Euler-Maclaurin Expansions For Some Two-Dimensional Integrals With A Line Of Singularities In The Domain Of Integration

by

Avram Sidi

Technical Report #204
April 1981
ABSTRACT

Euler-Maclaurin expansions for the differences

\[\int_{s} x^s (\log x)^{s'} f(x,y) - Q_h^S[f], \quad s > -1, \quad s' = 0,1, \]

where \(s \) denotes either the simplex \(\{(x,y) \mid x+y \leq 1, x \geq 0, y \geq 0\} \) or the square \(\{(x,y) \mid 0 \leq x \leq 1, 0 \leq y \leq 1\} \), and \(Q_h^S[f] \) is a combination of one-dimensional generalized trapezoidal rule approximations are derived and their properties analyzed.
1. INTRODUCTION

In this work we are interested in deriving Euler-Maclaurin expansions for the singular double integrals

\[Q[f] = \int \int w(x)f(x,y)dx\,dy, \quad T = \{(x,y) \mid x+y \leq 1, x \geq 0, y \geq 0\}, \]

\[Q'[f] = \int \int w(x)f(x,y)dx\,dy, \quad T' = \{(x,y) \mid 0 \leq x \leq 1, 0 \leq y \leq 1\}, \]

where

\[w(x) = x^s(\log x)^{s'}, \quad s > -1, s' = 0, 1, \]

such that \(f(x,y) \) is as many times differentiable as needed.

Specifically we are looking for asymptotic expansions, as \(h \to 0^+ \), for the differences \(\Delta_h[f] = Q[f] - Q_h[f] \) and \(\Delta'_h[f] = Q'[f] - Q'_h[f] \), where \(Q_h[f] \) and \(Q'_h[f] \) are approximations to \(Q[f] \) and \(Q'[f] \) respectively, obtained as some combinations of one-dimensional generalized trapezoidal rule approximations with step size \(h \).

We now state some results which bear relevance to our derivation of the Euler-Maclaurin formulas for \(Q[f] \) and \(Q'[f] \).

Theorem 1.1 (See Steffensen (1950)) Let the function \(g(x) \) be \(2m \) times differentiable on \([a,b]\) and let \(h = (b-a)/n \), where \(n \) is a positive integer. Let \(\varepsilon \) be a fixed constant satisfying \(0 < \varepsilon < 1 \). Then

\[D(h) = \int_a^b g(x)dx - h \sum_{j=0}^{n-1} g(a + jh + \varepsilon h) \]

\[= - 2m-1 B(e) \sum_{\mu=1}^{\frac{1}{\mu!}} \left[g^{(\mu-1)}(a)h^\mu + R_{2m}[g]_{a,b} \right], \]

where
Here $B_\mu(x)$ is the Bernoulli polynomial of degree μ and $\bar{B}_\mu(x)$ is the periodic Bernoulli function of order μ.

Since $\bar{B}_\mu(x)$ are bounded on $(-\infty, \infty)$, it follows that

$$|R_{2m}[g; a, b]| \leq M_{2m} |h^{2m} \max_{a \leq x \leq b} g(2m)(x)|,$$

where

$$M_{2m} = \max_{-\infty < x < \infty} |\bar{B}_{2m}(\varepsilon + x) - B_{2m}(\varepsilon)| / (2m)!$$

and, therefore, is independent of h. Consequently, if $g(x)$ is infinitely differentiable on $[a, b]$, then $D(h)$ has an asymptotic expansion of the form

$$D(h) \sim \sum_{\mu=1}^{\infty} \frac{B_\mu(\varepsilon)}{\mu!} [g^{(\mu-1)}(a) - g^{(\mu-1)}(b)] h^\mu, \quad \text{as } h \to 0^+.$$

The following result is due to Navot (1961). See also Navot (1962).

Theorem 1.2 Let the function $g(x)$ be $2m$ times differentiable on $[0, 1]$ and let $G(x) = x^s g(x)$ for $-1 < s \leq 0$. Let $h = 1/n$, where n is a positive integer. Then for $0 < \varepsilon \leq 1,$

$$D(h) = \int_0^1 G(x) dx - h \sum_{j=0}^{n-1} G(jh + \varepsilon h)$$

$$= \frac{2m-1}{2} \frac{B_{2m}(\varepsilon)}{2m!} g^{(2m-1)}(0) \xi(2m,s+\varepsilon) + 2m-1 \frac{\xi(1,s+\varepsilon)}{2m!} \sum_{\mu=0}^{2m-1} \frac{g^{(\mu)}(0) h^{\mu+s+1} + \mu \rho_{2m}}{\mu!},$$

where $\xi(t, \varepsilon)$ is the generalized Riemann zeta function initially defined for $\Re t > 1$ by $\zeta(t, \varepsilon) = \sum_{k=0}^{\infty} (k+\varepsilon)^{-t}$, and then continued analytically, and

$$\rho_{2m} = D(h^{2m}) \quad \text{as } \quad h \to 0^+.$$
Note that \(\zeta(-j,e) = -B_{j+1}(e)/(j+1) \), \(j = 0, 1, \ldots \), so that (1.9) is identical to (1.4) for \(s = 0 \).

Remark: The result of Theorem 1.2 holds also for \(s > 0 \) since for this case the integrand can be written in the form \(G(x) = x^r u(x) \), where \(-1 < r \leq 0 \) and \(u(x) \) is at least as smooth as \(g(x) \) at \(x = 0 \).

Actually \(r = s - \delta \) and \(u(x) = x^\delta g(x) \), where \(\delta \) is the smallest integer greater than or equal to \(s \). It is clear that \(u^{(i)}(0) = 0 \), for \(0 \leq i \leq \delta - 1 \), hence the sum that contains the zeta functions in (1.9) becomes

\[
\sum_{\nu=0}^{2m-\delta} \frac{\zeta(-s-\nu,e)}{\nu!} g^{(\nu)}(0) h^{\nu+s+1}
\]

which is simply

\[
2m-\delta \sum_{\nu=0}^{2m-1} \frac{\zeta(-s-\nu,e)}{\nu!} g^{(\nu)}(0) h^{\nu+s+1} + O(h^{2m}) \text{ as } h \to 0^+.
\]

The summation that contains the Bernoulli polynomials stays the same. Finally when \(g(x) \) is infinitely differentiable on \([0,1]\), then \(D(h) \) has the following asymptotic expansion:

\[
(1.11) \quad D(h) = \sum_{\mu=1}^{\infty} B_{\mu}(e) \gamma^{(\mu)}(0) h^{\mu} + \sum_{\mu=1}^{\infty} \frac{\zeta(-s-\nu,e)}{\nu!} g^{(\nu)}(0) h^{\nu+s+1} \quad \text{as } h \to 0^+,
\]

for all \(s > -1 \).

Starting with Theorem 1.2, Navot (1962) proves the following:

Theorem 1.3 If in Theorem 1.2 we let \(G(x) = g(x)x^s \log x \), \(-1 < s < 0 \), then

\[
(1.12) \quad D(h) = \sum_{\mu=1}^{2m-1} \alpha \mu h^{\mu} + \log h \sum_{\mu=0}^{2m-1} \beta \mu h^{\mu+s+1} + \sum_{\mu=0}^{2m-1} \gamma \mu h^{\mu+s+1} + O(h^{2m}) \quad \text{as } h \to 0^+,
\]

and if we let \(G(x) = g(x) \log x \), then
(1.13) \[D(h) = \frac{2m-1}{\mu} \sum_{\mu=1}^\infty \alpha_\mu h^{\mu} + \log h \sum_{\mu=0}^{2m-1} \beta_\mu h^{\mu+1} + O(h^{2m}) \] as \(h \to 0^+ \),

where \(\alpha_\mu, \beta_\mu, \gamma_\mu, \alpha_\mu', \beta_\mu' \) are constants independent of \(h' \) and they depend solely on \(g \) and its derivatives evaluated at \(x = 0 \) and \(x = 1 \). (1.12) can be obtained by formally differentiating both sides of (1.9) with respect to \(s \). (1.13) can be obtained by letting \(s = 0 \) in (1.12).

Remark: Like (1.9), (1.12) too can be shown to hold for all \(s > -1 \). Again when \(g(x) \) is infinitely differentiable on \([0,1] \), \(D(h) \) in (1.12) and (1.13) have asymptotic expansions as \(h \to 0^+ \), similar to those given in (1.8) and (1.11).

Other facts that will be of use in the remainder of this work are:

(1.14) \[B_1 = B_1(0) = -B_1(1) = \frac{1}{2}, \quad B_\mu = B_\mu(0) = B_\mu(1), \quad \mu = 2,3, \ldots, \]

where \(B_\mu \) are the Bernoulli numbers,

(1.15) \[B_{2\mu+1} = 0, \quad \mu = 1,2, \ldots, \]

(1.16) \[B_{2\mu+1} \left(\frac{1}{2} \right) = 0, \quad \mu = 0,1, \ldots, \]

and

(1.17) \[\zeta(t,1) = \zeta(t), \]

where \(\zeta(t) \) is the Riemann zeta function.

2. Euler-Maclaurin Expansions for \(Q[f] \). The Case \(s' = 0 \).

Theorem 2.1: Let \(f(x,y) \) be \(2m \) times differentiable on the simplex \(T \) defined in (1.1). Let \(h = 1/n \), where \(n \) is a positive integer and let \(\varepsilon \) be a fixed constant satisfying \(0 < \varepsilon \leq 1 \). Let \(Q[f] \) be as in (1.1) with \(s' = 0 \). Define

(2.1) \[Q_h[f] = h^2 \sum_{i=1}^{n-1} \sum_{j=0}^{n-1-i} f(ih, jh + \varepsilon h). \]
Then

\[\Delta_h[f] = Q[f] - Q_h[f] = \sum_{r=1}^{2m-1} a_r h^r + \sum_{k=0}^{2m-1} b_k h^{s+k} + \sigma_{2m},\]

where

\[\sigma_{2m} = O(h^{2m}) \quad \text{as} \quad h \to 0+,\]

and the coefficients \(a_r, b_k\) are independent of \(h\). (The expressions for \(a_r, b_k\) are complicated and will be given in the proof below.)

Proof: We start by writing \(Q[f]\) as an iterated integral. If we define

\[F(x) = \int_0^{1-x} f(x,y)dy,\]

then \(Q[f]\) becomes

\[Q[f] = \int_0^1 x^s F(x)dx.\]

Since \(f(x,y)\) is \(2m\) times differentiable on \(T\), \(F(x)\) is \(2m\) times differentiable on \([0,1]\). Therefore, Theorem 1.2 applies to (2.5) and we have (using the fact that \(F(1) = 0\))

\[Q[f] = h \sum_{i=1}^{n-1} x^s F(x)\bigg|_{x=ih} + \sum_{r=1}^{2m-1} c_r h^r + \sum_{k=0}^{2m-1} d_k h^{s+k+1} + \rho_{2m},\]

where

\[c_r = \frac{B_r(1)}{r!} \left[x^s F(x) \right]^{(r-1)} \bigg|_{x=1+}, \quad r = 1,2,\ldots,\]

\[d_k = -\frac{\zeta(-s-k)}{k!} F(k)(0), \quad k = 0,1,\ldots,\]

and \(\rho_{2m} = O(h^{2m})\) as \(h \to 0+\). In the first summation on the right hand side of (2.6) the term with \(i = n\) is missing since \(F(nh) = F(1) = 0\).
Also \(c_1 = 0 \) for the same reason. In (2.7) we have also used (1.17).

Let us now approximate \(F(ih) \) by the generalized trapezoidal rule with step size \(h \). This is possible since \(1-ih \) is a multiple of \(h \). From Theorem 1.1 we then have

\[
(2.8) \quad F(ih) = \int_0^{1-ih} f(ih,y)dy
\]

\[
= h \sum_{j=0}^{n-1} f(ih,jh+eh) - \sum_{\mu=1}^{2m-1} B_\mu(e) \frac{h^\mu}{\mu!} \left[h^\mu \psi_{-1}(ih) + \tau_{2m,i} \right]
\]

where

\[
(2.9) \quad \psi_p(x) = \frac{\partial^p}{\partial y^p} f(x,y) \bigg|_{y=1-x} \quad \text{and from (1.6)}
\]

\[
(2.10) \quad \left| \tau_{2m,i} \right| \leq M_{2m}(1-ih)h^{2m} \max_{(x,y) \in T} \left| \frac{\partial^{2m} f}{\partial y^{2m}}(x,y) \right|
\]

with \(M_{2m} \) as defined in (1.7).

Substituting (2.8) in the first summation on the right-hand side of (2.6), recalling (2.1), and rearranging, we obtain

\[
(2.11) \quad h^{n-1} \sum_{i=1}^{n-1} x^i T(x) \bigg|_{x=ih} = Q_h[f] - \sum_{\mu=1}^{2m-1} \frac{B_\mu(e)}{\mu!} h^\mu \left[h^\mu \sum_{i=1}^{n-1} (ih)^S \psi_{-1}(ih) \right] + \tilde{r}_{2m}
\]

where

\[
(2.12) \quad \tilde{r}_{2m} = h \sum_{i=1}^{n-1} (ih)^S \tau_{2m,i}
\]

hence, from (2.10)

\[
(2.13) \quad \left| \tilde{r}_{2m} \right| \leq M_{2m} \max_{(x,y) \in T} \left| \frac{\partial^{2m} f}{\partial y^{2m}}(x,y) \right| h^{2m} \left[h^n \sum_{i=1}^{n-1} (ih)^S (1-ih) \right] = O(h^{2m})
\]
since
\[(2.14) \quad h \sum_{i=1}^{n-1} (ih)^s (1-ih) = \int_0^1 x^s (1-x) dx + o(1), \text{ as } h \to 0^+.
\]

from Theorem 1.2.

Now \(\psi_p(x)\) is \(2m-p\) times differentiable on \([0,1]\) and \(\psi_p(nh) = \psi_p(1) = 0\). Using this together with the fact that \(s > -1\), and applying Theorem 1.2, this time to the term inside the square brackets in the summation on the right hand side of (2.11), we have

\[(2.15) \quad h \sum_{i=1}^{n-1} (ih)^s \psi_p(ih) = \int_0^1 x^s \psi_p(x) dx + \sum_{v=1}^{2m-p-2} \frac{B_v(1)}{v!} \left[x^s \psi_p(x) \right]^{(v-1)}_{x=1} h^v + \sum_{v=0}^{2m-p-1} \frac{\Gamma(-s-v)}{v!} \psi_p(v)(0) h^{s+v+1} + o(h^{2m}).
\]

where

\[(2.16) \quad \bar{p}_{2m,p} = O(h^{2m-p-1}) \quad \text{as} \quad h \to 0^+.
\]

Note that since \(\psi_p(1) = 0\), the first summation on the right hand side of (2.15) actually starts with \(v = 2\). Substituting (2.15) and (2.16) in (2.11), we obtain

\[(2.17) \quad h \sum_{i=1}^{n-1} x^s F(x) \bigg|_{x=ih} = O(h^2) - \sum_{\mu=1}^{2m-1} \frac{B_{\mu}(\varepsilon)}{\mu!} \int_0^1 x^s \psi_{\mu-1}(x) dx h^\mu + \sum_{\mu=1}^{2m-1} \sum_{v=0}^{2m-\mu-1} \frac{B_\mu B_{\varepsilon}(1)}{\mu! \varepsilon !} \left[x^s \psi_{\mu-1}(x) \right]^{(v-1)}_{x=1} h^{\mu+v} + \sum_{\mu=1}^{2m-1} \sum_{v=0}^{2m-\mu-1} \frac{\Gamma(-s-v)}{\mu! \varepsilon !} \psi_{\mu-1}(0) h^{u+v+s+1} + o(h^{2m}).
\]

Finally, substituting (2.17) in (2.6), we obtain (2.2) and (2.3),
The coefficients a_k and b_k are now given by

$$
\begin{align*}
\begin{cases}
 a_1 &= -B_1(\epsilon) \int_0^1 x^s \psi_0(x) \, dx \\
 a_r &= -\frac{B_r(\epsilon)}{r!} \int_0^1 x^s \psi_{r-1}(x) \, dx - \sum_{\mu+v=r} \frac{B_\mu(\epsilon) B_v}{\mu! v!} [x^s \psi_{\mu-1}(x)]^{(v-1)} |_{x=1} \\
 b_0 &= -\zeta(-s) F(0), \\
 b_k &= -\frac{\zeta(-s-k)}{k!} F(k)(0) - \sum_{\mu+v=k} \frac{B_\mu(\epsilon) \zeta(-s-v)}{\mu! v!} \psi_{\mu-1}(0),
\end{cases}
\end{align*}
$$

(2.18)

where we have used (1.14) and $\psi_0(1) = 0$.

The long expressions given in (2.18) can be put in a more compact form as follows: From (2.9), $\psi_p(x)$ can be expressed as:

$$
\psi_p(x) = \int_0^{1-x} \frac{\partial^{p+1}}{\partial y^{p+1}} f(x, y) \, dy, \quad p = 0, 1, \ldots
$$

(2.19)

Let us define $\psi_{-1}(x)$ by letting $p=-1$ in (2.19). It is clear that

$$
\psi_{-1}(x) = F(x).
$$

(2.20)

Let us also define

$$
[x^s \psi_p(x)](-1) \equiv \int_0^x t^s \psi_p(t) \, dt \equiv \theta_p(x), \quad p = -1, 0, 1, \ldots
$$

(2.21)

Then we have

$$
\theta_p^{(j)}(x) = [x^s \psi_p(x)]^{(j-1)} \quad j = 0, 1, 2, \ldots
$$

(2.22)
Recalling that $B_0(x) = B_0 = 1$, a_r and b_k can now be expressed as

$$a_r = - \sum_{\mu + \nu = r} \frac{B_r(e^x)}{\mu!} \frac{B_{\nu}(y)}{\nu!} \theta_{\mu-1}^{(1)}(1), \quad r = 1, 2, \ldots,$$

$$b_k = - \sum_{\mu + \nu = k} \frac{B_r(e^x)}{\mu!} \frac{\xi(-s-\nu)}{\nu!} \nu_{\mu-1}(0), \quad k = 0, 1, \ldots.$$

(2.23)

Remark: When the function $f(x,y)$ is infinitely differentiable on T, then the Euler-Maclaurin expansion in (2.2) can be continued indefinitely, and we have as $h \to 0^+$, for all $s > -1$,

$$\Delta_h[f] = \sum_{r=1}^{\infty} a_r h^r + \sum_{k=0}^{\infty} b_k h^{s+k+1}.$$

(2.24)

Corollary: If $f(x,y)$ is a polynomial in x and y of degree q say, then $b_k = 0$ for $k > q+2$, i.e., the series $\sum_{k=0}^{\infty} b_k h^{s+k+1}$ has actually a finite number of terms.

Proof: It is not difficult to show that $\psi_p(x)$ is a polynomial in x of degree at most $q-p$, for $p = -1, 0, 1, \ldots, q$.

Hence $\psi_p^{(q)}(x) = 0$ for $q > q-p+1$. The result now follows easily. \Box

We now go on to investigate the nature of the a_r and b_k.

A simple analysis shows that for $p = 0, 1, \ldots, q = 0, 1, \ldots$

$$\psi_p^{(q)}(x) = \left(\begin{array}{c} \frac{a}{\partial x} - \frac{a}{\partial y} \end{array} \right)^q \frac{\partial^p}{\partial y^p} f(x,y) \bigg|_{y=1-x} - \frac{a}{\partial x} \frac{\partial^p}{\partial y^p} f(x,y) \bigg|_{y=0}$$

(2.25)

so that

$$\psi_p^{(q)}(1) = \left[\begin{array}{c} \frac{a}{\partial x} - \frac{a}{\partial y} \end{array} \right]^q \frac{\partial^p}{\partial y^p} f(x,y) \bigg|_{(1,0)}$$

(2.26)
Also

\[
(2.27) \quad \int_0^1 x^p \psi_0(x) \, dx = \int_\Gamma w(x,y) \frac{\partial^p}{\partial y^p} f(x,y) \, dx,
\]

where \(\Gamma \) is the polygonal arc joining \((0,1), (1,0), (0,0)\) in this order and \(w(x,y) = x^{\frac{1}{2}} \) along the line \(x+y = 1 \) and \(w(x,y) = x^p \) along \(y = 0 \), and \(dx \) is the line element along \(\Gamma \). Similarly it can be shown that

\[
(2.28) \quad F(k)(1) = -\sum_{i+j=k-1} \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \right)^i \frac{\partial^j}{\partial y^j} f(x,y) \bigg|_{(1,0)}.
\]

Hence we conclude that the contribution to the area comes from the derivatives of \(f(x,y) \) at \((1,0)\), i.e., the corner across the line of singularities, and from certain integrals of \(f(x,y) \) and its derivatives along the two sides of \(\Gamma \) on which there are no singularities.

From (2.25) we have

\[
(2.29) \quad \psi_p(v)(0) = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^v \frac{\partial^p}{\partial y^p} f(x,y) \bigg|_{(1,1)}
= \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^v \frac{\partial^p}{\partial y^p} f(x,y) \bigg|_{(0,0)}.
\]

Also making the change of variable of integration \(y = (1-x)\tau \) in the integral expression for \(F(x) \) given in (2.4), differentiating \(k \) times with respect to \(x \), we obtain

\[
(2.30) \quad F(k)(x) = \int_0^1 [(1-x)D^k - \tau kD^{k-1}] f(x,(1-x)\tau) d\tau,
\]

where we have defined \(D_\tau = \partial/\partial x - \tau \partial/\partial y \). Setting now \(x = 0 \) in (2.30) we obtain

\[
(2.31) \quad F(k)(0) = \int_0^1 (D^k - \tau kD^{k-1}) f(x,\tau) \bigg|_{x=0} \, d\tau.
\]
where \(D = \partial_y \partial_x - y \partial_y \partial y \). Therefore, we conclude that the contribution to the \(b_k \) comes from \(f(x, y) \) and its derivatives at the points \((0,0)\) and \((1,1)\) and their integrals along the line of singularities \(x = 0 \).

Some special cases

a) \(\epsilon = \frac{1}{2} \)

Substituting \((1.16)\) in \((2.23)\) it is clear that \(a_r = 0, r = 1, 3, 5, \ldots \), but none of the \(b_k \)'s vanishes in general.

b) \(\epsilon = 1 \)

If we substitute \((1.15)\) in \((2.23)\) we realize that in general none of the \(a_r \)'s is zero. However, if \(Q_h[f] \) in \((2.1)\) is modified to read

\[
Q_h[f] = b^2 \sum_{i=1}^{n-1} (ih)^s \sum_{j=0}^{n-1} f(ih, jh),
\]

where \(\sum_{j=0}^{N-1} a_j = \sum_{j=1}^{N-1} a_j + (a_0 + a_N)/2 \), then using the same techniques as before, it can be shown that

\[
\bar{Q}_h[f] = Q[f] - \bar{Q}_h[f] = \sum_{\nu=1}^{m-1} \bar{a}_{2\nu} h^{2\nu} + \sum_{\nu=0}^{2m-1} \bar{b}_\nu h^{\nu+s+1} + O(h^{2m}) \quad \text{as} \quad h \to 0^+,
\]

where \(\bar{a}_{2\nu} \) and \(\bar{b}_\nu \) are as given in \((2.23)\) with \(\epsilon = 1 \); except that the terms with \(\nu = 1 \) are omitted in both summations.
3. EULER-MACLAURIN EXPANSIONS FOR $Q[f]$. THE CASE $s' = 1$

In this section we state without proof the Euler-Maclaurin expansions for the case $s' = 1$. Letting $w(x) = x^{s} \log x$, we now define $Q_{h}[f]$ by

$$Q_{h}[f] = h^{r} \sum_{i=1}^{n-1} \sum_{j=0}^{n-1} w(ih) f(ih, jh+eh)$$

where $h = 1/n$, n a positive integer.

Theorem 3.1: Let $f(x,y)$ be infinitely differentiable on T and let $Q[f]$ be as in (1.1) with $s = 1$, i.e., $w(x) = x^{s} \log x$. Then as $h \to 0+$

$$Q[f] - Q_{h}[f] \sim \sum_{\mu=1}^{\infty} a_{\mu} h^{\mu} + \log h \sum_{\mu=0}^{\infty} b_{\mu} h^{\mu+s+1} + \sum_{\mu=0}^{\infty} c_{\mu} h^{\mu+s+1},$$

where a_{μ}, b_{μ}, and c_{μ} are constants independent of h.

Theorem 3.2: Let $f(x,y)$ be infinitely differentiable on T and let $Q[f]$ be as in (1.1) with $s = 0$, $s' = 1$, i.e., $w(x) = \log x$. Then as $h \to +$

$$Q[f] - Q_{h}[f] \sim \sum_{\mu=1}^{\infty} a_{\mu} h^{\mu} + \log h \sum_{\mu=0}^{\infty} b_{\mu} h^{\mu+s+1},$$

where a_{μ} and b_{μ} are constants independent of h.

The proofs of these two theorems are exactly the same as that of Theorem 2.1, the only difference being that use is made of Theorem 1.3 with (1.12) and (1.13) respectively, instead of Theorem 1.2.

Expressions for a_{μ}, b_{μ}, c_{μ}, a_{μ}', and b_{μ}' can be found in terms of $f(x,y)$ and its derivatives and their integrals, but this will be omitted here.

We shall only state that (3.2) can be formally obtained by differentiating both sides of (2.24) with respect to s. (3.3) is then
obtained by letting \(s = 0 \) on both sides of (3.2).

When \(f(x,y) \) is a polynomial in \(x \) and \(y \), of degree \(q \) say, then
\[
b'_\mu = 0, \quad c'_\mu = 0, \quad b''_\mu = 0 \quad \text{for} \quad \mu > q+2.
\]

For \(q = \frac{3}{2} \) and \(s \) not an integer it can be shown that
\[
a'_\mu = 0, \quad \mu = 1, 3, 5, \ldots \quad \text{in (3.2)}.
\]

For \(q = 1 \), if we replace \(Q_h[f] \) in (3.1) by
\[
(3.4) \quad Q_h[f] = h^2 \sum_{i=1}^{n-1} w(ih) \sum_{j=0}^{n-1} f(ih, jh)
\]
then for \(s \) not an integer
\[
(3.5) \quad Q_h[f] = Q[f] - Q_h[f] \sim \sum_{\mu=1}^{n-1} \frac{a'_{2\mu}}{2^{2\mu}} h^{2\mu} + \log h \cdot \sum_{\mu=0}^{n-1} b'_{\mu} h^{\mu+s+1} + \sum_{\mu=0}^{n-1} c'_{\mu} h^{\mu+s+1} \quad \text{as} \quad h \to 0^+.
\]

4. EXTENSIONS TO ARBITRARY SIMPLICES

So far we have considered the Euler-Maclaurin expansions for the standard simplex \(T \). The results of Section 2 and Section 3 can be extended to integrals of the form
\[
(4.1) \quad Q[g] = \oint_T \tau(\xi, \eta) g(\xi, \eta) \, d\xi d\eta,
\]
where \(T \) is the triangle with vertices \(P_i = (\xi_i, \eta_i), \ i = 1, 2, 3 \), and
\[
\tau(\xi, \eta) = (A\xi + B\eta + C)^s \log[(A\xi + B\eta + C)^s]', \ s > -1, \ s' = 0, 1, \text{such that} \ A\xi + B\eta + C = 0 \text{ is the equation of the straight line joining} \ P_1 \text{ and} \ P_2, \text{and} \ g(\xi, \eta) \text{ is infinitely differentiable over} \ T. \]
transformation of the form \(\tilde{x} = y \bar{x} + \bar{a} \), where \(\tilde{x} = (\tilde{x}_1, \tilde{x}_2) \), and \(\bar{x} = (b_1, b_2) \) is a 2x2 constant matrix, \(\tilde{T} \) can be mapped onto \(T \) with \(P_1 = (0,0) \) and \(P_2 = (1,0) \). The results of Section 2 and Section 3 can now be applied to the transformed integral.

Bearing the results of the previous paragraph in mind, Euler-Maclaurin expansions can be derived for an arbitrary quadrilateral domain along one of whose diagonals the integrand has algebraic and/or logarithmic singularities. This can be accomplished by treating the two triangles on both sides of the diagonal of singularities separately.

One such typical integral is \(\int_0^1 \int_0^1 |x-y|^\varepsilon \log|x-y| \cdot g(x,y) \, dx \, dy \), where \(\varepsilon > -1, s' = 0,1 \), which was the problem originally solved by the author.

5. EULER-MACLAURIN EXPANSIONS FOR \(Q'[f] \)

In this section we state the Euler-Maclaurin expansions to the integral \(Q'[f] \).

Theorem 5.1: Let \(f(x,y) \) be infinitely differentiable on \(T' \). Let \(\varepsilon \) and \(n \) be two fixed constants such that \(0 < \varepsilon \leq 1, 0 < n \leq 1 \). Let \(h = 1/n \), where \(h \) is a positive integer. Define

\[
Q_h'[f] = h^2 \sum_{i=0}^{n-1} w(ih+\eta h) \sum_{j=0}^{n-1} f(ih+\eta h,jh+\epsilon h) .
\]

1) For \(s' = 0 \)

\[
Q_h'[f] \sim \sum_{\mu=0}^{\infty} A_{\mu} h^{\mu} + \sum_{\mu=0}^{\infty} B_{\mu} h^{\mu+s+1}, \quad \text{as } h \rightarrow 0^+ .
\]

2) For \(s' = 1 \)

\[
Q_h'[f] \sim \sum_{\mu=0}^{\infty} A_{\mu} h^{\mu} + \log h \sum_{\mu=0}^{\infty} B_{\mu} h^{\mu+s+1} + \sum_{\mu=0}^{\infty} C_{\mu} h^{\mu+s+1} \quad \text{as } h \rightarrow 0^+ .
\]
3) For \(s' = 1, s = 0 \)

\[
\Delta_h[f] \sim \sum_{\mu=1}^{\infty} A_\mu h^\mu + \log h \sum_{\mu=0}^{\infty} B_\mu h^{\mu+1}, \quad \text{as } h \to 0^+.
\]

where \(A_\mu, B_\mu, \ldots \) are all independent of \(h \) and depend solely on \(f(x,y) \) and its derivatives and their integrals.

Proof: Since the proofs of (5.2), (5.3), and (5.4) are very similar to those of Theorem 2.1, Theorem 3.1 and Theorem 3.2 respectively, we shall be content with a sketch of the proof of (5.2) only.

Defining

\[
F(x) = \int_0^x f(x,y) \, dy,
\]

we can express \(Q'[f] \) as

\[
Q'[f] = \int_0^1 x^s F(x) \, dx.
\]

By Theorem 1.2 we have for any positive integer \(m \)

\[
Q'[f] = h \sum_{i=0}^{n-1} x^s F(x) \bigg|_{x=ih} - \sum_{r=1}^{2m-1} \frac{B_r(n)}{r!} [x^s F(x)]^{(r-1)} \bigg|_{x=1} h^r
\]

\[
= \sum_{k=0}^{2m-1} \frac{B_{-s-k+n}}{k!} f(k)(0) h^{k+s+1} + o(h^{2m})
\]

as \(h \to 0^+ \).
We now approximate $F(ih + nh)$ by the generalized trapezoidal rule.

From Theorem 1.1 we have:

\[(5.8) \quad F(ih + nh) = h \sum_{j=0}^{n-1} f(ih + nh, y + \varepsilon h) - 2m-1 B_r(\varepsilon) \sum_{\mu=1}^{\max(2m, n)} \frac{1}{\mu!} \psi_{\mu-1}(ih + nh)h^\mu + \tau_{2m,1} \]

where

\[(5.9) \quad \psi_p(x) = \left. \frac{\partial^p}{\partial y^p} f(x,y) \right|_{y=1} - \left. \frac{\partial^p}{\partial y^p} f(x,y) \right|_{y=0}, \quad p = 0, 1, \ldots , \]

and

\[(5.10) \quad |\tau_{2m,1}| \leq 2m \max \left(\frac{1}{(x,y) \in T}\left| \frac{\partial^{2m}}{\partial y^{2m}} f(x,y) \right| \right) h^{2m} \]

From here on the proof continues exactly as that of Theorem 2.1. In summary, defining $e^j_p(x)$ as in Section 2 (with $F(x)$, $\psi_p(x)$ as defined in (5.5) and (5.9)) we obtain

\[(5.11) \quad A_r = \sum_{\mu+v=r, \mu, \nu \geq 0} B_{\mu}(\varepsilon) B_{\nu}(\eta) \frac{\psi_v(1)}{v!} \psi_{\mu-1}(0), \quad r = 1, 2, \ldots \]

\[B_k = \sum_{\mu+v=k, \mu, \nu \geq 0} B_{\mu}(\varepsilon) \psi(-s, \eta) \psi_{\mu-1}(0), \quad k = 0, 1, \ldots \]

When $f(x,y)$ is a polynomial in x and y of degree q say, then $B_k = 0$ for $k > q+2$.

If we let $\varepsilon = n = \frac{1}{1}$, then $A_r = 0, \quad r = 1, 3, 5, \ldots$

If we let $\varepsilon = n = 1$, then none of the A_r vanishes in general.

However, if $Q_n[f]$ in (5.1) is modified to read:
where \(\sum_{i=1}^{N} \alpha_i = \sum_{i=1}^{N-1} \alpha_i + \alpha_N/2 \), then using the same techniques as before it can be shown that:

\[
\bar{Q}_h'[f] = Q'[f] - \bar{Q}_h''[f] = \sum_{\mu=1}^{\infty} A_{2\mu} h^{2\mu} + \sum_{\mu=0}^{\infty} B_{\mu} h^{\mu+s+1} \quad \text{as} \quad h \to 0^+.
\]

Similar analysis can be done for \(s' = 1 \) too; Details will not be given here.

6. CONCLUDING REMARKS

In this work Euler-Maclaurin expansions for the integrals given in (1.1) - (1.2) have been derived and their nature analyzed. These expansions can now be used to obtain good approximations to the integrals in question, by applying to them a generalization of the Richardson extrapolation process, see Sidi (1979a). A detailed discussion about how this should be done and some numerical examples can be found in Sidi (1979b).

Euler-Maclaurin expansions for singular multiple integrals over a hypercube have been taken up by Lyness (1976), where the integrand is assumed to have a singularity at a corner of the hypercube. Lately, Monegato and Lyness (1979) have considered the question of numerically evaluating the Cauchy principal value of integrals of the form...
\[\int_0^1 \int_0^1 g(x,y) \, dx \, dy. \]

More recently Lyness and Monegato (1980) have given Euler-Maclaurin expansions for integrals over the hypersimplex, whose integrands have singularities at the vertices of the hypersimplex. The integrals treated in this work, however, are not of either type; they have algebraic and/or logarithmic singularities over a straight line inside or on the boundary of the domain of integration.

ACKNOWLEDGEMENT

The author wishes to thank Professor I. Navot of the Faculty of Electrical Engineering, Technion, Haifa, for suggesting the problem and many stimulating discussions and comments. Thanks are also due to the anonymous referee for his critical comments and suggestions on the presentation of the material in this work.
REFERENCES

7. A. Sidi (1979b), Euler-Maclaurin expansions for a double integral with a line of singularities in the domain of integration, TR#161, Computer Science Dept., Technion, Haifa, Israel.