}$, and with probability greater than $1/3$ it is at least this number. Also, by Stirling formula,

\[
\Pr[|\rho^{-1}(1)| = |\rho^{-1}(0)|] = \Pr[\text{a binary string of length } n \text{ has an equal number of 0's and 1's}] = \frac{1}{\sqrt{2\pi n}}.
\]

This implies that

\[
\Pr[|\rho^{-1}(1)| = |\rho^{-1}(0)| \geq 2\sqrt{n^{(k-2)/(k-1)}}] \geq 3/n
\]

for almost all n.

Hence, the probability that $|\rho^{-1}(\ast)| \geq 2\sqrt{n^{(k-2)/(k-1)}}$ and $|\rho^{-1}(1)| = |\rho^{-1}(0)|$ is greater than $1/n$ for almost all n (or, for all n satisfying $\log_{n}(\log_{n} \log_{n} + D) \geq k \geq 3$ for some D).

Next we show that the probability that $C \mid \rho$ contain a depth 2 gate which has a minterm larger than $0.1 n^{1/(k-1)}$ is smaller than $1/n$, by using the main lemma of [H]. For this, Let $\epsilon = 0.1 n^{1/(k-1)}$. Then $p = 0.1/n < \epsilon$, and hence the probability that a given depth 2 gate in $C \mid \rho$ has a minterm larger than ϵ is smaller than α, for some $\alpha < 0.5$. In particular, the probability that $C \mid \rho$ contains any depth 2 gate that has such a minterm is smaller than 2α such gates. Since $2\alpha < 1$, we have that this probability is smaller than $1/n$, provided that $k \leq \log_{n}(\log_{n} + D)$ for some D.

Thus, there is a ρ for which $|\rho^{-1}(\ast)| \geq n^{(k-2)/(k-1)}$, $|\rho^{-1}(1)| = |\rho^{-1}(0)|$ and the depth 2 gates of $C \mid \rho$ have no minterms larger than ϵ. This means that each of these gates can be written as OR of ANDs of bottom fan-in $\leq \epsilon$. By doing this, we obtain a circuit C' of depth $k-1$ over $m \geq n^{(k-2)/(k-1)}$ inputs with at most 2^{ϵ} gates of depth at least 2 and bottom fan-in at most ϵ, where $\epsilon = 0.1 n^{1/(k-1)} < 0.1 n^{1/(k-2)}$. By the corollary to Lemma 1, the set $S \mid \rho$ accepted by C' is a symmetric subset of $\{0,1\}^m$ with a boundary $m/2$. Also, since $k \leq \log_{n}(\log_{n} + D)$, we have that $k-1 \leq \log_{n}(\log_{n} + D)$. Thus C' contradicts the minimality of k.

Proof of Theorem 1. Assume that there is a depth-k circuit contradicting the theorem, and consider it as a circuit of depth $k+1$ and bottom fan-in 1. Apply to it a random restriction with $p = 0.3$, and observe that $\alpha_{1,p} = 2p/(1+p)$, hence $\alpha_{1,0.3} < 0.5$. By arguments similar to those in the proof of Theorem 1A we see that there is a random restriction on this circuit which implies the existence of a circuit that contradicts Theorem 1A.