MAXIMAL SPANNING TREES FOR
CERTAIN PLANNAR GRAPHS

by
Azaria Paz

Technical Report #68
December 1975
ABSTRACT

It is shown that a planar connected map with no 'islands' or 'island groups', with \(n \)-finite countries and such that every finite country has at least 3 bordering edges, can be spanned by a tree with number of leaves less or equal than \(\left\lfloor \frac{n}{2} \right\rfloor \). This bound is shown to be sharp.
INTRODUCTION

The problem of spanning a graph by a tree with minimal number of leaves has been studied by some graph theorists, see e.g. [5]. This problem is related to the problem of decomposing a partially ordered set into a minimal number of disjoint chains [3], [4], and to the Hamiltonian properties of graphs [5]. Using a recent lemma [2], we solve that problem for planar maps of a certain type (to be defined in the text). Our solution provides an additional approach to the above problem.

DEFINITIONS AND NOTATIONS

The objects we are dealing with in this note are maps. A map is a "planar topological graph" as defined in Berge [1]. The faces of the map will be called countries or cells. A country may be adjacent to another country through more than one boundary ("edge"). Two countries having at least one common edge are neighbors. (Two countries with no common edge are not neighbors even though they may have a common vertex.) Every vertex in a map has a degree of 3 or more. Every map has exactly one unbounded country called the infinite country or just "infinity".

Let \(M \) be a map. The map is connected if for every 2 countries in the map \(A \) and \(B \) there exists a sequence of finite countries in the map \(A = A_1, A_2, \ldots, A_k = B \) such that \(A_i \) and \(A_{i+1} \), for \(i = 1, \ldots, k-1 \),
are neighbors. An island in M is a country A in M which has exactly one neighbor. An island group C in M is a connected submap in M such that no country in C borders on infinity and there is exactly one country A in M-C such that if a member of C has a neighbor in M-C that neighbor is A.

Definition 1. A map M is legal if it is connected and contains no island groups.

Definition 2. If M is a legal map and A and B are two countries in M with a common edge then the pair (A,B) is legal if merging the pair into one country does not create an island group.

Definition 3. A blister in a map is a country with exactly two neighbors. The blister is external if one of its neighbors is the infinite country and is internal otherwise.

Definition 4. A map is k-blister if it has no internal blisters and has exactly k external blisters. It is acceptable if it is legal, has at least 2 finite countries, and is k-blister with k ≤ 2.

Definition 5. A spanning tree for a map is a tree such that: every country in the map except the infinite one corresponds to exactly one vertex in the tree; every vertex in the tree corresponds to exactly one finite country in the map; if two vertices in the tree are adjacent then the corresponding countries are neighbors. A leaf in a tree is a vertex of degree 1 in it.
Notation: As customary we shall use the notation \(\lfloor x \rfloor \) for the biggest integer less or equal than \(x \).

The following lemma was proved elsewhere [2] and will be used as a basis for the main result of this note.

Lemma Let \(M \) be a legal 0-blister map with at least 4 finite countries. There is a legal pair of countries whose removal from \(M \) splits \(M \) into acceptable components.

MAIN RESULT

The main result of this paper is the following

Theorem 1. Any legal 0-blister map with \(n \)-countries, \(n \geq 4 \), has a spanning tree with \(k \) leaves where \(k \leq \lfloor \frac{n}{2} \rfloor \).

Proof. We shall prove a slightly stronger result, namely that any legal \(i \)-blister map, \(i \leq 2 \), with \(n \)-countries, \(n \geq 4 \), has a spanning tree with \(k \) leaves where

\[
k \leq \lfloor \frac{n-i}{2} \rfloor + i.
\]

Remarks:

1. Notice that for \(i = 1,2 \) \(\lfloor \frac{n-i}{2} \rfloor + i \leq \lfloor \frac{n}{2} \rfloor + 1 \).

2. If the above statement is true for some \(n \geq 4 \) and \(i = 0 \) then it is also true for \(n+1 \) and \(i = 1 \) (remove the blister from the map, span the resulting map, with \(n \) countries by a tree with \(\lfloor \frac{n}{2} \rfloor \) leaves, connect the resulting tree to the removed blister to form a spanning
tree for the original map with at most \(\left\lfloor \frac{n}{2} \right\rfloor + 1 \) leaves), while the case \(n + 1(\geq 5), i = 2 \) for some \(n \) follows from the case \(n(\geq 4), i = 1 \) (using a similar argument).

3. It is clear that \(n \geq 4 \) is a necessary condition. Any tree has at least \(2 \) leaves and \(2 > \left\lfloor \frac{3}{2} \right\rfloor = 1 \).

Continuation of the Proof: By induction on \(n \). The theorem is trivially true for \(n = 4, i = 0,1,2 \) (the countries can be connected 2 by 2 and the two pairs are then connected by an edge, resulting in a spanning tree with 2 leaves. Notice that if a 4 countries map is 2-blister then the 2 blisters must be neighboring different countries or else we will have an additional 3rd blister - the remaining fourth country).

Assume now that we have already proved the theorem for some \(n_0 \geq 4 \) and \(i = 0,1,2 \) and for all \(n \) such that \(4 \leq n \leq n_0 \) and \(i = 0,1,2 \). By Remark 2, it is enough to prove that the truth of the theorem for the case \(n_0 + 1, i = 0 \) follows, to satisfy the induction.

Assume then that we have a 0-blister map with \(n_0 + 1 \) countries. By the lemma in the previous section there is a legal pair of countries whose removal splits the map into acceptable components. Label the two countries of the pair by the labels a and b, denote the resulting components by \(C_1, C_2, \ldots, C_i, \ldots, C_k \); \(k \geq 1 \), and let \(n_i \) be the number of countries of the component \(C_i \). It follows from the fact that the components are acceptable that \(n_i \geq 2 \). Consider the following labeling procedure: Remove the common edge of a and b and consider the resulting
country as a single country, for the labeling procedure, labeled ab.
Start from some node on the contour of this country according to some
orientation of the plane. When passing an edge along the contour
(belonging to the contour) that borders with some country, in some
component C_i, then label that country be the label c_i and the corres­
ponding edge by e_i provided that no other country has been labeled
c_i at an earlier stage of the process (it is possible that C_i and ab
have more than one edge in common).

After the whole contour of ab has been completed, every component
C_i will have exactly one of its countries labeled c_i (the original map
was connected and the components resulted from the removal of ab from the
map), and each such country c_i is connected to either a or b through
a common edge e_i, by construction.

We construct now a spanning tree for the given map as follows:
1. Connect the vertices a and b. (Label vertices and corresponding
countries by the same label.)
2. If C_i contains only 2 countries say c_i and d_i then connect
c_i through e_i to a or to b, whatever is the case (e_i is common
to either a and c_i or b and c_i).
3. If C_i has 3 countries then a spanning tree for C_i exists with only
2 leaves such that one of its leaves corresponds to c_i (trivial,
otherwise the original map would contain blisters). Construct that
spanning tree and connect c_i through e_i to either a or b,
whatever is the case.
4. If C_i has 4 or more countries then, by the induction hypothesis there exists a spanning tree for C_i with at most $\left\lfloor \frac{n_i}{2} \right\rfloor$ leaves if C_i is 0-blister, and at most $\left\lfloor \frac{n_i}{2} \right\rfloor + 1$ leaves if C_i is 1-blister or 2-blister. If C_i is 1-blister or 2-blister then one of its blisters must be c_i (C_i is connected to ab in the original map which was 0-blister) furthermore c_i, being a blister in C_i, must correspond to a leaf of the spanning tree of C_i.

Construct the spanning tree for C_i and then connect c_i through e_i to either a or b.

It is clear that the result is a spanning tree for the original map. Let us count now the number of leaves of this tree:

1) The pair of vertices a, b contributes at most one leaf (either a or b is connected to some vertex c_i in the tree).

2) If a component C_i has only 2 or 3 countries then it contributes exactly one leaf to the tree (one of the 2-leaves of the component's tree c_i ceases to be a leaf by connecting it to either a or b, see parts 2 and 3 in the construction above).

3) If a component C_i with 4 or more countries is 0-blister then it contributes $\left\lfloor \frac{n_i}{2} \right\rfloor$ leaves at most to the tree (induction hypothesis). If it is 1-blister or 2-blister then the spanning tree of the component has at most $\left\lfloor \frac{n_i}{2} \right\rfloor + 1$ leaves, but one of the leaves, that corresponding to c_i (see part 4 of the construction above) ceases to be a leaf by connecting it to either a or b. Therefore its contribution to the tree spanning the original map is not bigger than $\left\lfloor \frac{n_i}{2} \right\rfloor$, for this case too.
Counting all the contributions together we get

\[1 + \sum_{i=1}^{k} \left\lfloor \frac{n_i}{2} \right\rfloor \leq 1 + \left\lfloor \frac{\sum_{i=1}^{k} n_i}{2} \right\rfloor = \left\lfloor \frac{n_0}{2} \right\rfloor \]

(notice that for \(n_i = 3 \), \(C_i \) contributes 1 leaf which is:

\(\left\lfloor \frac{n_i}{2} \right\rfloor = \left\lfloor \frac{3}{2} \right\rfloor \).

Q.E.D.

Theorem 2 The bound given by Theorem 1 is sharp.

Proof. Consider a map as in Fig. 1.

Such a map has \(2k+1 = n \) countries. Either \(a_i \) or \(b_i \) must correspond to a leaf in any spanning tree for it. It follows that the number of leaves of any spanning tree for it must have at least \(k \) leaves.

But \(k = \left\lfloor \frac{2k+1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor \)

Q.E.D.
BIBLIOGRAPHY

