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ON PARALLEL PROGRAMMING PRIMITIVES

M. Yoeli and A. GinzBurg

ABSTRACT

Stiuctured programming is now widely recognized as an egsential

tool -for the design of correct, easily understood pfograms. A key

issue in structured programming ;g'the suitable choice of the §et of
control structures ‘to be used. Aé far as structured sequential program-
ming is concerned, important‘theoretical results -are available on the
"relative power" of ‘various classes of control structures. This paper
discusses this "relative power” issue for classes of parallel control

structures. It establishes a maEhematically precise framework in which

all the relevant results are presented.

Only a restricted class ofﬁparaliel programs is considered in this
paper. These programs can be keézesented by ohe-in, one-out gyéie—free
strxuctures contaiqing hasic act}on.modgles and two type§ of cont£01
modules: 2-way forks and 2-way joins. 1In particular, we demonstrate
the limitations of any finite set of control primitives: there always

exists a parallel program not structurable by means of the given set

-



1. INTRODUCTION -

Structured programming has'-become an important methodplogy for
the design of correct, easily undexstood computer programs' [DA~DI-HOJ.

The arguménts in favor of.’a styuctured gpprdach to sequential program-

L)

ming evidgntly also apply to parallel programming and parallel

>

%

processing. An.important aspect df structured programming is, the

appraopripte selection of,congrolhprimitives. This paper is a contribu-

P *

tion towards.a formal theory of parallel codtrol primitives. Such a

theory i§ also applicable fd the structuted design of asynchronous

control networks (cf.” [BRU=ALT], [HE-YO), [YOE}, [CO-MA], [YO-GI])-

2. -DTASK FLOW CHARTS

v -

In this gection we Qiscuss in an informal wéy the”groblems we
shall be concerngd with in the sequel. All the notiogns mentioned in
+thig section will be made precise later on.

Let us consider a system dedigated to some overall objecgtive.

Such a task of a system can usual'ly be decomposed. into several suhtgsks;
some of which may he executable simultane;usly (in parallél). A task
flow chart [BR-YO] indicatles the (partial). order, in which the subtasks
have tp be ?erformed. ‘We assume that the overall system is initiated
by a START-cémmand, and that it issues a DONE-signal upon completion

of its overall objective. A task flow chart for some hypothetical system

S¥YSl is shown in Fig. 2.1. A directed path from »TAi to TAj ‘ihdicates

that task TAj may be Started omly after the completion of taks TA, .

Let us denote by [TAlHTA2] a task consisting of two subtasks TAl

and TA2 which may be executed -in parallel. Simiiarly (TALl;TA2) will
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Figurg 2.1 - Task flow chart for hypothetical
system SYS1. :

denote a task .composed of subtasks TAl, and TA2, to be executed sequentially
(TAl fitrst). These or equivalent notigns appear in many modern' program-

ming languages (cf. [WE-SM]) as primitive constructs. Evidently, the

“ .

overall task TA of 'SYS1 may be represented in a structuréd form as

follows:

TA = (TAL; [ (TA2;TA3) || TA4] ;TA5). (2.1) .

[

(]

Consider how the overall task represented by the task flow chart
of Fig. 2.2. It will be sHown later (see Seglion 7f that this t;5k can- ‘
not be "structured” in a form similar to~(2%10 above,, without introduc-
ing additional constraints. Thus, the above two control primitives

(|l and ;) are not powerful enpugh. for the structuring of arbitrary

composite tasgks. '



DONE

Figure 2.2 - A ‘tasR flow chart not structurable
. _— s -
. by- \" ) and Iu; 1.

We are thus confronted with the’problequf}spitably selecting

¢ H

additional contrql primitives ;and of determining. the increased -stryctur-

“

' ring power obtained. -Although. this problem is, no doubt, of interest,

= ¢
it. seems that it'has:ﬁb; received suitab}e a%tention in the literature.

On ;he QEher.hand, the corresponding problem rglated tq structured
se&uential grog;amming has been invéstigated gxtensively (cf. [LE-MA]) .
‘is to structured*paralléi processing, various sets of® control primitivea
e have been proposed [BRU-ALT], [KEL], (¥YOE], [VAL], [WEI], without,
hdoweyer, investigating the limits of theii«structurfng power.
In Sections 4-~8 we:aeuelop a»férTal_theory which will enable us

to dgal with the above problem of structured parallel processing in a

m
v

p¥ecise wayg. In our formal theory the concept of synchronization graph
plays "an important fble{' This concept is introduced in the following

section. .

o~
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3. SYNCHRONIZATION GRAPHS -, INFORMAL INTRODUCTION

The control part of SYSl -(see Fig. 2.1) may be implemented as

shown by the-control (or synchrbnization) graph of Fig. 3.1. A node
labeled TA; represents the task module executing task TA,. The iredge
(outedge) of this node represents the control input (output) of the

correspondiﬁg module. Any task module operates asynchrgnously: fi

starts its operation as soon as ‘a signal {start command) arrives on

&

its control input. Upon completion of the operation, the.module issues
a (completion) signal on its- control output. -

Nodes others than those labeled TAj -represent ‘control modulesd.

OSTART
O'I'Al .

uFORK

m/\ |

OTAg

TA3(3

JJOIN

JTAS

1

OHALT

Flgure 3.1 - Synchronization graph (controil
graph) for Sysl.

A(2-way) FORK is a one-input,  two-output cohtrol module, which issues

£

signals, one on each output, after having received a signal on

its input. =
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’ ! a (2qw@;) JOI& is-a twéJinput, one-output control module, which issues
S a signal ed its ouEPuﬁ}\aftér having received signals on both .
‘ its inputs. . .
The START-module initiates the overall operation of the system
‘by issuing a s;gnallonhitsroutppt. The overall pperation isdcompleted
’ as soon as ; signal arrives ‘on the input of the HALT~-module.
4. SYNCHRONIZATION GRAPHS v FORMAL DEFINITION )
= Thiéﬂsec;idn, whiich contains the forﬁél definition of syﬁchgoniza—
tion gragﬁ, is a'modified version of Section 2 ~of .[GI-YQ].
Definifgén: Alszpch;bﬁization gr?ph (ngfapb) is a finitep direcggd
graph. I', the ndd?s of which ‘dre partitioned into 5 types as shown. i
:FigJ‘4.l; furthexmore, I satisfiesg the follqwing%conditions: ~
! a) Muftiﬁle edge§ are pot admitted. ) -
bi‘r ;has exactly opé~ST§RT node -§ ang exaptiy one HALT mode H.
c) Every node v is‘xéachablekfrom S, ive., ,there exists_a (directed)
;ath from S té v.
« Y ay @
d} The node H is reachable. from every node v. ’
l ‘. " NODE  INDEGREE , OUTDEGREE ‘
TYPE - .
ST'ART'l ~ 0 1 o
' HALT 1 0
] FORK 1 2 .
JOIN 2 1 N
ORERATION 1 1
Figure 4.1 - Node types of S-graphs \
< - ' .



»

L )

. -

Evidently, fan S-graph canrot have self-loops (i.e. cycles of

length 1). Examples Qf S-graphs are -shown in Riq} 3.1 and Fig. 4.2.

.

Definition Let T “be an S-graph. A markihg: m, of T is a

4, .

-

function m: E » w, whére E is the edge-set of T and @ is the

-

set of nohnegative integers. A marked S-graph ‘is an ordered pair 1T ,m)

where T is an S-grdph dnd m is a marking of .T.

Y

.
‘—C'r

\ d
L] “ F
- y %
OH
(a) - (b)
‘Figure 4.2 - Examplets of S-graphs
. (a) S-graph Pl
’ (b) Srgraph F :

Let e be an edgé. of the marked S-graph (T,m). We refer to-the

v -~
* 4

integer mfe) as th® number of tokéns on e. If m(e) .> 0, we-say that e

-, - e

- is marked, Tn -the graphical representation of marked S-graphs, tokens

are indicated.by dots (¢). Fig..4.3{ShOWS examples, of marked *S—-graphs.

- "
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Definition Let (T,m) Be a marked S-graph. & pode of ‘type . OPERATION
or FORK is -enabled iff 'its inedge -is marked. A JOIN node is enabled

iff both’ its ihedges aré marked.
a

Ar node which .is enabled may fire. The fixing rules, illustrated

i Y

in Fig. 4.4, are as’ follows:
Definition ' .

;
(a) ‘The firing of a FORK node décreases the marking of its inedge
by 1 and increases the maikfng of bogﬁ its’ outedges hy 1%

2

(b) The firing-of ‘a.JOIN node decreases the markings of both “its in-
%
l‘ 4+
edges by 1, and ingcreases the marking of its outedge by 1.
{ ) :

(c¢) The firing ©f an OPERATION ndde decreases the marking of its in-

edge by 1, and increases the makking of its outedge by 1.

~
-

NGDE BEFORE FIRING AFTER FIRING

FORK ° >y
y///h \0
B Al \\
. K

&

/
; o /o .
e v
] . . -
[

JOIN

ot

L]
(-]
i o
,\ -
OPERATION, oY . ‘
‘ “ [o_ . A
» [

éﬁigure §:4 ~ ‘Examples: ¢f "firings"

e

For- example, node -J *in Fiyg, 473 {a) is ‘enabled. The firing of J

yields the marked S-graph of Fig. 4.3 (b).

-

-
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5. SYNCHRONIZATION STRUCTURES

We are interested in synchronization- graphs which correspond,

Ain a rather evident way (cf. Section 6), to task flow charts. Such

. S-graphs form a special class, called synchronization structures.

‘They ‘will be: defined in -this section (cf. [GI-YO], Section 3).

«

* Tet m and m1 be markings of the S-graph T. We write m e
to indicate that thetmarkipg m' is obtainable from the marking m by
firing node v. We writé fn - m' to state that m' 1is obtainable
from m by the successive firing of gne or more nodes of T.

)
Furthermore, we set .

m} = {n' |m=>m?} VU {m}.

We shall refer to [m] as the set of all markings reachahle from m.

A We denote by eg the outédge of the START node S, and by ey

- the inedge of the HALT: node H.

. Definition The. initial marking m_ of an S-graph I' is defined as
’foliows;

merS) =1 and mo(e) = Q for every e # e

*

g

-

A marking m of T is final iff'm(eHl > 0. We denote By M_ the set
o F

of all final markings of T. '
Definition An S-graph is terminating iff

(Vm € [mol)([m] n M, A 92),

¢
i.e. if m is reachable. from m then there exists a final marking
Y
reachable from ’m.

Definition Let T be agn S-graph and E its edge set. T is<residue-

&b

[

free iff




[
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i.e. for any final marking m reachable from m_ the marked S-graph

(T,m) contains exXagtly one token (namely on eH).

Definition An S-graph T is'well-formed-iff I is both terminating

and residue-free.

The S~-graph T dflﬁig. 4.2 (g) is well-formed, whereas the S-

1

~

.graph _F2 ofyFig.‘{zZ {b) is not terminaéing. We shall refer to well-

formed S-graphs as synchronizatipn structures or. S-structures.

Definition, An S-graph r with edge sét E ’'is safe iff

-

(Yn€lm 1) (Ve € Etmle) S 1,

I

i.e. the number of tokensg-on any edge e cannot exceed 1, under any

marking m reachable from m_ -

The following result is .an immediate consequénce of Theorem 3.1

in-[YO-GI].

Progosition Every S-structure is safe.

Fdrthermore( we have

1

Theorem 5.1 An S~draph is well-formed iff it isg cycle-free.

Praqof See proof of Theorem 3.1 ih [GI-YO].

L]

6. S-STRUCTURES AND EOSETS .

In this section we establish the relationshié between- S-structures
a;d task flow’gcharts. Task flow charts fescrxibe a partially ordered
set (ESEEEQ of subtasks, The relationship between S-structures and theirq
corresponding task flow charts is established by means of the ‘following

definitions and Theorem 6.1.

-
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Proof: See propf of Theorem 5.1 in [GI-YO].

Definition A task flow chart is a partially ordered” set of tasks.

Definition Let I be an S-stryctuye with a nonempty set I of

OPERATION nodes. With such an.Srstructure I we assaciate the poset

n

(partially ordered set) GIT) = (£,C), where [ is a partial order

’

relation on. £: x Ly holds iff 'there exists a directed'path in T’

.

from node x tq node vy, where x # y; x Ehy nolds iff x Ly or
x = y. For example; theiposep G(Fl),~défine§ by the Sestructure Pl
of Fig. 4.2(a) is shown (in the usual way of representing posets) ‘'in

Fig. 6.1\

4 a ob

cé d

- Figure 6.1 - Poset G(I'1]l for the S-strudture IR
’ of Fig. 4.2 (a). p ‘

Theorem 6.1 Let G = (£,L[) be an arbitrary, finite poset. Then

there exists an S-structyre FG. such that G = G(FG).

It i§ important to notice that the same poset G may correspond

to different S-structures. An examplé is $hpwyn in Fig. 6.2

-~

a(

‘cTU

(b) T°

EEQEngé;g,h Twa S-structures T and T' with
equal posets: G(I') = G(T').
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7. REFINEMENTS.AND.STRUCTURABILITX

In this section we formaliZe and extend the concept of "structur-

13

able", discussed informally in Section 2. <

Structured programming (ef. [DA-DI-HO], [LE-MA]) is bhased op a
suitably selected set A of control primitives. A complex program
is derived_topiéGWn, by "stepwise refinement”, involving the set A only.
The contyol primitives aré "irredugcible”, i.e. they cannot be obtained
from other primitives by refinement. All these cohcepts, related to

S-structures, wil] now be introduced in a ‘rigorous way.

-

Definitipn Let Pl and F2 be S-structures, each containing more

than aone OPERATION node, and lét a be an OPERATION ndde- of r,-

+

Assume (Zi—{ai) NI, =%, Then the fefinement T = Fl(a + P2) of T

2 1

is the S-structure T defined as indicated in- Fig. 7.%.
] d 1D

O g, tJ) s
l’r » T L
. ,\1 .| .
I T a T2
| Iy I,
OH . OH i w
e
(a) le (b) rz " * l\ x
SH

(c) Fl(a +.P2)

Figure 7.1 - Illustrating the coneept of refinement
(&) S-structure I';
(b} Ssstructure Ty
(c) Refinementr T = Tj(a « Tjp)

~

Let A be a set of S-structures; A "structuring” with respect

to A is a finite sequence of S-structures- T,ls,...,T such that
= - n



T LT Y
- X 7
' *
. . 12
'y €A and for every i, 1 5 1i < n; r =T, (a, * P(i)) where a,
- 1 ' ’ - ’ ‘i + l ',,' -i i i
* -is an OPERATION node of Pi and P(l) € A.

befinition The S:strhctp:e I" 71is A—structurgble iff there exists
a structuring Plrr2r::-nnn with respect to A, such that
G ,= G(Pn), i.e. G(P{ can-be obtained from G(Pn) by a xelabeling
of the nodes. N

A set A of S-structures ;§~primitive, iff no Pte‘ﬁ is
(A-{T'}) ~structurahle-

-Usually, -ohe considers the primitive set Ay = iPS,Pp} shown

in Fig. 7.2.

Os
A
:‘fl <
- O 2 y 3.
A \LH Jg
- Ps ) ~H
. S
T
p
Figure 7.2 - fThe -primitive sé¢t A, = {rs,rp}
-———

(&7

& »

it is easify seen that a, task flow charﬁ ean be .composed from

its elehmentary tasks by sudcessively applying the operdtors 'll' and
;' (see Section i) iff¥ the corresponding S-sstructures are .

Ag-structurable.

"

We shall now show that the S-stricture T; of Fig. 4.2(a) is T,

not Ajsr-structurédble: Indeed, assume first that, such a_ &tructuring

LTy

K 4 . P
starts with PS (¢see Fig. 7.2) and ends -with T, where G(T) = G(I';).

Then the. operation npées a,b,c,d of T must have a partition into

sad

two disjqint, subsets I;, P2 such that the nodes of ;i (i=1,2) are

i
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13
the descéendants of node i in Fé. Furthermore, every'node in Ij
must precede every node in Iy in G(T).

"But no such partition can yield exactly the above poset
G(I') = G(I'1), shown in Fig. 6,1. {For exdmple, the partition
z; = {a,b}, Zp = {c,d} yields b [ ¢, which is not the case in GKF;).)
Similarly, ,one shows Fhat the st;pctuang‘in question cannpt start'%ith Fp;
This' copfirms our claim ip Section 2, that the task flow chart of Fig.
2.2 is not structurable {(with respect té ‘'lI* and ';™).

It follows tHat A3 = {TS,FP,Pl} is a primiti;e set.
Moreover, we show inm the next section that given any finite, primitive

set A, there exist Swstructures which are not A-structurable.

8. IRREDUCIBLE S-STRUCTURES

Definition A poset G 1is reducible iff there exists an S-structure
Zeiln tlion —sgrLable
I such that G = G(I') and T can be obtained as a refinement. Qther-

wise, G 1is irreducible. An S+structure T is said to 'be irreducible

<& -

iff G(I) is irfeducible.

Thereom 8.1 The posets Ganz shown in Fig. 8.2 are irreducible
for every n 2 1. Thus the S-structures Cn of Fig. 8.1 are fYreducible,

3

for every n 2z 1.

Proof See [GI-YO], Section .8.
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14
1 , s )
"3, 4
.5 T\ ®6
4
- \l
2n-5 I‘\\l 2n-~-4
2n-3 \‘~2n~2
2n-1 @& L2n
Figure 8.1 - S-structure Cn Figure 8.2 - G(Cn)
Anothey infinite family of irrédhcibye pasets is shown in
'Fig. 8.3.
2 ;L 2n-2- 2n.
NN e A
¢ o 0 \o
A 1 3 5 2n-3 2n-1 .
Figure 8.3 - Poset "Kn
i
Indeed, we have
Theorem 8.2 The posets Kn of Fig. 8.3 are irreducible, forx every
et
n 2 1.
Thus the S-structures T n 2 1, are all irreducible. T, is

K3

KI]I

shown in Fig, 8.4.

Proof See proof of Proposition 8.1 in [GI-YO].

-
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Figure 8.4 - PK

-
o)

It follqws directly from the above definitions, that an

for any A which

irreddcible Sesstrugcture T 1s not A-structurable,
' such that G(I') = G(I'").

does, not contain an $-structure
Hence ,the following result holds.

Corollary: Given any finite set, A of S-structures, there exists
an S-structure T which ;s not’ A-structurable.
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