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3 1-The First Stage
Asgume tl:;at X is given in n-dimensional Euclidean space and assume that X
is hounded.. Othermse -one can add 1nequa11t1es to the inequalities defining K and
get a: bounded set K" such that K' M Z" is hot empty if and only-if K NZ™ is not
,empt.y (see e. g [9}) !
ngn that Kis bounded one ﬁnds n+1 vert1ces Up,V1,---.Un Of K such that the
vectors "ul'—'up.'ug—'uo,, WU -'up arfe linearly independent, provided that X-is not

empty and provided that 1(‘. is full rank, If the rank*of K is d <n then an
kK

cequivalezit full rank K" is constructed while finding the d+1 vertices as above. Wé

shgll asgume therefore that X is of. rank n .- 5

" -3.2 Second Stagg.

‘Let £ be a“given rational number 0 < g £ é— The set of vertices of K, vg,...vn

kY

found in the first stage is replaced by a new set of vertices vq',%'.....%,", such that

t.he‘:ve ctors v,'—Ug',Ug'~Vg'.. Un '~Vg' are ]in'ea‘i'ly independent and have the following

) ;property:

Let H; .be the hyperplane spanned by the vertices vg'....,¥i-y".%41'....,Up". Let

0K d (v, H;)-bethe distance of v; from H;, and let ¥ be the point located on the

line passing through ¥; and perpendicular to A, (L)n the, sdme side of H; as v;, and

"én.ch thai: d{u;, B)+ (1+e)d (v; H;). Let H;' be thé hypérplane passing through
and parallel to H;. Fmally. let 7;" be the intersection point of the hyperplanes
Ho Hy e H =t ey .H Then K is inside the convex hull of the vertices
(ug",v, 1e-Un"), The figuré below shows the coriﬁgliration for the 2-dimensional
case It is egsy-to show that if £ is rational and the v;' are rational vectors then so’

are the vectors and v

To! su.npllfy the notation we sh?ll relabel in the sequel-%;" by v;' and ;' By Ui

foros'z.s'n RN !

iy

RS i 1
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Figure 2

3.3 The-Reduction Stage

Based on the previous two stages, we shall assume here that the given convex
set K is bounded, is of full rank and that we have already found vertices
vgV}.,...,Vn, and corresponding vertices v¢'....,75 "' satisfying the conditions set in the

second stage, i.e. the vectors v;—vy,...,¥, —Vg are linearly independed and

Conw (vg,..., v ) € K'C Conw (v,'....,v,.").
Sometimes the problem is already given in this form (i.e. -when
K = Conv(ug,...v;)). If such is the case, then the preconditioning stage can be

avoided altogether.

Our reduction procedure will be given as a sequence of 4 simple transforma-
tions. The first twé transformations are equivalent to Lenstra's, and include a
slight but significant modification rendering the computations involved simple and
efficient. The last twp transformations will set the problem into a simple form

easy for implementation {(for moderately many variables).

3.3.1 First Transformation

Let V be the (n+1)xn matrix whose rows are the vectors vy,...,u, and let ¥ be
the nXn matrix whose rows are the vectors v;—vy,..., v, ~vg. Compute T;"l. By
definition V is nonsingular with rational entries, therefore T;‘l ‘has the same

\

\

Py
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properties.

The following natation will be used in the sequel. The convex set (simplex)
spanned by the rows of an {(n+1)xn matrix V will be denoted by the same notation
V (the ambiguity of the notation will be resolved by the context). If X is a convex
set and T is a transformation then K7 denotes the transformed convex set. In
particular if V denofes a convex set as above then VI dénotes the convex set

spanned by the rows of the transfprmed matrix V7..

The first transformation is achieved by moving every point (z;. z,,) in space

to the point (¥y...Y,) = (1..2,) V"1. Then
Wl c kvlc vy, (4)
where V' is the matrix with rational entries whogse rows are the vectors v¢',...,,".

Consider the unit matrix / in the bz:igfpal space to be the matrix whose rows
are a basis for the natural lattice. The original problem 'is now. transformed into
the problem: Find a lattice point of the lattice spanned by the rows of the matrix
IP71 = 9L inside the convex set»Kf/\“ 1 or decide that no such point exists. Notice
that, as follows from the linearity of the transformation, the two convex sets
defined by VI”A“l and yrp remain parallel one to the other (i.e. corresponding
hyperplanes bordering those sets are parallel one to another). It follows from the
transformation defined above that the simplices defined by VI'/\‘1 and V' I;“l are
*straight’, i.e. translates of a simplex with one vertex at the origin and the other
vertices equaly distanced from, the origin and along the coordinate axes. It is
easy to see that the brojectio,n of those simplices on the %,j ‘coordinate hyper-
plane has the formi depicted below (7; and v;',, etc. denote the projection of the

corresponding vertices after transformation).

i . i
U;—Ug = (0...1 0...0) which implies that 1%;'—¥g'| = (0...2+3%...0). by the definitions.
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The ratio.between the linear dimensions of the two sets is therefore equal to

2+ 3¢.

3.3.2 Second Transformation

Apply the L® algorithm to the rows.of the matrix y-1 (constituting a basis of
the transformed lattice), to get a new basis B = LV-1 for the same lattice, where L
denotes the unimodular matrix of the transformation defined by the L? algorithm
(Section 2.2), Denote by b)...b, the rows of B. The simplex yv1is *straight’ so

that the derivation in Section 2.3 applies..

Let 7 be defined as in Section 2.3. We distinguish two cases. Either

n
r = WT(_\}'TLWE ;—'\/leb.,lz (Section 2.3 and Corollary 2.1) then the prob-
i=

. n v
lem has a solution, which can be found as described in [6]. Or 7 < é—\/z | b; |2,
i=2 ’

in which case the number ¢ of hyperplanes perpendicular td b, which cut the

n—1

outer simplex is ‘small' (0(n%2 2 ) as shown in [8]).

n-1

The n-dimensional proBlem can now be reduced to at most 0(n®2 ? ) prob-

lems of dimension n—1.
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So far, as mentioned at the beginning of Section 3, these two transformations

»

together with the preconditioning are equivalent to Lenstra’s algorithm up to-the

follpwing change:

L0

The first transformation‘(3.3.1) is very simple, easy to implement and involves
rational numbers only {in contradiction to the corresponding transformation used
in Lenstra’s algorithm). On the other hand, the bound (;n the humber of subdivi-
sions remains basically the same. This would be easy to show but we want to
change the algorithm first and introduce some additional. simplifications, which
will also render the bound on the number of subdivisions slightly smaller. This’is

done next.

3.3.3 Third Transformation

After the second transformation, we are left with a lattice- whose base are the

rows of the matrix. F = LI7"", where L is unimodular and with the conﬁguratjon
Wl KVl c Pyl (5)
We return now to the original space by applying the transformation V. This will
¥ change the lattice into the natural'lattice but spanned by the rows of the matrix

L = BV = LV-1V, whose entries are integers. The configuration (5) above is

changed into the configuration
VeKcw (8)

as was originally set.

3.3.4 Fourth Transformation

We apply now the transformation L™ to.the whole space. L}, being unimodu-
lar preserves the natural lattice, but -the new basis is changed into the trivial

basis {LL ™! = ]). The configuration {6) is now changed to
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VL 1 ¢ KL-'c VL., (7)

Now, L™! represents a linear transformation. This implies that the convex set
defined by V'L~! is parallel to the convex set defined by VL™! (corresponding
hyperplanes bordering those sets are parallel to one another) with the ratio
between the linear dimensions of those sets preserved and equal to 2 + 3¢ (see
figure 3).

Consider the two matrices LV and VL' and denote the rows of the first
matrix and the columns of the second matrix by b,;. b, and [ ..'5,, respectively.
Let h, be the projection of b, perpendicular to the space spanned by the other
bi's. '5,, is perpendicular to the vectors b,,...,b,_; and is therefore parallel to k,.
It follows that (B,.0,) = (Bn.hn) = |50 | By | = 1.

1
Thus |8, | = TN

n-1
1 ;—.2 2 n|h,| then a solution can be

. -1
By Corollary 2.2, if r \/‘77.—(\/5+1)

found as shown in [6] (r is defined as in Section 2.3). Otherwise,

n-3
(R | > & implying that [,| = —=— < n(VA +1)2 .
n(Vn +1)2
~ n-3
Thus VZ~! has a column vector shorter than 2 2 n{(~v7n +1). This implies that VL1
n-3

has a column vector ¢ = (¢) such that |§—£| <2 # n(¥n +1) for all i, and there-

n-1
fore |£—¢;| <2 2 n(¥n' +1) for all i and j. But the linear dimension of the con-
vex set defined by V’L7! is larger than the linedr dimension of the set V™! by a
factor of (2+3s) which shows that the matrix V'L~! contains a column vector

£ = (&') such that /

*

[&' €' < (2+3e) - 2% (Vi 1) Eprrre— (8)
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Slicing the set V'L7! into slices: perpendicular to-the coordinate corresponding to
¢ will therefore reduce the problem into t (as defined. in {8)) subproblems of

dimension n —1, already given in (n—1)-dimensional space.

Remark: The above argument shows the possibility of a reduction algorithm which

is, in a sense, dual to H.W. lienstra's as described below.

A

Given V and V" as defined.in Section 3.3 Consider the columns 6f V as a basis
of a (dual) lattice. Find a unimodular transformation 7 transforming the basis v
into a new basis I;T = I;l such that 1;1 contains a column § whose maximal coordi-
nate is minimal in absolute value. Then slice the convex set defined by V'T by
slices perpendicular to the coordinate defined by £. The first part of this problem
is similar to the problem of finding the shortest vector in a lattice (see [2].[7])
and can be handled via the L3 algorithm. The number of resulting (n—1)-
dimensional slices from the dual algorithm is smaller or equal than the number of

slices produced by the direct algorithm.

3.3.5 Summing up

We can now summarize our version of H.W. Lenstra's algorithm as follows.

0. Input: K is a bounded nonempty full rank convex set as defined in (1).

1. Preconditioning: Find two simplices with vertices Ug,....Vp, and vg',...,v," as
described in Sections 3.1, and 3.2. Let V and V' be matrices whose rows are
the above vertices correspondingly--and denote by I; and I;' the matrices
whose rows are v; —vg and v;'—vy' correspondingly.

2. Find I;"l and apply L3 to its rows. Denote by L the unimodular matrix
representing the I3 transformation. Compute L™! (also unimodular).

A
3. If b,ba...b,, the row vectors in LV! have the property that

2 “ .
V2b R ———x i P
o] b | ,7 1) then the solution ‘can be found as shown in [8], but

see also the remark below.
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4. If VI|b |2 > —2—s

; then, transform the original space using the transfor-

vn ( +’\/ ny’
mation L~! which leaves the natural lattice invariant. The simplex V'L~! can

n-1
now be subdivided into at most (2+3¢)-2 T, n{Vn +1) slices perpendicular to

some coordinate axis (e.g. the slices are already given as (n—-1)-
dimensional sets), where 0< s < é—is defined as in Section 3.2.

5. Apply the algorithm recursively to the resulting slices.

. . 2
. ] . b 25 —_—
Remark: Consider again step 3 above. If VZ|¥;]| I (14+vm) then we know

that a solution exists. Moreover, that solution is a vertex of a parallelepiped which
is a translate of the basic parallelepiped spanned by b,....,b, and contains the
center of the hypersphere inscribed in the simplex VI}“I. The center of this hyper-
sphere is easily seen to be equal to 'UOI;“ + (r,r ..7) (see Section 2.3). The center
and the above meritioned vertex are both inside VV:l. After applying the
transformation ?Z"l the centet of the hypersphere is transformed into the point
vol 1 + ('r',...,'r')I;If1 and the parallelepiped is transformed into a unit hypercube

whose vertices have integral coordinates and such that one of its vertices is inside

the simplex. Steps 3 and 4 can therefore be replaced by the following:

3’. Compute the point vl ™ + (r,...,r)V[! = (z,,...,z,;,). Let p; = l.’z:,,] and g; ={z,,}

If one of the 2" points (s, ..s;) where s; € {p;,q;} is inside the VZ71, then we are
done. If (§;,...,5,) is such a point then (§,, . ,5,)L solves the original prob-

lem. Otherwise

4", If step 3’ fails then we know-that ‘\/2 | b; |2 and therefore the

'\/_ (1 +Vn')
n-1 )

simplex V'L~! can be subdivided into gt most (2+3¢)-2 2 n{¥n +1) slices perpen-

dicular to some coordinate axis already givem.as ('n—l)-dimensional sets.

The following features of our algorithm are worth noticing:

1. The complexity of the algorithm is basically the same as H.W. Lestra’s original
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algorithm and néeds no further discussion.

2. All the calculations involved are rational or integral and no approximations are
needed.

3. The subdividing is done in the natural lattice spannead by its trivial basis.

4. The subproblems resulting after the subdivision are already given as (n-—1)-
dimensional problems (no extra transformations needed).

n—1

5. Any reduction ifh the coefficient 2 2 in Section 2.2 achieved by improving the
I3 algorithm -will improve the bound in step 4’ of this algorithm.

6. The resulting (n-—1)-dimensional slices, deéfine similar and parallel (n—1)-
dimensional sets. All those sets are ‘defined by systems of inequalities
which differ in their constant terms only. This parallelism inherent in the
problem is thus. set in a transparent form easy-to take advantage of, pro-
vided that proper computational tools are available.

7. The number of inequalities defining all the resulting subproblems during the
computation is bounded by the number of inequalities defining the original
problem, thus bounding the number of vertices of the convex sets resulting

from the subdivisions of the original problem.

4. A LINFAR DIOPHANTINE EQUATIONS
A particular and interesting case of the general integer programming prob-
lem is the problem of solving an equation of the form
@y, + @oZa +...+ apz, = M (9)
over the nonnegative integers where the ¢;'s and M are positive integers and
ged{a,...0;) = 1.
Before we proceed with the investigation of this problem we would like first to

introduce two auxiliary algorithms we shall need here but may have additional
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applications elsewhere.

4.1.Algorithms U (unimodular) and S (slice).

E]

Let n = (;11.....0") be a vector of positive integers such-that ged(a,. .a,) = 1.

The algorithm U below produces, in.linear time, two. matrices A, and A;', which

-are unimodular (i.e. -have integral entries ahd ‘their determinant equals to 1 in

5

absolute value) and 4, ! has a c¢olumn equal to 77,

4.1.1 Algorithm' U (unimodulat)

Input a vector 7 = {a,,...,a, ) of positive integers

1. Set UO:=0).=s; p©@.=(af9, .,af®) =n; j:=0.

Denote the i-th row and the k-th column of a matrizx U by U[i,—] and U[-k]

respectively.
2. While 7)0') is not a unit vector do begin
2a. Choose, according to some preassigned version of the n-dinensional

Euclidean algorithm (see e.g. [1]) two nonzero entries in 7} al) > 0.

()
%—];k .
a;

2c. Set-a{):=a )k al); al:=¢)ifr #s.
2d. Set UU)[s,—]:=UU)s,-] -k UY)¢,-]

2b. Compute

U7, ~L:=UYr,-]if 7 # 5.
2e. Set V‘”[—.t]:i V‘j)[—.t] +k VU)["-SA]
VO —r =V - r}if r # L. )
2f. j:=j+1
end while.
3. Output 4, = UU) 4, 1= YU),

End, of algorithm.
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We shall assume w.l.o.g. that at termination ) = (1,0,...,0).

| ( The following properties are easily proven and are left to the reader.
. 1. UD VD = for 0<1i <3 (the j-th iteration is assumed to be the last one), and
both U® and V¥ are unimodular.
2. UtyT = nT, YT =T for 0<ix .
3. W) [-1] =7T.
The first two properties follows by induction. The third property which is

implied by the second is shown as follows:
T = VU)[U(;»,F] = PyWIT = PX(1,0,...0)7 = VI[-.1].

. The complexity of this algorithm is the same as the complexity of the n-
dimensional Euclidean algorith}n. i.e. it is linear in the length of the input and in
the dimension of 7. Notice that the entries in the matrix 4, are nonegative as

follows from its construction.

‘ 4.1.2 Example 1
Given the vector 79 = (15,7,2)
1. Set n® =7, UD = VO =,
2a. Choose ¥} to be the biggest dnd a*) to be the second biggest or equal entry
in n®). If af? is not unique, then choose the maximal s such that a(¥ is the

biggest and similarly for a{"). Then the first itération results in:

” =15, ¢@ =7 k =2; (U =(1,7,2)

1 -2 0 120
v = 1 of MY=]0 1 0
0 0 1 0 01

Second iteration:

»

eV =7 oV =2 k =3; @ =(1,1,2)
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L -2 ol 1 2 sl
U(2)=[o 1 —3] V@-=p 1 3
0 0 1 0 0 1

Third iteration:

a.(g) = aéz) = 2' aéZ) = 1' k= 2' 7](3) = (1 1.0)
—2 1 14 6]
U = Io —3 ¥ = lo 7 3
-2 7
Final iteration:

e =af® =1; ¢ =afP =1; £ = 1; »¥ = (1,0,0)

1 -2 01 [15 14 s8]
U(4)=[—1 3 V‘*’—[ 7 3
0 -2 7 2 2

4.1.3 Algorithm S (slice)

Given a convex n-dimensional set X and an n-dimensional hyperplane P we
want to find an {n —1)-dimensional convex set k) and an invertible mapping ¢ such
that: y € K, and y has integral cpordinates if and only if z = ¢{y) € K N P and
¢(y) has integral coordinates. Thus K, will represent a ’slice’ of K by P. The algo-
rithm is described below. We assume first that the coefficients of P are positive, a
restriction to be removed in the sequel.

1. Input K = {z € R":(1,z)B = 0}, where B is an {n —1)xm matrix of integers.
P={z € R*:znT = M}
where 7 = (a,...a,) is a vector of positive intergers and ¥ is an integer.
2. Apply algorithmr U to the vector 7 resulting in 4, and A7', nxn matrices with
Ayt[=1] =7 .

3. Construct the matrix B' as below
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o

Bl

10
where B is defined in the definition of K. B'!is (n+1)xm asis 5.

4, Construct the matrix 5, as below

By=| B'

Iy

o 0
where M is defined as in P, and [, is the n—1-dimensional unit matrix. 5,
isnxm.

5. Set

K=ty € R*™%: (Ly)B, > 0}.

6. The transformation ¢ mapping K N P onto K| is defined as follows:
for z € K NP set zA;' = (M,p(z)) (recall that A7'[-,1]=%"T so that
z € P implies that z4;![-,1] = :r.'r;T‘= M). Set p(z) =y. ¢ '(y) can be com-
puted by ¢ '(y)=(M.y)A,, and ¢(z) can be computed by
o(z) = (4, [-.2].....47 [-n ]).

Proof of Algorithm:

Assume first that z € K N\ P. Then z € P implies that zA;! = (M.¢(z))

which implies that £ = (HM,9(z))A,.
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Now z € K implies, using the equality above, that

0= (1.z)B =(1.(M.¢(z))Ay)B =

10. . .0
0

= (1, M.9(z))| B =(LH.9(z))B" = (L.¢(z))B, .
A,

lO
Conversely, if ¥ € K, then clearly z = (M,y)A, has the property that g(z) =y
and, as z A;! = (M.,y), we have that zn” =z 4,;'[-,1] = # implying that z € P. In
addition, we have also that 0< (1,y)B, = (1,M.y)B' = (1.(M,y)A,)B = (1,z)B imply-
ing that z € K. Thusz = ¢~y) = (M,y)4, € P N K as required.

It is clear from the construction that z has integral coordinates if and only if

vy has, but the transformation defined maps the whole set X () P onto the set Kj.

Remark. If the hyperplane P is defined by a vector 7 with some negative or zero
coordinates, the algorithm can still be applied as follows:

If the i-th entry of 7} is-zero then set the i-th row of 4, and the i-th colummn
of A;1 to be the i-th coordinate unit row and column vectors respectively (i.e.
(0...0i0..0) and its transpose) and apply algorithm U to the other entries of 7. If
some entries of 7 are negative then apply algorithm U to 7' = (|a,]|,|az|...|an|).
and then change the resulting matrices A, and 4, 1 multiplying the columns

(rows), of A,(A;1), corresponding to negative values of 7, by -1.

The proof that the algorithm is correct for this case too is left to the reader.
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4.1.4 Example 2

Let P be the plane defined by
50549z, + 140701z, + 4921 7yg = 42,275,139.
Let K be defined by K = {{(z,,z3,23): z; = 0}, then
y = (50549, 140701, 49217) = (a,.az,a5); M = 42,275,139

and

(it is easy to see that {z: z; > 0} = {z: (1.z)F = 0}).
Applying algorithm U to the vector 7 we get the matrices

23 -31 65
41 107 -384
-391 180 -113

50549 8197 3833
140701 22816 10669
49217 17981 3732

. -1
s A'y -

A"l=

Due to the special form of B in this example, we get that

o o o]
4

i.,e. B, can be derived from 4, by multiplying its first row by #. The equivalent

MO0O
010
001

B'= and F, =

Ay

two dimensional set is therefore

Ky = ty: (M.y)4,> 0}

Ify = (y,,y2) € K, thenz = (#,y)4," is in K N P, i.e. z is a solution of the equa-
tion defining P over. the nonnegative integers.

The following interesting feature of the above transformation is worth notic-

The vertices of the 3-dimensional triangle defined by P N K are

(M/2,,0,0) (0,M/ az0). (0,0,M/ as) when 1 = (a;azas5) is as given at input. The area

of the projection of this triangle on the z,,z; plane is ai. EM—-' -;—-whose integral
1 2
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part is equal to 125,615. Thus the number .of feasible z,,z; integer values
corresponding to possible nonnegative integral solutions of the equation znT = H
is quite big. But ‘the vertices of the triangle defined by KX, are easily found by
applying the transformation ¢ to the vertices of P N K, that is multiplying the
point vectors (#/ a,,0,0), (0,M/ a5,0), (0,0,M/ ag) by A,. The resulting (y,,yz) ver-

tices are found to be

Y1 Yea.

M- 8197/ 50549 M-3833/ 50549
M-22816/ 140701 M-10669/ 140701
N-7981/ 49217 M- 3732/ 49217

Now,

Imax y‘] - [min yll = 6855314-6855312 = 2

lmax ygl - |[m.in ya} = 3205616—3205615 = 1.

Thus, the number of integral points possibly inside K is equal to 6 {!) and out
of those 6 points 2 are actually.inside K; inducing the 2 solutions below to the ori-
ginal equation (via (z,,z2.z3) = (M.y1.¥2)45")

) Tz Z3

174 62 503
215 169 155

Several other examples we have tried resulted in similar dramatic *compacti-

zations’. This phenomenon will be discussed in the sequel.

4. 2 Reduction to Integer Programming

As in Example 2 of the previous section any linear diophantine equation can
be reduced to an n-~-1-dimensional integer programming problem such that the
resulting convex set is a simplex. this is done as follows.

Given the linear equation
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rn=M, z=0. (9)

Construct the matrices 4, and 4, using algorithm S. The equivalent convex set

is then

K ={y: (M.y)A,=0] (10)
If z solves (9) then y, defined by z A;! = (M.y) is in K. Conversely, if y is in K
then z = (M,y) solves (9). Due to the fact that K in (10) is defined by n inequali-
ties in (n—1)-dimensions, we have that K has n = [7'-71 1] vertices and is therefore a
simplex. We can now slice K into (n —2)-dimensional slices, ete., with no precondi-
tioning involved in the first reduction of dimension,. as shown in Section 3.

There are some additional interesting features of the above algorithm which
are listed below.
Remark: The reduction described in this section can be. extended to nonlinear

convex sets. Assume e.g., that a nonliunear elipsoicial set is defined as below
K ={z: (1,2)A(1,z)7 =0}

where A is a symmetric positive-matrix. Then the intersection of K’ with the equa-
tion (9) can be expressed as an equivalent (n—1)-dimensional elipsoidal set K,

defined below

Ky = ty: (L(M.y) A A(L(H.y)Ap)" = O}
= ty: (Ly)A:(Ly) =0}
with A; a symmetric positive matrix.
The equivalence between K* M (9) and Kj is given by
ifz € K" N (9)thenz4,=(My)andy € K;.
ify € K, thenz = (M, y)A™" € K N (9).

z has integral entries iff y has. The details are left-to the reader.
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4.2.1 The Vertices

As mentioned in the previous section the equation (9) reduces to an integer
programming problem which is represented by an (n—1)-dimensional simplex. The
vertices of this simplex can be found as follows:

Let A, = [ay) with ay, = a; = A;1[4,1] for all i. The vertices of the original set (9)
are z{¥ = (0,....M/a;,...0), 1 <i <n. Those vertices are transformed into the ver-

tices of K via the transformation
yW =[0,....M/ a;....0][4; [~.2).....4; [-n]] = M/ ey [aiz,-- )i 1< < (10)
(recall that a;; = a;.)

The i-th vertex of-K is therefore proportional to the last n—1.entries of the

i-th row of A, ! with coefficient of proportionally equal to #/ a;;. -

'

Having fourid the vertices of K we can proceeti as'in Section 3, reshape X into
K = KL™! and then slice K" (if a solution has not yet been found) ipto slices of the
form Kj = ({(z;=c;) M K'), of dimension n—2, for some index i and constants c;.
The vertices of K' are divided by the hyperplane z; = ¢; into 3 sets: vertices on,
'above’, and 'below’ the hyperplane. Any vertex of Kj is therefore either a vertex
of K’ on z; = ¢; or the intersection of this hyperplane with a line joining a vertex
above it with a vertex below it. This suggests an easy method for finding vertices
of K;.

Notice also that, as remarked before, the number of vertices of any subprob-

lem, generated by the algorithm, never exceeds [l'n;lz]]' this following from the

fact that.the number of inequalities defining the various convex sets involved in
our algorithm never exceeds m. The above facts may reduce the amount of work

involved in the preconditioning stages of the algorithm.

L



4.2.2 Diophantine Approximation

The reduction of the linear equation (9) to an integer programming problem
as given in Section 4.2 is not uniquély defined, due to the fact that the matrices 4,
and Ay ! generated by the algorithm U depend on the choice of a version of the
n-dimensional Euclidean algorithm, and, as shown in the previous section, the ver-
tices of the resulting (n—l)‘-dimensional convex set are proportional to the rows of
the matrix Ay 1 Speciﬁcal%j. the i-th vertex of the resulting convex set K is equl
to M/ a;,[ayz.....a5] as in-(11) in the previous séction. The number of slices of K

ﬂ.u

perpendicular to some coordinate j will be *small’ if Mg.'ra‘—-—M;m::—J is ’small’
1 1

and this will happen if the vectors 4,?[~,1] and A;'[-,j] are "close’ in the sense df

Diophantine approximation (see [3]).

“lj_‘lpr'|< €

E.g. assume that |a,; Z?—l-— @p; | < & for some £ and all p. Then
11 )

@) apl‘ Gp1
lﬂw Cog | o ey, e ey (1, 1)
ap1 Qg1 I 51 ay | Qg1 L3 B | Qp1 aqlJ

for all p and g. If such is the case then the number of slices of K perpendicualr

to the j-th coordinate is less than 8'[-a_i_+ A M.
1

Qg1

As mentioned before, the algorithm U producing the matrix A,! allows for
variations in the choice of a ‘proper version of an n-dimensional Euclidean algo-
rithm. One should therefore choose a version such that the resulting matrix 4,*
will have its last n—1 columns as ’close’ as possible in the Diophantine approxi-
mation sense as explained above, to its first column vector, which is the vector of
the coeflicients of the given equation (9). A good heuristics to achieve this goal
seems to be the following: Choosé a version of the n-dimensional Euclidean algo-
;rithm which will render the ‘entries of A, as small as possible. This heuristic is

based on many examples we tried. In a forthcoming paper we shall present a
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probabilistic n-dimensional Euclidean algorithm for.achieving the above goal.

Finding a matrix A,,‘~l such that its columns are as above, is therefore related
‘to the finding of a Minkovsky-reduced basis for the lattice spanned by the-edges of
the convex set K defined by the equation (9) (see [7]). a .good heuristics for
finding such a matrix A, 1 can often serve as a substitute for the basis reductions

involved in-the algorithmm.

As a final remark we notice that after a linear diophantine equation has been
solved for a given M, we can save most of our computations and use them for solv-
ing the same equation with another M. Solving again the same equation with a
different // would be much easier the second time as all the new geometrical
configurations corresponding to the new ! ‘are parallel to the configurations found

for the first M.

4.2.3 Example 3:

The example below illustrates the discussion in the previous sections. We want

‘to solve the equation
271z, + 277zg + 281z + 283z, = 15000 = #

over the nonnegative integers.
The area of the projection of the above .hyperplane on the positive orthant of the
T3,T2.Z, space equals to M3/6'277-281-283 > 25,535. A brute force search will
require therefore' about 25,535 probes. Applying algorithm U to the vector
7 = (271, 277, 281, 283) with the same version of the 4-dimensional Euclidean algo-

rithm used in Example 2 we get the following matrices

271 45 45 135 46 —45 0 o]

2 _|277 46 46 138 , _|-1 2 0 -1
An” =1o81 46 47 140 4= |0 -1 3 —2
B3 46 47 141 93 90 -1 1
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The problem is thus reduced to the convex set

K=1{y:(My)ly=0}

The vertices of K are found from-4,. Notice the fact that the columns of 4,' aré

'closed’ one to another in the sense discussed in the text as listed below.

Ys Yo Y

v, 45-M/275 45 M/271 T7472.3...
vy 46-M/277 48 M/ 277 7472.9...
vg 47-M/281 47 M/281 7473.3...
v, 46-M/28B3 47T M/283 7473.5...

where the actual values of ¥, have been calculated up to one position after the

decimal point.

It is evident that ¥, can assume only one integral value, namely y, = 7473,

i.e., the 3-dimensional simplex has only one 2-dimensional slice which is
(15000,y3,y 2, 7473)A, = 0. (12)

The inequalities defining (12) are easily found.
ys < 2484
2yg—yp = 2430
yg = 2491

'y3+ 2y2 < 2473.

The vertices of this set are given below (the actual computation is left to the

reader).

Y3 Y2

v, 2484 2491
vy 2484  2494.5
vs 2466.8 2503.2
ve 24605 2491

Thus 2491'< y, < 2503; 2461 < ygq < 2484,

The total number of integral feasible points ié 24 x 13 = 312 (24 is the range of yg
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and 13 is the range of y,). Probing those 312 points we find 171 solutions {(more
than one solution per two probes). Any (ys,y2) solution of {12) induces a solution

z = (Z4T3TaT,) of the original equation as defined below:
Tz = (15000.y3,y2,74-73)A1)

e.g.

Y3 = 2470, yp = 2498 and y, = 7473

induces the solution of the original equation:

Ty=14, z9=12, 2o =21, ;=7

where

14-271 + 12:277 + 21-281 + 7283 = 15,000.
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