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" 

ON PARALLEL PROG~I~G PFIMITlyES 

.. 
M. YoeJ,.i and A. GinzDurg 

ABSTR1\~T 

Sti:1.ict:ur~d lirogramrnir1.g is nO!' widely recognized as an e~sential 
'!..... 

t90l ~or the desIgn of correct, easily understood p;~grams. A key. ~ 

issue in structur~d programming }S the suitable choice of the set of 

control structur~s 'tb be used. As far a~ structured s~quential pro~ram­

ming is concerned, important theoretical results ~re available on the 

"re.:j.ative power" Qf 'various classes of c!=mtrol structures. This paper 

discusses this '!relative power" issue for .classes of parallel controi 

structures. it establishes a mafhematically precise framework in which 

. 
all the relevant results are presented. 

... 
On~y a ~estricte~ class or.~ara11el programs is considered in this 

" ~ 

paper. These progra~S can be ~epresented by one-in, one-out 9ycle-free 

structur~s contqi~ing basic actfon.modyles und two types of cont~ol 

modul~s: 2-~ay forks and 2-way jolns. In particular, we demonstrate 

the limitations of any finite set of controi primitives: there always 

exists a para~lel program not: s~ructurable by means of the giv.en set 

,-of primitiv~s. 

.' 
• 

! '< 

" 
#~ 
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~1. INTRODUCTION 

~ Structured programming has".become ?Ii iml?ortant methodplogy for 

th~. des;i,gn of correct, ~asil~ unCi~Ji"stood c0II:lputer programs' [DJI.-OI-HO]. 

The arguments in favor of.'a ~tfuctured ,qpprdach to sequential program­

ming evid~ntly aL~o ~pply t6 parallel programmin~ and parallel 
~ 

prC?cessing. An ,important ,aspect' b.f structured p'rogramming is. the. . 
~ ~ 

~ppro~+i~te selection of,contro~"pr~mitives. This p'~per is a oontribu­

tion to~ards~a formal th~ory of' p~rallei c9rlt~ol prim.~tives. Such a 

th~qry is also appl~cpbl~ to the. structuted design of asyrichfonous 
1 

" 
control nEiJtworks (cf.f" [l)Rq"'ALT], [HE-YO),. [YOE), [CO-M.l\), [YO-GIl) '. 

2. '~ASK FLOW CH~RTS 

... 
In this qection we disc~sS in an infbrmaE way the prQplems we 
'~ . 

<, 

shal~ be conc~rneQ with in the sequel. ~~l th~ nbtiqns'mentioned in 
• 

~hi$ sectfon wil~ 'be made precise later on. 

Let us consider a Aystem,dediGateq to some overall obje9tiv~. 

SU~h a tas~ of a system can usuariy be decomposed,into several sub~qsks, 

some of which may be executible simu~taneously (in, parallel). A task 

flow c,hart [BR-YO:] indicat:es "the (partial), order, in which the subtasks 

have t~ be performed. 'We ~ssume that the overall system is initiated 

by a START-command, and that it issues a DONE-signal upon completion 

of .its overall objective. A task flow cha:r;t for some hypothetical sY,.stem 

SrSl is shown in Fig •. 2.1. A directeQ path from -TA. to TA. 'ihdicates 
. "1' ] .• 

that task TA. ~ay be started on~y after tQe completion of'taks TA ..
J 1.c' 

s
 

Leb us denote by [T.f\.l.IITA2] q task consisting of two subtasks TAl
 

and TA2 which may be executed ·in parallel. Similarly (TAl;TA2) will
 

'~ 

I 
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" 

~TART .. 
...
 

/	 '.~ 
~\i I 

Efl
 
DONE 

Fi9ur~ 2.1 - Task flow chart for nypothetical 
system SYS1. 

•	 deQote q task ,c~mpdsed of subtas~s TAl, anq TA2, to be executed s~quentially 

(TAl first). These or equivalent notions appear in many modern' program­

ming languages (cf. [WE-SM]) a$ primitive constructq. Evidently, the 
.... .. 

overall task TA of 'SYSl may be representee} in a structured form as 

follows: 
" 

TA == (TAl; [(TA2;TA3) II TA4J ;TA5).	 (~ .1)e 

t' 

Con$ider how'the overall task represented by the task flow chart.	 , 

of Fig. 2.2. It will.pe snown later (see se9tion 7) t~at this task can­

not be "structured" in a form simi lar to- (2.,1') above,> without in'troduc­

ing additional constraints. Thus, 'the above two control primiti'ves 

"(, II and ; ) are not powerful enpugh, for the ,structuring o~ arbitrary 

composite ta:,:;ks. 

~. 

& 
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START

1 
j/~ 

" 

... 

,~ .r T~ll 
I TAJ C [-'--'

~/~I 

'" 

:I 
DONE 

Fig4re 2.4 
I 

- A 'tas~ tlow cha+t qP~ 
by. '~Il' and 'l'·' 

structvraple 

W\=l are thus confronted with the· problem .qf' spitp.bly ~e;t.ectil'lg. . , 
addit~Qnal contrqI primitives:aDd of de~erminlpg?the in~reased 'str4Gtur­

I 

~ .. .' 
;", 

" 

,lng power obtai'ned..Alth,ough, this probl,em i,s, no doubt, of interest, 
<' 

it. seeIt\p that i·t. has.'Dot received suitable a.J;tention i-n t1)e ;Literature.. 
"; , 

On the ~f.per ,hCJ,nQ, the corresponding prob.l~m, r~~at~d tq structured 

sequential ~rog!amming ~as been inves~igated ~~~en$ivel¥ (cf. [LE,~]). 

~ 

~s to structured'~arallel Prpcessing, various s~ts of' control ~rimi~iveq 

h~v~ been proposed [~RU-ALT], [KEL] , [YOE] , [VA~], [~I], without, 

hbwever, investi~ating the limits of their· structurlng powe~. 

In Sections 4T8 we oev.elop a,f6r~a~ t1)eory wpich will enable us 

" 

to d~al 

pt~cise 

w~th 

wa~. 

th~ abov~ problem of structureo ~arallel pro~essin9 in a 
~ 

;n bur formal theory th~ concept o~ synchroni~ation gra~h 

, plays '~n 

se,ctio~ . 

imR~rt.ant ro+e~ Thi~ concept is int+oducep in the following 

l. 
1" 

.' 

... JI" 
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3. SYNCifRONIZATION GRAPHS INFORMAL INTRODUCTION 

• The control part of SYS1 '(see ~~g. 2.1) may De implemented as • 

shown b~ the 'control (or. synchronization) graph ot Fig. 3.1. A node 

labeled TAi represents the task module e~ecutin~ task TAi · .The iriedge 

(outedge) of this node repFesents th~ cqntrol input (output) of the 

corresponding module. Any task module operqtes asynchr8nously: it 
" ¥ 

starts its op~ration as soon asa signal .~start command) arrives on 

its control input. Upon completion of the operation, th~.module issues 
.' 

a (completion) signal on its- control output. 

Nodes others than thos~ labeled TAi <represen~ ~ontrol modules. 

oSTART 

v 

., r'
J

VFORK 

TA2 \ 
~ 

/

1 jVTA4 
TA30 • 

~.'

t'N• 
-JTA5 

1" 
0HALT 

~ 

Figur~ 3.1 - Synchronization graph (control 
graph) fo~ SYS1 • 

...'
 
A(2-way) FORK :j,.s a one-input,- two-output control module, which issues
 

" 
signals, one on each output, after having received a signal on 

..; 
." 

its input. 
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5 

;; ... 
A (2~W9Y) JO~N is, a 

" 

two~input, one-output control module, which issues 

~ a signal prl i t$ OUtput'", aft~r 
~ :z ... 

having recelved i?fg~al$ 
~ 

on botIi' . 

"its i;nputs. 

The S1'AR1:-module iniHatli!s. the overall opetatj.on or th~ £y,stelll'?
-. 

<'­
'py issuing a sAgnal. OJ) il:s. outp~t. The ove:r;aU pp.eratio.n is'comp~eted 

as soon as a signal arrives 'on the input of the HALT-module . 

4. ~YNCHRONIZATION GRAPH~ 
" 

T FORMAL DEFINr.T~ON 

.. 

Thissec~idn, . wh~cQ conuains the formal definition of synchroniza­• I •. 

tion gra!?h, '.i,~ 
r 

a- I{IQd.:j.f.i~d version pf Section 2 :of ,JG.I-YQ] . 

pefi,nition:
ill j 

k-.sxnchroriizptiOIl 9+aph 
.. ; ~ 

(Srgrapp) 
j 

is a finlt~,. d,{rec~f1d 
'" 

g~aph. f J tqe nod~s of which 'ar~ pa~titioned into 5 ~ypes ~s sbo~. in 

,Fi~~ '4.1; furthermore, .f ~a~iSfie~ 
~ 

the foll~wiqg condItions: 

! 

.. 

4-" iT '\ 01'... ....

q) M~lelple edge~ ar~ pot admitted. 
;~ 

b~ T :'haEi ,~xac.tly op~. STf\RT noqe·~ anq exa,ctiy one HALT node ,H. 
" 

c) E,very nope v is ~eacQatle .#rom s, i~e., ,there ex~sts a (directed~ 

path froI{l S to v. 
" " 

d} Tpe node R iEi reaohabl~ frO~ every node 
~ \ t f{ 

, 
" " 

~ODE .INDEGREE , OUTPEGREE .; 
TYP~ 

... ' .'1:0. 

ST~~T ". 0 1 
~ • 

~~T 1 0 -
FORK 1 2 

v. 
i' 

~ 

" 

.' 

... 
JOIN 

OPERATION 

2 

;L 

1 

1 

'r­

.. .... 

Figure .4:1 
t i 

!!ol.' 

- Node types of S-graphEi 

.' ,­

, 

...
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'''If 

.'fF~~ . 
•

F2q~ 

6 

..,
:;r' 

Evident!y, ~n S-graph c~nrtot ~av~ ~el~~loopp (i.e~ cycles of 

.. length I). Examples Qf .S-graphs,are ~hown i~ Fig: 3.1 and Fig. 4.2 . 
..,. ~ '. " ~'" ...., 

~ 

Definition Let 'r'sbe an S-g*ap9. A marki"ng' m. €)f f' is a 
~" ~ ~ 

<. 

function m~ E ~ w, where E is the edge~s~t of f and w is the 

set of:~ohnegativ& integers. A marked S-graph 'is an ordered palr 1f,m) 

wh~re f ,is an S-graph and .m is a ma~k~g of ,T. 

) 

.I' , :i'S 
<'t 

,;. ' ..' .Fl 

-r "(1b 

" ,>0') J :JllrU·J2I . ~.

I),a' 
l 

c~/~ 
'~J~ " 'IF:r \­.p ;; 

UH' OR 

(a) '. (b) 

1..... 

-Figure 4.,2 - E~ample'S of S-grapqs• ;,. 

(a) S-g~~ph' r\ 
(b) 's"-gr9-ph T2 

o , 

Let e be an e~ge.Df the marked S-graph (f,m). ,We n~fer to' the 
;'" 

~ 

f 
". 

integer m.<e> as th~ number o:t:' tokens. ~::m ~. If m(e) .> 0-, ''!le'sa,y that e 
"', "" 

.~ is ,1,1la,:t~edf In.ih~ grap~ica~ representatiQ~ of ~arked , S-gfaphs, tokens 

are indiqated:'\:>y dots (~). Fig., 4. 3"shows examples..of mar.ke9"S'-g:r;a~hs. ." 

, • l:S 
;,1 

,'r) ,~ 
,/~. 'F 

.i~ \ " ( 
a :)" .~, a~'i,. Jb 

\.. ,)~ b' , \i:~ 

• 

/ 

." 
~. " j:o... 

(il) (b)
,.J~H " 

~igure 4.3 ~ Examples of ~?rked ~-graphs' 

" 
-.-....... ..
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" 'f , 
.•' Defini~lon Let­ (r ,m) De a mark~d -S-.graBh. 1\ pode ·6f typ~. OPERATION 

• 
or FORK is -enabled iff 'i~~ ineqge'is marked. ~ JOI~ node is enabled 

iff both' its ipe~ges, are ma~kep. ' 
" 

'" Aw I?od~ which "i& enabled .maY fire. T{le fi;r:;-ing, rules, illustr9-:t;:ed 
~. 

in Fig, 4.4, are as' tollows~ 

T 

Defini tioA g " 
... 

r 

(a) 'The firing of a , FORK node decreases the marking'qf its inedge, 

by 1 and increa~es the marking bf bo't;h itS;' outedges by 1':, 

(b) The firing. of 'a..JOt!'J node de.creages the markitlgs of both <i ts , -
in­

" ~ 
edges by .~, 

~ . 
an~ inpreases the marking of its outedge by 1. 

II Jl •. . 
(c) The firing of. an- OPERATIO~ node d~crea~es th~ marking of its jn­

, 

edge by i, ~nd ~ncrease~ the ma~king of its out~dg~ by 1 • 
.~ 

NODE BEFORE F~~ING 'AFTER F*R.ING .. 
~ • 

• <' 

FORK 
'1=!{,.

.-< \\ , . 
" 

" , 1­
... 

o;/.J~ 
/ Q,

,; " . ' "'" 

..... 

aopJ. 

\;:'
J ' . ~! 

1: 

" 

". 

., 

\ 
" 

I: 

I 

~ 

", 

\' 

OPE~TION, . 
1: 
I­

~ 

, 
," 

" 

1· 
I:, 

.. 

.F:\9Ure ,4.4 - 'Examples- 9f "firi~gs" 
;. 

~ 

For' example, node'J~n Fl~; 4.3 (a) is ftnabled. The firing of J 

yields the marked S-grapp of 'Fig. 4.3 (bf. 

'.." 

£' 

" 

-, -" 
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... 
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• 

i' 

~ 

5 • SYNCHRONIZATION STRUCTU~S
 

We a~e interested in synchronizatio~graphs which correspond,
 

,~n a rather evident Wqy (cf. Sec~ion 6), ~o task f~ow charts. Such
 

S-grapns form a special ~lpss, c~lled ,synchronization structures.
 
'. 

'They 'w111 be' defined in ,this section (cf. [GI-YO], Section 3).
 

):,et In and m\ be markings of the S-graph f. We wri te m X mL
. . 
to indicate that the marki~g m' is obtainabl~ from the mafking m by
 

'firing node v. We write ~ ~ mt to qtate that m' is obtainable
 

from m by the success±v~ ~iring of qne 9r more nodes of f.
 

E.'ul;"therm6re" -w~ !?et "
 

[m) ='{m' Im~m'} W {mL
 

We shall refer to em] as the set of' al~ ~arkings reachaqle frqm m.
 

We denote by es ~he .outedge 9f ~he STAET ~ode S, and by 'e

H 

• tne in~dg~ of the H~T~noqe H. 

.' 
Definition The initial marking m of an S-gr~ph f is defined as , o 

'!ol-loWq;
 

m ~e ) = 1 .arid m (e) = a for every e "I- e .
 
0' S o s~ 

Definition An S-gFaph is terminating iff
 

( V m E [mo)) ((m] n M "1-. ~) ,

F 

i.e. if m is reachable. from m , then there exists a final markingo '
 

rea6hable 'from 'm.
 

1:- Defini ~i0f! Let f· be q.n S-graph and E its edge set. r is<+.esidue­

free iff .' 
( V:m Elmo]) rm 'E 

L 
~+ I 

eEE 
m(e) =llJ 

...""' .. 
..'~ 

~ 
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...1" "I:: 
; 

~. 

i.e. tor' any finql marking m reachable from m , 
o 

the marked S-graph 

• (r~m) contains exa~tly one token (namely on eH) . 

" 
D~finiti~n., An S-gra~h r is'well-formed·1ff r ~s b9th terminating 

" and residue-free. 

The s-,graph fJ. di ',Fig. 4.2 (a,) .is weJ.l-torm~d, whereas tne S­ .. 
~ 

,graph .r2 of ,Fig. ,4;.2 {p} is not! terI;linating. We shall refer to well ­

fo~ed p-gra~hs as syn~hrorii~atipn SLructu~es or, S-structures. . , . 

I?ef;i.ni,tiort, An' S,-graph r wit;,h edge set ,E 'ts saLe iff 
, 

('Vrri E [m ]) (V e 
• ,0" 

£ E)m(e} :s;;:; 1, 
,­

.of" 

i.e. the n~er of token~-on any' edge ~ cannot exc~ed 1, und~r any 

markin~ m reachable from m • 
o 

Tbe following resul~ is ,an immediate consequenc~ of Theorem 3.1 
, .....,l' 

,.. in ' [Yo-s:;rl . 
~ 

~rogo~ition Every S-~tructure is safe. 
" 

a 

Furthermore~. .. . 
we have 

'I 

Theorem 5.1 ~ S~gr~~h is ~ell-formed iff i~ i~ Gycle~free. 
, ;:a 

Proof-- ­ See proof of Theorem 3. 1 in' [GI- YO] . 

.. 

6 • S-STRUC1't,JRES jillD P.pSETS
.' 

In this sectlon we establish the relationship between'S-structures.' 
and tas~ flow",pharts. TaSK- flow charts .tlesc.:dbe ~ parti,'ally ord~red' 

i 
set (poset) 

I 
of suptasks. The relationship be~ween S-structures aqd their 

corresponding task flow Qharts is estabiished by means of the rollqwing 
~..., 

~ 

.;, def\n~tions and'Theorem 6.1. 

-
 .~-
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~ 

lq 

Definition A task flow chqrt is a partially ordered" set of t~~k~. 

• 
Definition Let I' be Dn S-str~c~u+e with a nonempty set E of 

9PERATION nodes. Wi'th such an .S,...structute I' we. ass.Qci~i.te the poset. 
... 
" 

(partially ordered .;:;et) GU)" = (·r, ~), w):lere C is a, partial orde:l" 

rel-ation Ol1l. '~: x'C Y holds ~ff ·thl~re ex"ists a directed 'path ,in'r 

from node x to .,node y," -where' x .:1-- y; x ~'y h~lds i:f;f x t y or 

• 
x ~ y~ For example; the 'pose~ Q(r ), -de;ine? py the s~st~cture 1'1l 

of. -Fig. 4.2(a) is shown (in ·the usual 
~ 

way of representing 
~ 

posets) 'in . ­,,' 
Fig. 6. h 

.. :N:·
 
.' Jiligure 6-.1 - Poset G(I'll fbr the S-stru<1ture f i'" , 

~ 

. of..Fig. 4.2 (.a) • 

Theorem 6.1 Let G = (~,~.'> be an ~rbit.ra.r:y, Hnite l"loset. Then 

.. 
there exists an S-structure f~, sUyh thqt ·G = G(l' )., ., u G 

proof: See pro9f of Thebrem 5.1 in [GI~YO].---- ' 

It is i~portant to notice, that the same poset G may c~r~espond 

to di~ferent S-structures. An ex~ple is shp~n in Fig. 6.2 
" 

. 

i\ 
":>­.~: 

~ 

"

f 
a:/ \Ob 

:

I \ jbF\ ~,)J 

'cuc~{ '\. ,. 
'" 

... 
~ 

. OH 0 H
(a)' r (b) 'f" 

figure 6.2 ~ T,wo S-structures f and ·f' with 
, . equal ,rosets; G(I') = G-(f' ') . Technion - Computer Science Department - Technical Report  CS0351 - 1985



~ f< _ .. ~ ,.. 
.t 

...; ~~ 

;Ll'" 

~. 

.. " 

7. REFINEMENTS. AND .STRUCTUMB1LITY, 

... In th~s sect~on we formatize and extend'the concept of "structur­

able", discussed informally in 'Section 2. 

Str\Ictured programming (cf. lDA-DI·-HO], [LE-MA]) is based on- a 

suitably serect~d set A of control primitives. A complex program 

is derived. top-~own, by "~tepwis~. refinement", involving the ~et:' f:.. only. 

The contfol primitives are "i.rredu9ible", :j..·.e. they cannQt be ol;>tai'ned 

from other ~rimit~ves by refinement. All' ~pes~ cohcept~, related co 

S-st~ct.ures, wilt now be introduced- in q 'rigorous ~ay. 

Definitipn Let f l and f 2 be S-struc~ures, eash con~aini~g more 

th~ one OP~RATION pode, and let a be an OPERATION node'Qf f ,
l• 

A~sume (~~-{a~) n ~2 '=~. rhen the tefinement f = f l (a + f ) of f2 l 

~s ~h~ S-struc~ure f defined as indicated tn, Fig. 7.1. 
-. ... 4. G' 

r ~ 
Us 

L] 
S 

... 
I 

I.~. 
"1

I r ,..2 

• 

r; IJa 
• I .' f, I [ 
I 
, .'If·," ."1 I" 

T
1 

DH , OH 

(a) r'l '(b-) 1: 
,2.

'" -i 
'J H 

(c) f} (a -+- .f )
2 

Figure 7.1 - Il}ustrating 
~ 

the con€ept of refinemenf 
i 

( ct) 5-.s tructure f 1 
~ (b) S~structu~e .fi ~ 

(c) ~ef~emen~ r = fl(a + f2) 

.. 
Let fj be a set of S-structures;, A "structur.ing" with respect 

to f:.. is a finite sequence of S-st:ructures, fl,f2"" ,f such that 
n 

::.... ~ 
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'. 
12 

t..'1o' 

• 

rl E 6 and for ev~ry i/' 1 

'is an OPERATION node of f.
1 

~ i < 

and 

n , 

f(i} 

f. I 
'1+ 

E 6 . 
• 

= 
,
f. (a. ,(­

·•..1 1 

(i)r .) where a . 
,1 

Definition ., The s':structJl:(,e 

a st:ructuring fl If21 ~." I.I: n 

1 i's 6-structurable iff there exists 
~ 

0, 

wi.th respect to 6,. such that 

G1n ... ; G(f ) I 
n 

Le. G(r)' can'be obtained f~om G(f )
n 

by' a "relabeling 

of the nodes. 

A set 6 o£ &-stru~tur~s i~.primrtive, iff no f E 8 is 

(6-{r}) -s'tructm:4l.e'., 

'Usu~ll~, 'one GonSlders xhe primitive 
" 

in Fig. 7.2. 

s~t 62 {f ,f}. s p shown 

I,", 

i. 

} .. 

'. 

OS 

'1'-02 

L 
P 

~, 

~ 

.' ...' 

3 
.,' 

~. Fi­ o­

f 
.JH 

f 
P 

..... 

~t 

Figure- 7.2 -
i 

The'primitive set~2 = 

!I''' 
'" 

{f ,f} 
s P 

is easii~ seen that a. tas~ flow chart ean be .composed from 

its elementary tasks by <sl.1~cesEjiveIY applying the operGitors 
.. ,­ 1 II 

'II' and 

';' (see S~ctipn 2~ 

ll.2-structurab,le. 

i~f the correspondin~ 

" 

S,structutes 
" 

are ~. 

We shall now show that the S-structure fl of Fig. 4.2'(a) is 
,~ 

: 
not 6~7structurable: In~eed, 

starts wrth 
,'<

f (see Fig~ 7.2)s.. 

assume first that. such ~ 

." 
and ends 'with r , where 

structuring 

G(f) =G(fl)' 

­. Then the,oper~tion npdes a/b/c~d of J must have a.partition into 

two disjqin~ subsets tIl ~2 such tha'E the nodes of L. (i = 1 ,2) are . 1 . 

" 
'fir"· 

.". 

,; " :-. 
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the descendants of. node i in r '. Furthermore, ever? node in [1 
s 

• must precede every node in [2 in G{f) . 

"But no suc!) partiti'o~ "can yield exact,ly the above poset 

G(f) = G{f1), shown in Fig. 6.1. ~For example, the partition 

[1 = {a,b}, [2 = {c,d} yl~lds b C c, whicb is not the cas~ in ~(f}).) 

~ '. 
Sim~larly, ."one shows that the st!~ctu,r;'Lng in question cannpt start '~i th fp' 

This' coptirms our claim ip ~ection 2, that the task flow chart o( Fig. 

2.2 is not structura1:;>le (with ~espect to 'II' and "~i"~). 

It follows tnat 63 = 0' ,f ,f1}s p 
is a primitive se~. 

Moreover, we show in the next sect~ori that ~ivert aDY finite, p+imitive 

set ~, there exist S7structures which are no~ 6-structurable. 

8. IRREDU~IBLE S-STRUCTURES 

Definition A poset G is reducible iff there e~ists an S-structur~ 

f such th"at G' = G(f) and f can be obtained as a refinem.ent. Qther­

i 
wiqe, G i~ irreducible. An S~stru~ture f is said to 'be irreducible 

" 
~ff G{f) is irteQucible. 

Th,ereorn "S. 1 . ' 
~he posets GJCnl shown in Fig. ~.2 are irrgducibl~ 

for every ~ 

~or every n 

froof See 

~ 1. 

3 1. 

Thus the S-structures 

[~I-YO], Section.S. 

C n of Fig. 8.1 are i~reducible, . 

f 

'. 

­.
 
" 

.;~ 

_________________________tr! 
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.~ 

." 
.~... 

" 

¥s 
• '\j,~ 

F1-=J"J.3f 4 
F '.->, )l y

J.' J. 

,. '3. 4 

, 5 6Ft } 
2n-3. '...J

'. 
"J 

Fl' ~ 

211-'5 l ~ 2n-4 
I ~I 

2n-3~~.'2n-2 

2n-l ~, ~ 2n 
.,) ,R 

Figure 8.1 - S-structure C Figuie 8_2 - G(C )
n n ... 

~nother infillite ~amily of irreducibf.~ pQsets is shown in 

'Fi9. 8.3. 

2 4 2n-2' 2n 

/\,/9\0 0/""0./'
• Q • 
1 3 2n-3 2n;-1

.' • • 5
 

Figure 8 :3. - Poset X
 
Jl 

Indeed, we have
I 

Theorem 8.2 The pO~Eilts K of ~ig. 8.3.are irreducible, for every 
\ I; n 

n ~ 1. 

; 
Thus the ,S-structures r~, n ~ ~, are all irreducible. r is

K3 

shQwn in Fig. 8.4. 
~ 

~ 

Proof 
~ 

See p;ro9f of Proposit.ion 8~1 in [GI-YO]., 

... 
-. 

'"'\
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CIs 
I 

}~ 

/~ 
/ I.,:) F 

r I . '\.2 
.j j \, 
{2 6;r 4 i 

I\/~/j J 1T ~;;2 

V
 3
 5 

3 \ 

"\s.. ,rJ 4 

JH 

.. 
Figure 8.4 - f 

K.., 
.J 

It foll9wS directly from the above definitions, that an 

irreducible S-;-stru9ture f is not l',·-stp.j.cturable, for any l', which 

does. not contain an S-structure f' such that G(f> ; G(f'). 

Hence ~he fol~awipg result holds. 

Corollary: Given allY fini t'e' sat. l', of S·:'structures, there exists 

ap S-~t~ucture f which is not l',~st!dcturable. 

.~ 

" 

1" 

~.
 

...... 
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