ON CYCLIC MDS CODES OF LENGTH q
OVER $GF(q)$

by

Ron M. Roth* and Gadiel Seroussi**

Technical Report #344

October 1984

* Dept. of Electrical Eng., Technion, Israel Institute of Technology Haifa 32000-Israel.

** Dept. of Computer Science, Technion, Israel Institute of Technology Haifa,32000 - Israel.
On cyclic MDS codes of length q over $GF(q)$

Ron M. Roth*

and Gadiel Seroussi**

ABSTRACT

It is shown that a cyclic code C of length q over $GF(q)$ is MDS if and only if either i) q is a prime, in which case C is equivalent, up to a coordinate permutation, to an extended Reed-Solomon code, or ii) C is a trivial code of dimension $k \in \{1, q-1, q\}$. Hence, there exists a non-trivial cyclic extended Reed-Solomon code of length q over $GF(q)$ if and only if q is a prime.

* Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000 - Israel.
** Department of Computer Science, Technion, Israel Institute of Technology, Haifa 32000 - Israel.
I. Statement of results

An \((n,k,d)\) linear code \(C\) over a finite field \(F=GF(q)\) is maximum distance separable (in short, MDS) if \(d=n-k+1\). MDS codes are optimal in the sense that they achieve the maximum possible minimum distance for given length and dimension.

Let \(\alpha\) be a primitive element of \(GF(q)\). The \((q-1,k,q-k)\) Reed-Solomon code (in short, RS code) over \(GF(q)\) is the cyclic code generated by \(g(x) = \prod_{i=1}^{q-1} (x-\alpha^i)\).\footnote{Actually, we are dealing with narrow sense RS codes, which are the most commonly studied. In general, the roots of the code are defined to be \(\alpha^b, \alpha^{b+1}, \ldots, \alpha^{b+q-2+b}\), for some integer \(b\). In our case, \(b=1\).}

The \((q;k,q-k+1)\) extended RS code is obtained from the RS code by adding an overall parity check digit. The generator matrix of the extended code is

\[
G = \begin{bmatrix}
1 & 1 & 1 & \ldots & 1 & 1 \\
1 & \alpha & \alpha^2 & \ldots & \alpha^{q-2} & 0 \\
1 & \alpha^2 & \alpha^4 & \ldots & \alpha^{(q-2)2} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \alpha^{b-1} & \alpha^{2(b-1)} & \ldots & \alpha^{(q-2)(b-1)} & 0
\end{bmatrix}
\]

RS codes and extended RS codes are well known to be MDS. An extensive treatment of RS codes, and of MDS codes in general, can be found in [1, chs. 10 and 11].

Two linear codes are said to be equivalent if one is obtained from the other by a permutation of coordinates. In this note, we characterize all cyclic MDS codes of length \(q\) over \(GF(q)\). The results are summarized in the following theorem and corollary:

Theorem 1: Let \(C\) be a cyclic code of length \(q\) over \(F=GF(q)\). Then,

(i) If \(q\) is a prime, then \(C\) is equivalent to an extended RS code, and hence, it is MDS.

(ii) If \(q=p^m\) for some prime \(p\) and integer \(m>1\), then \(C\) is MDS if and only if \(C\) is one of the following trivial codes: the \((q,1,q)\) repetition code, the \((q,q-1,2)\) single-parity-check code, or the \((q,q,1)\) entire vector space \(F^q\).
Corollary 1: The extended Reed-Solomon code of length q and dimension $2 \leq k \leq q - 2$ over $GF(q)$ is equivalent to a cyclic code if and only if q is prime.

The fact that all cyclic codes of prime length p over $GF(p)$ are MDS had already been established by Assmus and Mattson in [2]. Here we identify those codes with extended RS codes of prime length, and we show that no other non-trivial extended RS codes can be cyclic.

II. Proofs

Proof of Theorem 1: Let C be a cyclic (q,k,d) code over $GF(q)$. Then C has a generator polynomial $g(x)$ of degree $q - k$, which satisfies [1, ch. 7]

$$g(x) \mid x^q - 1.$$
Since raising to the q-th power is a linear operation in $GF(q)$, we have

$$x^q - 1 = (x - 1)^q.$$
Hence, we must have

$$g(x) = (x - 1)^q - k.$$
Assume $q = p^m$ for some prime p and integer $m \geq 1$. We distinguish now between the cases $m = 1$ and $m > 1$, giving, respectively, parts (i) and (ii) of the theorem.

Part (i): $m = 1$. Consider the polynomials

$$f_i(x) = \sum_{j=0}^{q-1} f^j x^j, \quad 0 \leq i \leq q - 1.$$
(Arithmetic is carried out modulo the prime q, and we define $0^0 = 1$). We claim that $f_i(x)$ is divisible by $(x - 1)^{q - i}$, $0 \leq i \leq q - 1$, and therefore, the vectors representing the polynomials $f_0(x), f_1(x), \ldots, f_{q-1}(x)$, are in C. We prove the claim by induction on i. For $i = 0$, we have

$$f_0(x) = \sum_{j=0}^{q-1} f^j x^j = \frac{x^q - 1}{x - 1} = (x - 1)^{q - 1}.$$
For $1 \leq i \leq q - 1$, assume $(x - 1)^{q - i} \mid f_{i-1}(x)$. Then, the formal derivative ([1, p. 98]) $f_{i-1}'(x)$ of $f_{i-1}(x)$ satisfies $(x - 1)^{q - i} \mid f_{i-1}'(x)$. But

$$f_{i-1}'(x) = \sum_{j=0}^{q-1} f^j x^j \cdot f_{i-1}(x) = \sum_{j=0}^{q-1} f^j x^{j-1}.$$
Hence, $f_i(x) = x f_{i-1}'(x)$, and thus, $(x - 1)^{q - i} \mid f_i(x)$. This completes the proof of
the claim. Let \tilde{G} denote the $k \times q$ matrix whose rows are the vector representations of the polynomials $f_0(x), f_1(x), \ldots, f_{k-1}(x)$. Then,

$$
\tilde{G} = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & \cdots & q-1 \\
0 & 1^2 & 2^2 & \cdots & (q-1)^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1^{k-1} & 2^{k-1} & \cdots & (q-1)^{k-1}
\end{bmatrix}
$$

Since the first k columns of \tilde{G} form a Vandermonde matrix, \tilde{G} has dimension k, and, thus, it can be used as a generator matrix for C. Now, since α is a primitive element of $GF(q)$, the columns of \tilde{G} are the same, up to ordering, as the columns of the matrix G defined in Section I. Therefore, C is equivalent to the $(q, k, q-k+1)$ extended RS code generated by G.

Part (ii): $m > 1$. Let $r = q-k$. Then, $g(x) = (x-1)^r$. If $r < p^m-1$, then C includes the codeword (in polynomial representation)

$$
c(x) = (x-1)^{p^m-1} = x^{p^m-1} - 1,
$$
of weight 2. Hence, the minimum distance of the code satisfies $d \leq 2$. If $d = 2$, then to satisfy the MDS requirement we must have $k = q - 1$, which implies that $g(x) = x - 1$, and that C is the single-parity-check code. If $d = 1$, then $k = q$, and C is the entire space F^q.

Consider now the case where $p^m-1 < r < p^m - 1$. Clearly, a necessary condition for C to be MDS is that all $r + 1$ coefficients of $g(x)$ be nonzero. In particular, one of the coefficients is $(x - 1)^{r} mod p$, which is nonzero if and only if $r = -1 mod p$. Hence, $r = ps - 1$ for some integer $1 < s < p^m - 1$. If $s < p^m - 1$, one of the codewords is $(x-1)^{ps} = (x^{p^m} - 1)^s$, whose weight is at most $s + 1$. But $s + 1 < ps = r + 1$, and, thus, C is not MDS in this case. It only remains to consider the case $s = p^m - 1$, which gives $r = p^m - 1 = q - 1$. This corresponds to the code generated by

$$
(x - 1)^{q-1} = \frac{(x - 1)^q}{x - 1} = \frac{x^q - 1}{x - 1} = \sum_{j=0}^{q-1} x^j.
$$
which is the \((q,1,q)\) repetition code.

Q.E.D.

Proof of Corollary 1: If \(q\) is prime, then, by part (i) of Theorem 1, the \((q,k,q-k+1)\) extended RS code is equivalent to the cyclic code generated by \((x-1)^{q-k}\). If \(q\) is not prime, then, by part (ii) of Theorem 1, there are no cyclic MDS codes of length \(q\) and dimension \(2\leq k \leq q-2\). Hence, since the extended RS code is always MDS, there are no cyclic extended RS codes with those parameters.

Q.E.D.

REFERENCES
