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As~UIiie ~1;1~t K is given in n-dimensional'Euclidean space and assume that K 
~ 

" 
. is Qou!'Jded.· Oti;1erwis~~ ,one cal) add i~equalities to the inequalitieS. defining K and . . 

~ I . ,
l" • 

".' g~t'a"pollt1d~~'set If' ·sucWthiit;. K' n zn is b~\ empty}f and only·if I( (lZ" is not 
v~.,~ 
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~. ... ' .., ;,. 
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Gi~~h ~~p.t If is' ,bq~dEil~ one finds n+l vertic~s. vO.vl ....•v" of K such that the 
.' 

~.ctor~ 'v I-Vp.v~~o .....v;~p ate lin'early independent. provided that K' is not 
.< ,
 

<-~ ".
 
-".:~ empty and provided fhat ~ it is full rank, If the r.ank" of If is d <n then, an 

<... 11 

• ';equiV'{ilfntt full J"Q.Ilk K' is .cimstructed'while tjnding the d+.1 veI'tlces as above. We 
~~ ~'~~:. 

she!-l as~ume therefore th~t j( is Qf. rank n., 

'. 
,3.~Second Stag~.. . . 

:':' 

:Leb- ~ be a:'giveQ rational oumper 0 <~ ~ ~. The set of vertices of K. vo, ...v" 
", 

" 
,., ~ 

toWid in the first stage" is, replaced bya new set of vertices vo·,v l', ...•v,,·; such that., 
" .... . . 

ilie vectors Vl·~O'.V2·--VO'.. ,vn·-vo~ are linearly independ~nt aIid have the following 

1"' ,< >., ,;~J:"opel"ty: 

" 
,'-

~. 

Let Hi .be tpe'!lyperpl~e. s;panned ~y tb,e vertices vo'•... ,Vi-I',Vi+1', ...•yn'. Let 
'<.:,­

i:~;S:: d{Vi.Hi)··b~..the dlstance of-,vi f~om Hi' and'let''Uj be' the P9~nt loqated on the 
~' l. 

JinE?-·p.iissing through ''¥i and perpendicular to Hi' on the~ sam~ side of Hi. as,.vi.. 'and 

itl;tch tha~ rI{Ui,.H\),'i= (l+~)d{Vi.Hi). Let Hi' be tb,e'hy.p.~rplanepassingtq.rough Ui,
i ~ 

'.. aQ,d parail~l to Hi"- Finally. r~t Vi II be the intersection pqint of tP.~ hyperpl~~s 
.~ '";'? I$- J 

o::Ho~,Hi' ......Hi-:l~,l!i+l' •... ,iI",. Then K is insidf,l lhe convex hull of the vertices 
~.:'~ .~ , '" ;,,;, 

~. 

"t~.~".V l";.~ ..';v" ".>. The 'fig~¢ b~low shows the coriftguratiop .for the 2-dimensional 
-~~ .;,.' 

~ca:se. J~ is e.~sy.to show th~~ if s .is rational and the vi.' are rational vectors tliep so' 
. 

" . '1., 

~e tpe vectprs 'lfi. ~q. v(.< 
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Figure 2 

3.3 'l.b.e,~ducti.onStage 

Based on the previous two stages. we shall assume here. that ~he ,given convex 

set K is bounded. is of full raI,lk and that we have alrl1ady found vertices 

VO.Vl .....vn and corresponding vertices vo' •...•v n I satisfying the conditions set in the 

second stage. i.e. the vectors vl-vO•...•vn -va are linearly ind.epended and 

Conv (vQ•...•v n ) ~ k'c 90nv (va ••...•v n '). 

Sometimes the problem is already given in this form (i.e. 'When 

K = Conv(v,o•...v n ». If such is the case. then the preconditioning stage can be 
r 

avoided altogether. 

Our reduction procedure will be given as a sequence of 4 simple transfgrma­

tions. The first two transformation~ are equivalent to L~nstra'So, and include a 

slight but significant modification rendering the compu~{itions involved simple and 

efficient. The rast tWD transformations Will set the problem into a simple form 

easy for implementation (for moderately Ulany variables). 

3.3.1 First Transform~tion 

'" Let V be the (n+t}xn matrix whose rows are the vectors vO•...•v n and let V be 

the nXn matrix whose rows are the vectors vl-vO•...•vn-vo. Compute 0 1• By 
~ A 

definition V is nonsingular with rational entries. therefore V-I "has the same 
,7 

\
 
~ 
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properties. 

The following no.tation will be used in the sequel. The convex set (simplex) 

spanned py th~ rqws of an {n+l)xn matrix V will be 'denoted by the same notation 

V (the ambiguity of tqe.npt~tion will be resc.>lved by the context). If K is a convex 

set and T is a tran,sforplation then KT denqtes the transformed convex set. In 

particular if V denotes a convex set as above then "VT denotes the convex set 

spanned by 'the rows of the transfprmed matrix VT.. 

The first transformation is achieved by moving every point (Xl .. .:z:n) in space. . 
" 

to the point (Yl ...Yn) =(Xl .. :'Xn ) V-I. Then 

Wi 1: .iiYl C V' 0 1, (4) 

where V' is the matrix with rational entries who~e rows are the vectors vo' •...•v n '. 

Consider the unit matrix I in the b~igl:pal spac,e to be the m~trix whose rows 

are a basi~ for' the natural lattice. The .original problem' is now. transfor,med into 

the problem: Find a lattice point of the lattice spanned by the ,royvs of the matrix 

IV-I =V-Linside the cQnvex set· .JrY-1. or decide that no suc'h point e~sts. Notice 

that. as follows from the lip.earity of the transformatiqn, the two convex sets 
" ~ 

defined by vr- l ~d V,V'-l remaip par~allel one to the other (i.e. corresponding 

hyperplanes bordering thqse sets are parallei on~ to <!noth~r). It' fonows from the 
" ~ 

transformation qetined above that the simplices. defined by W-l and V' V-I are 

•straight· • i. e. trapslates of a simplex with one vertex at the origin and the other 

vertices equaly distanced from. the origin and along the coordinate axes. It is 

easy to see ~hat the projectiop. of those simplices on tb,e i.j·coordinate hyper­

plane has the form depict~d below (v, and v;,., etc. denote 'the projection of ,the 

corresponging vertices .after transformation). 

, . , 
v, -Vo = (O... J. 0... 0) which iInplies that -rv,'-vo'l = (0... 2+3s... 0). by the dennitions. 

~ 

( 
v 
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Figure 3 

The ratio. between the .linear dimensions of the two sets is therefor:e equal to 

2"+ 3&. 

3.3.2 Second Transfol"IJl.ation 
~ 

Apply the L 3 algorithm to the rows ,of the matrix y-l '(constituting a basis of 
~ 

the transformed lattice), to get a new basis B =LV-l for the same lattice, where L 

denotes the unimodular matrix of the transformation defined: by the L3 algorithm 
~ 

(Section 2.2). Denote 'by tTl" .bn the rows of B. The sim'plex yy-l,is 'straight' ~o 

• 
that the derivation in Section 2.3 applies.. 

Let r be defined as in Section 2.3. We distinguish two cases. Either 

1 r = ~. > 2 ,- J.f; Ib:r, (Section '2.3 and Corollary 2.1) then the prob-V \=1 

lem has a solution, which can' be found as described.in [6]. Or r < .!... - / f; Ib; I~l, 
2 V i=2 . 

in which case the number t of h~~rplanes perpendicular td bn which C\}t the 

n-l 

outer simplex is 'small' (O(n22~) as shown in [6]). 

n-l 

The n-dimen~ional proolem can now be reduced to at most O(n 22?) prob­

lems of dimension n -1. 

~ 

;; 
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So far, as mentioned at the beginning of Section 3, these two transformatfons 
... 

together, with the preconditionin~ are equivalent to Lenstra's algorithm up to~the 

follpwing change: 
1-: 

The first transformatiop4(S.3.1) fs very simple, easy to implement and involves 

'.	 rational 'numbers only (in contradictign to the coprespondiIig tral'lsforination used 

in Lenstra's algorithm). On the pther hana, the bOUJ?d on the humber of subdivi­

sions remains basically the same. This would be easy to show but we want to 

chan~ the algorithm first and introduce some additional., simplifications, which 

Will also render the bound on the nurp.ber of subdivis~ons slightly smaller. This 'is 

done next. 

3.3.3 Third Transformation 

Mter the second transformation, we cu-e left with a lattice- whose base are the 

rows of the matrix·B =LV'-I, where L is unimQd~ar and with the configUI'a~ipn 

A A	 A 

w-1 C KV~I C	 y."V-1 . (5) 

We return now to the original spa.ce by applyi,ng the transformation f :rhis will 

~ change the lattice into the natural'lattice but spanned by the rows of the matrix 

L =BV =LV-I v: whose entries are integers. The configuration (5) above is 

changed into the configuration 

VC[(cV'	 (6) 

as w~s originally set. 

3.3.4 Fourth TransformaJ;ion 

We apply. now the transformation L -I to. the whole space. L -I, being unimodu­

lar preserves the natural lattigel but ,the new basis is changed i,nto tl:!e trivi,al 

basis (LL -1 ::; .(). The configuratjon (6) is now changed to 

q 
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VL-I C KL -Ie V'L -I. (7) 
; 

Now. L -I represents a linear transformation. This implies that the convex set 

;. detlned by_ V'L- I is parallel to the convex set. defined by VL- I (corresponding 

hyperplanes bordering those sets are parallel to one another) with the ratio 

between the linear dimensions of those sets preserved and .equal to 2 + 38 (see 

figure 3). 
A A 

Consider the two matrices L y-I and -VL -I and denote the .rpws of the first 

matrix and the columns of the second matrix by bl.bn and 751 ..15n respectively. 

Let hn be the projection of bn perpendicular to the space spanned by the other 

bitS. 1)p is perpendicular to the vectors blo ...• f'n-I and is therefore parallel to h",. 

It follows that (1)n. bn) =(15n.hn) =IlTn I Ihn I =1. 

Thus l15n I = Ihn
1 

I . 

1 1 n-I 
By Corollary 2.2, if r = ~...tn +1) ~ i 2 2 ~ Ihn I then a solution can be 

found as shown in [6] (r is defined as in Section 2.3). Otherwise. 

n~

2 "" 1 ­
rhn I > ,.!!.=!- implying that Ibn I = Th:T < n(...tn +1)'2 2 • 

• 
n(vn:+1)'2 2 

A 'n-3 

Thus VL-I has ~ column vector shorter than 2 2 n(~ +1). This implies that VL-I 

n-3 

has a column vector ~ = (~~) such that I~i-~ol ~ 2Tn (--.in +1) for all i. and there-

n-I 

fore I~i-~j I ~ 2 2 n(v'n +1) (or all i and j. But the linear dimension of the con-

Vex set defined by V'L -1 is larger than the linear dimension of the set VL -I by a 

factor of (2+3~) which shows that the ma,trix V'L -1 contains a column vector 

~f = (~i ') such that 

n-I 

Iti'..,.t/I < (2+38)' 2~n(v'n +1y=~t7""' ~" ~ (B) 
~~ 

'; 

» 
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Slicing the set V' L -1 into slices- perpendicular to' the coordinate corresponding to 
':	 t will therefore reduce the problem into t (as defined. in {a» subproblems of 

dimension n-1. already given in (n-1)-dimensional space. ,. 

Remark: The above argument shows the possibility of a reduction algorithm whiqh 

is, in a sense. dual to H.W. lienstra's as describ~d below. 

Given	 V and V' as defined.in Section 3.3: COD,sider the columns Of Vas a basis 
A 

of a (dual) lattice. Find a unimodular transformation T transforming the basis V 
A	 A 

into a new basis VT = VJ such t.hat VI contains a column ~ whose maximal coordi­

nate is minimal in absolute value. Then slice the convex set defined by V'T by 

slices perpendicular to the coordinate defined by ~. The first part of this problem 

is similar to the problem of finding the sh<;>rtest vector in a lattice (see [2].[7]) 

and can be handled via the LS algorithm. The number of resulting (n-1)­

dimensional slices from -the dual algorithm is smaller or equal than the number of 

slices produced by the direct algorithm. 

3.3.5 Summing up 

E	 We can now summarize our version of ,H.W. Lenstra's algorithm as follows. 

O. Input: K is	 a bounded nonempty full rank convex set as defined in (1). 

1.	 Preconditioning: Find two simplices with vertices vO•....vn and vo'•...•vn ' as 

described in Sections 3.1. and 3.2. Let V and V' be matrices whose rows are 

the above vertices correspondingly, -and denote by V and V' the matrices 

whose rows are vi-vO and vi'-vO' correspondingly. 

2.	 Find y-l and apply LS to its rows. Denote by L the unimodular matrix 

representing tHe LS tr~sformation. Compute L -1 (also unimodular). 

3. If b 1. b 2 •••.• bn • the row" vectors i~ L 
~ 

V-I have the property th"at 

2vr.1 bi 1 ~ vnr.Jn ). then the sollition 'can be found as shown in [6]. but n n+1"	 . 

see also the remark below. 
~ 

,
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4. If Yr.1 bi 12 > _~2: then" trah~to.rm the or~ginal space using the transfor­_r-:\' 

": 

mation L -1 which leaves the natural lattice invariant. The simplex V'L -1 can 

n-l 

now be subdivided into at most (2+3e)·a, 2 n{...;n + L) slices perpendicular to" 
some coordinate axis (e.,g. the slices are already given as (n-1)­

dimensional sets). where 0 ~ e ~ ~ is defined as in Section 3.2. 

5. Apply the algorithm recursiv~ly't,othe resulting slices. 

Remark: Consider again step 3 above. If Yr.1 bi l 
2 ~ -..In (1~...;n)' then we know 

that a solution exists. Mor~over. that'solution is a vertex of a parallelepiped which 

is a translate of the basIc parallelepiped spanned by b lo .... bn and contains the 

penter of the hypersphere inscribed in the simple% WI. The center of this hyper­

sphere is easily seen to be equal to VOV-l + (r.r .or) (see Section 2.3). The center 
A 

and the above mentioned vertex are both inside VV-1
• After applying the 

transformation "" VL- 1 the centet of the hypersphere is transformed into the. point 
A 

voL -1 + (r .....r) VL -1 and the parall~lepiped is transfQrmed into a unit pypercube 

whose vertices have integral coordinates and such that one of its vertices is inside 

the simplex. Steps 3 and 4 can. therefore be replaced by the following:
~ 

3'. Compute the point v OL-1 + {r .....r)t1;-1 =(Xlo ....Xn ). Let Pi = lXij and qi =1xtl. 
If one of the 2n points (SI ..Sn) where Si E' ~Pi.qd is ~nside the VL -1. then we are 

done. If (51•... I 5n ) is such a point then {~I. .sn)L solves the original prob­

lem. Otherwise 

4'. If step 3' fails then we 'kn()w·that - / ~ Ibi '1 2 > .In( 2 -..In' and therefore theV i=I n 1+ n 

n-I 

simplex V'.4- 1 ca,n be subdiVided into &t most (2+3e)'2 ~n(~+1) slices perpen­

dicular to some coordinate axis already giverras (n-1)-dimensional sets. 

The following features of our algorithm are worth noticing: 

1. The complexity of the algorithm is ba~ically'the.same as H.W. Lestra's original 

..
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algorithm and needs no further discussion. 

: 
2. All the calculations involveq are r,ational or integral and no approximations are 

needed. 
,. 

3. The	 subdividing is done in the natural lattice spanned by its trivial basis. 

4. The subproblems resulting after the subdivision are atready given as .(n-I)­

dimensIonal prob'lems (no extra transformations needed). 

n-l 

5. Any reduction ih the coefficient 2-2- in Section 2.2 achieved by improving the 

L9 algorithm, ,will imp,rove the bound in step 4' of this algorithm. 

6.	 The resulting (n -I)-dimensional slices, define similar and parallel (n-I)­

dimensional sets. All those sets are 'defined by systems of inequalities 

which differ in their constant terms only. This parallelism inherent in the 

problem is thus, set in a transparent form easy-to take advantage of, pro­

vided that proper computational tools are available. 

7.	 The number of inequalities defining all the resulting subproblems during the 

computation is bounded by the nU{Ilber of inequalities defining the original 
';. 

problem, thus bounding the number of vertices of the convex sets resulting 

from the subdivisions of the original problem. 

4. A IJNEAR DIOPHANTINE EQUATIONS 

A particular and interesting case of the gener'al integer programming prob­

lem is the problem of solving ap. equC\tion of the form 

alxl + a2x 2 +...+ Unxn = M	 (9) 

over the nonnegative integers where the. CIt's and M are positive iritegers and 

gcd{al'''~) = 1. 

Before we proceed with the inv.estigation of this problem we would like first to 

introduce two auxiliary algorithms we shqll need here but may have additional 

:. 

i 
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.. 

j 

~pplications.elsewhere. 
~ ~.. 

4.1.Algorithms U· (unilItodular) and S (slice). 

Let 7') = (al,""Un) be a vector of positive tntegers such-that gcd'{al_ -Un} = 1. 

The algo:r:ithm U below produces, in .linear. time, two. matripes A1j and A,71. which 
" 

'are uriimodular (Le. 'have integral entries ahd 'their determinant equals to 1 in 

absQlute value) and A,i"l has a column equal to 7')T: 

.~. 

4.1.1 Algorithni U (unjJn~ular) 
" 

Input a vector 7') =~al"""Un) of po'sitive intege:r::s.. 
1. Set U(O):=Y{°):=I; 'r](O):={a!O) ,..~,aJ°» = 7');' j.:=O. 

" 

Denote'the i-th rqw and .the k-th column of a matrix U by U[i,-] and U[-,k] 

respectively. 

2.	 Whi~e 7')0) is not a u:nitN~ctor do begin 

2a. Choo,se, according to some pre.assiJtned version '<:Jf the n-dinensional 

Euclide4n. algorithm (see e.g. [1]) two nonzero entri~s in 7')(/), ~O) 2 ap). 

l 
~(~J 

2b. Compute ~:::;: k 

2c. Set..~(i): =~OLk D.t0 ); a.,.(;): =(1.,.0) If r ~ s.
 

2d. Set UO)[s,-]:=UO)[5,-] -k UO)It,-].
 

UO)[r,-}:=VO)[r,-] ifr ~ s.
 

2e. Set vO)[ -,t ]:= vO)[-,t] + k VO)[ -,s']
 

V(;)[ -,r ]:= V(j)[ -,r l·if r ~ t.
 

2f. j:=j +1
 

end while.
 

3. Output ~ = UO);' A;.l.;::::! vU).
 

E;n~ of algorithm.
 

•
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We shall, assume w.l.o.g. that at termination 1](;) = (1.0•...• 0).
 

~
 

'(	 The following pr~petties are easily proven and are left to the reader. 

1. U(i), y(i) =I for 0 ~ i ~ j (the j -th iteration is assumed to be the 'last one). and 
r 

both	 U(i) and y(i) are unimodular. 

2. U(i)1]T = 1](i)T; y(i)1] (i) T =1]T fo,r 0 ~ i ~ j. 

3. yU)[-.1] = 1]T. 

The first two properties follows by induction. The third property which is 

implied by the second is shown as follows: 

1]T =	 y(i)[U(;)1]T] = y(i)1](;)T = y(i){1.0•••• 0)T = y(;)[ -.1]. 

The complexity of this algorithm is the same as the complexity of the n­
, 

dimensional Euclidean algorithm. i.e. it is linear in the length of the input and in 

the dimensiop. of 1]. Notice that the entries in the matrix.4,)1 are nonegative as 

follows from its construction. 

4.1.2 Example 1 

Given the vector 1] = (15.7.2) 
• 

1. Set 1]0 =1]. U(O) = y(0) =I. 

2a.	 Choose a,,(i) to be the biggest and rLt(i) to be the second biggest or equal entry 

in 1](i). If a,,(i) is not unique. then choose the maJFimal s such that ap,) is the 

biggest and s!milarly for rLt(i). Then the first iteration results in: 

a,,(0) = 15. rLt(O) = 7; k = 2; 1](1) = (1, 7. 2) 

1-2 [1 20101U(l) = 0 1 O. vel) = 0 1 0 
-01 0 1 0 0 1 

Second iteration: 

a,,(l) =7; rLt(l) =2; k =3; 1](2) =(1.1,2) 

.' 

..
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r1 -2 01 r1 2 61 
U(2) = lO 1 -3J ve2)~ = lO 1 3J 

:l> o 0 1 0 0 1 
" 

Third iteration: 

a.(2) =a~2) =2; a~2) =1; k = 2; 11(3) =(l,l,O) 

rl -2 01 rl 14 61 
U(S) = 10 1 -3J veS

) = 10 7 3J
lo -2 7 lo 2 1 

Final iteration: 

a.(Sl = af=~) = 1; ae(S) = a~S) = 1; k =1; 17(4) =(l,O,O) 

r 1 -2 01 r15 14 61 
u(4

) =l-l 3 -3J = l7 7 3Jv(4)
0, -2 7 2 2 1 

4.1.3 Algorithm S (slice) 

Given a convex n-dimensional s,et K and an n-dimensional hyperplane P we 

want to find an (n -l)-dimensional convex set K1 and an invertible mapping rp'Such 

that: y E: K 1 and y has integral c~ordinates if and only if x = rp{y) E: K n P and 

rp(y) has integral coordinat~s. Thus K1 will represent a 'slice' pf K by P. The algo­

rithm is described below. We assume firs.t that the coefficients of P are positive, a 

restriction to be removed in tbe sequel.
• 

1. Input K = Ix E: R n :'{l,x)B ~ OJ, where B is an (n-l)xm matrix of integers. 

P =,~x E: Rn: X11 T = MJ 

where '77 = (al ... fln) is a vector of positive intergers and M is an integer. 

2.	 Apply algorithm U to the vector 11 resulting in AfJ and A;l. nxn matrices with 

A,;'"l [-,1] = 17 T• 

3. Construct the matrix B' as below 

..
 

, 
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r1 0 . . 01 
') 0 

B'= I: ' I B 

~ 
0 

where B is defined in the definition of K. B! is (n+l)xm as is B. 

4.	 Construct the matrix B I as below 

1 M 0 ,.'01 
o 0 

B I '= B' 

In-l' 
o 0 

where M is denned as in P; and In-I is the n-l-dim~nsionalunit '!TIatrix. B I 

is nxm. 

5.	 Set 

K I =~y E: j?n-I: {l'Y)~1 ~ OJ. 

6. The transformation rp mappi~	 K h Ponto K 1 is defined as follows: 

,	 for x E: K n P set XA,}I =(M .rp(xn (;recall that .A,JI [-.1] =7') T so that 

x E: P implie,s that xA,;-1 [ -.1] = x,,;? = M). ~et rp(x), :-y. rp-l(y) can be com­

puted by rp-I(y) = (M.y)~. and. rp(.7() Call- be computed by 

rp(x) = X (A,)I [-.2] ....•A~1 [ -.n D. 

Proof of Algorithm: 

Assume first that x E; K n P. Then x E: P implies that XA,JI = (M.rp(x» 

which implies that fJ: = (M.rp(x»A,. 

•
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Now x E K implies, using the equality above, that 

=­

O~ {l,x)B =_{l,{M,~{x»~)B= 

1 0 
o 

01 

= (l,M,~{x» B ={l.M.~(x»B' ={l,~{X»Bl' 

o 
~ 

Conversely. if Y E K 1 th~n clearly x = (M.'V)~ has the property that ~(x) = Y 

and, as x A,Jl = (M.y), we h&ve .that XT/ = x A,Jl [-.1] ::; M implying that x E: P. In 

addition, we have also that 0 ~ {l,1!)B 1 :;: {l,M,y)B' ={l,{M.y)~):B =(l.x)B imply­

ing that x E: K. Thus x =~-l{y) =(M.y)~ E: P n K as required. 

It is clear from the construction that x has integral coordinates if and only if 

y has, but the transformation ~efin~d maps the whole set K n P onto the set K I . 

Remark. If the hyperplane P is defined by a vector 71 with ~ome negative or zero 

coordinates, the algorithm can still be applied as follo.ws: 

If the i-th entry of 7'] is· zero then set the i~th row of ~ and the i-tb colummn 

• of A,j"l to be the i-th coordinate unit row and column vectors respectively (i.e. 

i 
(O...010..0) and its transpose) and apply algorithm U to the other entries of 71. If 

some entries of 71 aIle negative' then apply algorithm U to 71' =(I a 11.1 U21 ;··1 Cln 1), 
and then change the resulting matrices ~ and A,Jl, multiplying the columns 

(rows), of ~(A,Jl), corresponding to negative values of 7']. by -1. 

The proof that the algorithm is correct for this case too is left to the reader. 
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• 

4.1.4 Example 2 

Let P be the plane defined ~y 

50549x I + 140701x2 + 492l7ys =42.275.139. 

Let K be defined by K = HXl.X2'XS): xi. ~ OJ, then 

y =(50549, 140701, (9217) =(aha2,as);, M =42,275,139 

and 

B =[0 :. 0] 

(it is easy to see that ~X: xi ~ OJ =tx: {l,x)B ~ oD. 

Applying algorithm U to the vector?'J we get the matrices 

[ 
23 

~ = 41 
-391 

-31 
107 
1BO 

65]
-384; Ail 
-113 

[50549 B197= 140701 22B16 
. 49217 7981 

3B33]
10669 
3732 

Due to the special form of B in this example, we get tnat 

rO 0 01 

B' =l"A, J 1 
M 00]

and B 1 = 0 1 0 ~ 
O· 0 1 

~ 

i.e. B 1 can be derived from ~ by multiplying its first row by M. 

two dimensional set is therefore 

K1 = ty: (M,y)~ ~ OJ. 

The equivalent 

If Y =(Yl,Y2<) £: K, then x ={M,Y).A,JI is in K n P, Le. x 

tion defining P over: the nonnegative integers. 

i~ a solution of the equa-

The following interesting feature of the above transformation is worth notic­

ing. 

The vertices of the 3-dimensional triangle defined by P n K are 

(M/al,O,O),(O,M/a2,p): (O,O,M/as) when?'J = (a l a2aS) is as given at input. The area 

of the projection of this triangle on the XltX2 plane is M . a 
l 

M-' a2 
~ whose integral 

~ 
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part is equal to 125.615. Thus the number .of feasible xI,x2 integer values 

" corresponding to possible nonnegative integral solutions of the equation x.rl =M 

is quite big. But ~the vertic~S: of the triangle defined by K I are easily found by
• 

applying the transformation rp to the vertices of P n K, tha~ is multiplying the 

point vectors (M/al.O.O). {O,M/a2,Oj. (Q,O,M/a3) by~. The resulting (YI,Y2) ver­

tices are found to be 

YI Y2. 

M·B197/50549 M';3B33/50549­
M'22B18/140701 M'10669/140701 
N'79B1I49217 M'3732/49217 

Now. 

lmax YIJ - fmin Yll = 6855314-685531~ = 2 

and 

lmax Y2J - [min Y21 =3205616-3205615 = 1. 

Thus. the number of integral points possibly inside K I is equal to 6 (!) and out 

• of those 6 points 2 are actually.inside K I inducing the 2 solutions below to the ori ­

ginal equation (via (x I,X2,X3) =. (M ,y loY2)A;1 ) 

Xl X2 X3 

114 62 503 
215 169 155 

Several other examples we hav~ tried resulted in similar dramatic 'compacti ­

zations·. This phenomenon will be discussed in the sequel. 

4.2 ~ductionto Integer Programming 

As in Example Z of the previous section any linear diophantine equation can 

be reduced to an n-1-dimensional integer programming problem such that the 

resulting convex set is a simplex. this .is done as follows. 

Given the linear equation 

i 
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• 

x'TJ = M, x ~ o. (9) 
; 

Construct the matrices AfJ and Ail using algorithm S. The equivalent convex set 

is then 
~ 

K =~y: (M,Y)~ ~ Or (10) 

If x solves (9) then y. defined by x A,11 = (M.y) is in K. Conversely, if y. is in K 

then x = (M.y) solves (9). Due to the fact that Kin (1O) is defined by n inequali ­

ties in {n-l)-dimensions. we have that K has n =~~1] v:ertices and is therefore a 

simplex. We can now s\ice K into {n-2)-dimensional slices, ete•• with no precondi­

tioning involved in the first reduction of dim~nsion,.as lShown in Section 3. 

There are some a'dditional interesting fea~ures of toe above algorithm which 

are listed. below. 

Remark: The reduction d~scribe.d in this section can be, extended to nonlinear 

convex sets. Assume e.g., that a ponliunear elipsoic,ial set is defined as below 

K' = ~x: (l.x)A(l.x)T~ OJ 

where A is a symmetric positive.matri~.Then the intersection of K' ~th the equa­

tion (9) can be ~xpressed as an equi~lent '(n-,l)-dimensional elipsoidal set K I 

defined below 

K I = ~y: {l.{M,y)~)A{l,{M,y)~f ~ O~
 

= ~y: (l,y)A 1{l,y)T ~ OJ
 

with Al a symmetric positive matrix. 

The equivalence between K' n (9) and K 1 is given by 

if x E: K' n (9) then x~,= (M,y) and y E: K1 • 

ify E: K 1 then x = (M,y)A-1 E: K' n (9). 

x has integral entries iff,.y has. The details are left·to the reader. 

I 
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4.2.1 'lb.e Vertices 

" As mentioned in the previous section the equation (9) reduces to an integer 

programming problem which is represented by an (n-l)-dimensional simplex. The 
• 

vertices of this simplex can be foqnd as follows: 

Let A,1,1 = [~] with ~1 = ~ = ~1 [i. 1] for all i. The vertices of the original set (9) 

are xC') = (O•...• M/~ •...O). 1 ~ i ~ n. Those vertices are transform~d into the ver­

tices of K via the transformation 
,. 

y(') = [O•...• M! ~ •...O][~~ [ -.2]....•~1 [ -.n]] = MI t1-L 1[~2 •...• ain]; 1 ~ 1: ~ n (10) 

t 
(recall that ~l = ~.) 

The i-th vertex of·K is therefore proportional to the last n -1. entries' of the 

i-th row of A;1 with coefficient of proportionally equal to MI ~1' 

Having fourld the vertices of K we can proceed as"in Section 3. reshape K into 

K' = KL -1 and then slice K' (if a solution has n9t yet been found) into slices of t:fre 

form K; = {(x, =Cj) n K'), of dimension n -2. for some index i and constants Cj. 

The vertices of K' are divided "by the hyperplane Xi =Cj into 3 sets: vertices on. 

·above·. and 'below' the hyperplane. Any vertex of If; is therefore either a vertex 

of K' on x, = Cj or the inters~ction of this hyperplane with a line joining a vertex 

above it with a vertex below it. This suggests an easy method for finding vertices 

of K;. 

Notice also that. as remarked before. the humber of vertices of any subprob­

lem. generated by the algorithm. never exceeq.s [ln~,:J]' this following from the 

fact that. the number of-inequalities defining the various convex sets involved in 

our algoritlun never e:kceeds n. The above t'acts may reduce the amount of work 

involved in the preconditioning stages of the algorithm. 

~ 
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4.2.2 Diophantine App~ximation 

The reduction of the linear equa~ion (9) to an integer programming problem 

as given in Section 4.2 is nqt unique1y defined. due to the fact that th~ matrices A1J 
• 

and ~l generated by the algorithm U depend on the choice of a version of the 

n-dimensional EuClidean algorithm. and. a~ shown in the previous section. the ver­

tices of the resulting (n-l)'-dimensiopal c<;mvex set are proportional to the rows of 

the matrix A,)l. Specifically; th~ i-th verU~x 'of the resulting convex set K is equl 

to MICItI[CIt2•••.• ain] as in·.(ll) in the previous section. The number of slices of K 

perpendicular to some coordinate j will be •small' if Mf!.X av - M~n CItj is 'small' 
'CItI 'CItI 

and this will happen if the vectors ~l [ -.1] and A,)l [-.j] are 'close' in the sense df 

Diophantine approximation (see [3]). 

~.g. Upl Upj I < t Then la l Up' e--- for some e and allp. . Iassume that Ialj -'-- _1'_ < --, 
au . au Upl Upl 

!!:EL- !!:ILl ~ Upj _!!:..!LI +IU-qj _!!:..!LI < e [_1+--.!J
lUpl aql Upl an U-ql all Upl aql J 

for all P and q. If such is the case then the number of slices of K perpendicualr 

to the j -th coordinate is less t:pan t.[_1_ +-.!.J.M. 
~l aq.1J 

As mentioned before. the algorithm U producing the matrix A,)l allow:s for 

variations in the choice of a proper vyrsion of an n-dimensional Euclidean algo­

rithm. One should therefore choqse a version such thal the r.-esulting matrix ~l 

will have its last n-1 columns i,l~ 'close' as possible in the Diophantine approxi­

mation sense as explained above. to its first column vector. which is the vector of 

the coefficients of the giyen equation (9). A good heuristics to achieve this goal 

seems to be the following: Choose a versio~ of the n-dimensional Euclidean algo­

; rithm which will render the "entries of ~ as small as possible. This heuristic is 

based on many examples we tried. In a forthcoming paper we shall present a 

,
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probabilistic n-dimensional Euclidean algorithm for ,achieving the above goal. 

Finding a matrix A.7J. such that its columns are as above. is therefore related 

'to the fu).ding of a Minkovsky-reduced basis for the lattice spanned by the 'edges of 
." 

the convex set K defln.ed by the equation (~) (see [7]).. a ,good heuristics for 

finding such a matrix A.71 can often serve as a substitute for the basis reductions 

_0/
involved in,the algorithm. 

As !i ~al remark we no~ice that after a linear diophantine equation ?as been 

solved for a given M. we can save most of our computations and use them for solv­

ing the same eq~",tion with another M, Solving again the same equation with a 

different M would be much easier the second time as all the new geometrical 

configurations corre,sponqing to the new M 'are parallel to the configurations found 

for the first M. 

4.2.3 Example 3: 

The example below illustrates the discussion in the previous sections. We want 

:" 
'to solve the equation
 

271x. ~ 277xs + 281x2 + ,283xI = 15000 = M
:1 
over the nonneg~tive integers. 

The area of the projection of the above hyperplane on the positive orthant of the 

XS.X2.XI space equals to MS/6'277'281'283> 25.535. A brute force search will 

require therefore about 25.530 probes. Applying algorithm U to the vector 

i) = (271. 277. '281. 283) with the same version of ,tpe 4-dimensional Euclidean algo­

rithm used in Example 2 we get the following matrices 

71 45 45 135] ~6 -45001 
A-I - 46 138 A -1-1 0 ~11277 46 2
I~ - 281 46 47 140 I~ - 0 -1 3 -2~83 46 47 141 93 90 -1 1 

.~ 
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The problem is thus reduced to the convex set 

K= ty: (M,y)~~ O~ 

The vertices of K a,re found from -A,71. Notice the fact that the columns of A,J"1 are• 

'closed' one to another in the sense. discussed in the text as listed below. 

Ys Y2 Yl 

VI 45'M/275 45·M/271 7472.3... 
v2 46'M/,277 46·M/277 7472.9... 
Vs 47·M/261 47·M/281 7473.3... 
V4 46·M/·283 47·M/283 7473.::;... 

where the actual va.lues of Yl have been calculated up -to one position .after the 

decimal point. 

It is evfdent that Yl can, assume only one integral value, namely YI =7473, 

i.e., the 3-dimensional simplex has only one 2-dimen~ionalslice which is 

(15000'YS'Y2.7473)~ ~ o. (12) 

The inequalities defining (l2) are easily found. 
, 
~ 

'1/s ~ 2484 

2yS-Y2 ~ 2430 
~ 

Y2 ~ 2491
 

YS+2y2 ~ 2473.
 

The vertices of this set are given below (the actual computation is left to the 

reader). 

Ys Y2 

VI 2484 2491 
v2 2484 2494.5 
Vs 2466.6 2503.2 
V4 2460.? 2491 

Thus 2491'~ Y2 ~ 2503; 2461 ~ Ys ~ 2484. 

The total number of integral feasible points is 24 x 13 = 312 {24 is the range of. Ys 

..: 

p 
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and 13 is the range of Ye). Probing those 312 points, we find 171 solutions (more 

thiID one solutioI1 per -two probes).- A;ny (Ys,Ye) sQlution of (12) induces a solution 

x = (x.xsxeXl) of the original equation as defined below: 

• 
x = (15000'Y3'Y2,7473)~ 

e.g. 

Vs:;: 2470, Ye =2498 and YI =7473
 

induces the solution of the original equation:
 

X4 =14~ Xs =12, xe =21, Xl;:: 7
 

where
 

14-Z7J, + 12-277 + 21-281 + 7.·283 = 15;000. 

~ 

-

p­
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