THE CYCLE LEMMA AND SOME APPLICATIONS

by

Nachum Dershowitz* and Shmuel Zaks

Technical Report #238

April 1982
ABSTRACT

Two proofs of a frequently rediscovered combinatorial lemma are presented: Using the lemma it is shown that the number of ordered trees with \(n \) nodes of degree \(j \), \(0 \leq j \leq d \), no restrictions on nodes of degree greater than \(d \), and a total of \(n \) nodes is

\[
\frac{1}{n} \binom{n-e-d(n-m)\cdot 2}{n-m-1, n_o, \ldots, n_d, n-m},
\]

where \(m = \sum n_j \leq n-1 \) and \(e = \sum jn_j \). In the case when \(m = \sum n_j = n \) the number of these trees is known to be

\[
\frac{1}{n} \binom{n}{n_o, \ldots, n_d}.
\]

Additional illustrations of the use of the lemma are given.
THE CYCLE LEMMA

A sequence \(p_1 p_2 \ldots p_k \) of boxes and circles is called k-dominating if for every position \(i, 1 \leq i \leq k \), the number of boxes in \(p_1 p_2 \ldots p_k \) is more than \(k \) times the number of circles (\(k \) is a positive integer). For example, the sequence \(\square\square\square\square\circ\circ\circ\circ \) is 2-dominating; the sequence \(\square\square\square\square\circ\circ\circ\circ \) is 1-dominating (or just dominating) but not 2-dominating; the sequences \(\circ\circ\circ\circ\circ\circ\circ\circ \) and \(\square\square\circ\circ\circ\circ\circ\circ\circ \) are not even 1-dominating.

The following lemma has been rediscovered many times. Though it is not difficult to prove, it is a powerful tool in enumeration arguments.

Cycle Lemma (Dvoretzky and Motzkin [1947]): For any sequence \(p_1 p_2 \ldots p_{m+n} \) of \(m \) boxes and \(n \) circles, \(m \geq k n \), there exist exactly \(m-n \) cyclic permutations \(p_1 p_{j+1} \ldots p_{m+n} p_1 \ldots p_{j-1} \) for \(1 \leq j \leq m+n \), that are \(k \)-dominating.

For example, of the nine cyclic permutations of the sequence \(\square\square\square\square\square\circ\circ\circ \) of six boxes and three circles, only three are dominating: \(\square\square\square\square\square\circ\circ\circ \), \(\square\square\square\square\circ\circ\circ\circ \), and \(\square\square\square\circ\circ\circ\circ\circ \). None are 2-dominating. As a special case of this lemma, if \(m=n+1 \), then there is a unique dominating permutation.

First Proof: For the first proof of the lemma, arrange the \(m+n \) figures on a cycle. Removing a subsequence of \(k \) boxes followed by one circle from the cycle does not change the number of \(k \)-dominating permutations, since those \(k+1 \) figures have no net effect and no \(k \)-
must be such a subsequence on the cycle; these subsequences are removed one-by-one until only boxes remain. The remaining \(m-kn \) boxes yield \(m-kn' \) \(k \)-dominating cyclic permutations.

Example: We consider the sequence \(\bigcirc \square \square \square \bigcirc \bigcirc \square \), with \(k = 1 \), and start by placing it on a cycle. After three removal steps we are left with three boxes, that correspond to the starting points of the three dominating cyclic permutations \(\square \bigcirc \bigcirc \bigcirc \square \), \(\square \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \square \), and \(\square \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \square \) (see Figure 1).

Second Proof: Another simple proof is the following: Given a sequence of figures, construct a "mountain range". Begin to the left at "sea level", slope upwards one unit for each box and slope downwards \(k \) units for each circle. The resultant range extends \(m+n \) units to the right and \(m-kn \) units above sea level.

By cyclically permuting the sequence, the origin is moved to a different point along the range. A \(k \)-dominating sequence corresponds to vertices immediately below the origin.
equally low (or lower) valley to its right — otherwise, that valley would end up at (or below) sea-level, and (2) which is less than \(m-\text{kn} \) units above the deepest valley — otherwise, that valley would descend to (or past) sea-level. Any point that was to the right of the new origin was higher and is therefore above sea-level now; any point that was to its left was less than \(m-\text{kn} \) units lower and is therefore above sea-level now.

Clearly, there are exactly \(m-\text{kn} \) such points to choose a valid origin from.

Example: We consider the sequence 0 1 0 0 2 0 0, with \(k = 2 \), and start by constructing the corresponding "mountain-range", as described above. The two numbered points in that range (see Figure 2) correspond to the starting points of the two 2-dominating cyclic permutations 0 0 2 1 0 0 1 0, and 0 0 0 0 0 0 0 0.

![Diagram](attachment:image.png)
Other Proofs: Other proofs of varying degree of generality may be found in Dvoretzky and Motzkin [1947] (this paper is discussed in Grossman [1950]), Motzkin [1948] (two proofs), Hall [1958], Ramey [1960], Yaglom and Yaglom [1964], Takacs [1967], Silberger [1969], Bergman [1978] (three proofs), Sands [1978], and Singmaster [1978].

(The first paper is not credited by the other authors, but is referenced by Barton and Maliovs [1965] and Mohanty [1979]). Dvoretzky and Motzkin [1947], Motzkin [1948], and Yaglom and Yaglom [1964] give the lemma in its general form; the others prove only the case \(k = 1 \) or \(m kn = 1 \). Our first proof is a generalization of Silberger's, one of Bergman's, and Singmaster's; our second proof resembles Grossman's and Yaglom and Yaglom's.
APPLICATIONS

Pattern Matching

A sequence \(x_0 x_1 \ldots x_n \) of \(n+1 \) nonnegative integers is called subordinating if the sum of all the \(x_j \) is \(n \) and the partial sums \(\sum_{j=0}^i x_j \) are not greater than \(i \), for all \(i \) \((0 \leq i \leq n)\). A pattern \(p_1 p_2 \ldots p_m \) of \(m \) distinct integers is said to occur in a sequence \(x \) if the \(p_i \)'s all appear within \(x \) in any order. Using the Cycle Lemma, we can show that the total number of occurrences of such a pattern in the set of subordinating sequences of \(n+1 \) integers (there may be more than one occurrence of a pattern in a sequence) is

\[
\frac{n!}{(n-m+1)!} \left(\frac{2n-e-m}{n-m} \right) \]

where \(e = \sum p_i \). This result can be extended to patterns whose elements are subsequences of integers (by replacing \(n \) with \(n-d+m \), where \(d \) is the total number of integers in all the patterns) and to nondistinct patterns; it generalizes Dershowitz and Zaks [1980] and Flajolet and Steyaert [1980] (in both \(m=1 \)).

To prove the above formula, consider the correspondence between subordinating sequences of \(n+1 \) integers and dominating sequences of \(n+1 \) boxes and \(n \) circles obtained by replacing an integer \(x_j \) with one box followed by \(x_j \) circles. (The number of circles for \(i+1 \) boxes is \(\sum_{j=0}^i x_j \) which is no greater than \(i \).) By the Cycle Lemma, to each subordinating sequence of integers there corresponds a unique cycle of figures and, hence, a unique cycle of integers. Since there are \(\frac{n!}{(n+1-m)!} \) ways of placing the \(m \) elements of the pattern on a cycle with \(n+1 \) positions and there are \(\left(\frac{2n-e-m}{n-m} \right)^m \) ways of decomposing the remainder \(n-e \) of the sum into the \(n+1-m \) integers that must still be determined, it follows...
t-ary Trees.

The number of t-ary trees with \(n \) internal nodes of (out-) degree \(t \) and \(tn+1-n \) leaves of degree \(0 \) is \(\frac{1}{tn+1} \binom{tn+1}{n} \) (see Knuth [1966]; Grunert [1841] gives the analogous result for polygons). In particular, the number of binary trees is \(\frac{1}{2n+1} \binom{2n+1}{n} = \frac{1}{n+1} \binom{2n}{n} \), the well-known Catalan numbers, see Cayley [1859]; Silberger [1969], Sands [1978], and Singmaster [1978] derive the Catalan sequence using the Cycle Lemma.

To see this, note the correspondence between t-ary trees and \((t-1)\)-dominating sequences obtained by traversing the tree in postorder, i.e. first each of its subtrees from left to right is traversed and then the node connecting them, and recording a circle for each internal node encountered and a box for each leaf encountered. By the Cycle Lemma, each \((t-1)\)-dominating sequence corresponds to a cycle of \(tn+1-n \) boxes and \(n \) circles, of which there are exactly \(\frac{1}{tn+1} \binom{tn+1}{n} \).

Ordered Trees

In an ordered (or plane-planted) tree the order in which subtrees of a node are arranged is significant. Every ordered tree corresponds to a cycle containing the (out-) degrees of the nodes listed in postorder, since a postorder list of degrees yields a subordinating sequence of integers and, as we have already seen, each subordinating sequence of integers corresponds to a unique cycle of integers. Using this correspondence between trees and cycles, one can show that the number of ordered trees with \(n \) nodes of degree \(j \), \(0 \leq j \leq d \), no restrictions on nodes of degree greater than \(d \), and
\[
\frac{1}{n} \binom{n-e-d(n-m)-2}{n-m-1} \left(\binom{n}{n_0, \ldots, n_d, n-m} \right) ^{n-m},
\]

where \(m = \sum n_j \leq n-1 \) is the total number of restricted nodes,
\(e = \sum n_j \) is the total number of edges accounted for, and the last factor is the multinomial coefficient \(\frac{n!}{n_0! \cdots n_d!(n-m)!} \). In the case when \(m = \sum n_j = n \) (all the degrees are specified) this simplifies to
\[
\frac{1}{n} \binom{n}{n_0, \ldots, n_d}.
\]

To count the number of cycles with these restrictions, note that there are \(\frac{1}{n} \binom{n}{n_o, \ldots, n_d, n-m} \) ways of placing the degrees of the restricted nodes on a cycle with \(n \) positions. The remaining \(n-m \) unrestricted nodes must have degrees greater than \(d+1 \) and summing to \(n-e-1 \). The number of ways to place these degrees is the same as the number of ways of decomposing the integer \((n-e-1) - (d+1)(n-m) \) into \(n-m \) integers greater than 0, which is \(\binom{n-e-d(n-m)-2}{n-m-1} \).

This formula generalizes the enumeration of unrestricted \(d = -1 \) ordered trees in Harary et al. [1964], the multinomial formula for the fully restricted \(d = n \) case in Erdélyi and Etherington [1940] (in the context of subdivisions of polygons), and the result in Narayana [1959] for \(d = 0 \) (in the context of orderings on partitions). The Cycle Lemma can also be used to solve the two color case considered by Tutte [1964]. Our proof is a generalization of those in Raney [1960] and Sands [1978] (both for the case \(d = n \)) and Dershowitz and Zaks [1980] (for \(d = 0 \)).

Using the above formula, we get that the total number of ordered trees with no unary nodes and \(k \) leaves \((d = 1, n_o = k, n_1 = 0)\), hence \(m = k \) and \(e = 0 \), is...
For \(k = 1 \) through 7, the corresponding numbers of trees are 1, 1, 3, 11, 45, 197, and 903. (This sequence was investigated in Schröder [1870]; its relation to polygon partitions is discussed in Motzkin [1948]; its relation to trees appears in Knuth [1968].)
REFERENCES

Motzkin, Th. [April 1948], Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products, Bulletin Amer. Math. Soc., Vol. 54, pp. 352-360.

Motzkin, Th. [April 1948], Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products, Bulletin Amer. Math. Soc., Vol. 54, pp. 352-360.

Motzkin, Th. [April 1948], Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products, Bulletin Amer. Math. Soc., Vol. 54, pp. 352-360.

Motzkin, Th. [April 1948], Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products, Bulletin Amer. Math. Soc., Vol. 54, pp. 352-360.
REFERENCES (cont'd)

Silberger, D.M. [1969], Occurrences of the integer \(\frac{(2n-2)!}{n!(n-1)!} \), Rocznik Polskiego Towarzystwa Math., Vol. 13, pp. 91-96.

