ERROR ESTIMATE FOR THE NUMERICAL SOLUTION, WITH LARGE MATRICES, OF FREDHOLM'S INTEGRAL EQUATION

by

E. Rakotch
Technical Report No. 36
July 1974
ABSTRACT

A bound is obtained for the actual error incurred in the numerical solution of Fredholm's integral equation, using bounds for eigenvalues of a symmetric kernel.
ERROR ESTIMATE FOR THE NUMERICAL SOLUTION, WITH LARGE MATRICES, OF FREDHOLM'S INTEGRAL EQUATION

by

E. Rakotch

1. Introduction

Following [4], a numerical solution is considered for the equation

\begin{equation}
 y(x) - \lambda \int_a^b K(x,t)y(t)dt = f(x), \quad a \leq x \leq b
\end{equation}

with arbitrary complex \(f(x) \) and \(K(x,t) \) continuous in \(I = [a,b] \) and \(I \times I \), respectively. Such a solution at points \(x_{in}, \ i = 1, \ldots, n, \) of \(I \) is obtained from the system

\begin{equation}
 (I - \lambda K^{(n)}) y^{(n)} = f^{(n)},
\end{equation}

where \(K_{ij}^{(n)} = w_{jn} K(x_{in}, x_{jn}) \) and \(f_{i}^{(n)} = f(x_{in}), \ i, j = 1, \ldots, n; \)
\(w_{jn}, \ j = 1, \ldots, n, \) are the coefficients of the integration method \(S \) with nodes \(x_{in} \), the assumptions for \(K(x,t) \) (except symmetry), \(f(x), \lambda \) and \(S \) being as in [4].

In fact, let \(y^{(n)} \) be an approximate solution of (2) obtained by actual computation and

\[\tilde{y}^{(n)}(x) \equiv f(x) + \lambda \sum_{j=1}^{n} w_{jn} \tilde{y}^{(n)}_{j} K(x, x_{jn}), \]

the approximate numerical solution; an estimate is sought for the error

\[\tilde{e}^{(n)}(x) = \tilde{y}^{(n)}(x) - y(x). \]
The symmetric case with a special kind of quadrature formulae (namely, such that the eigenvalues $\mu^{(n)}_i$ of the matrices $K^{(n)}$ converge to the reciprocal eigenvalues λ^{-1}_i according to Wielandt [5]) is considered in [4]. Another error estimate for the above method, which requires a bound for the maximum norm of the inverse operator in (1) or (2), is given by Anselone and Moore [1]. In this paper error estimates for large n, which requires manipulations with matrices smaller than that of the system (2) and no matrix inversion, are derived.

2. Error Bound

Using the notation of Anselone and Moore, put

$$e_n = \kappa_n f - K f, \quad \eta^{(n)} = \kappa_n K - K^2, \quad \rho_n = (I - \lambda K)^\gamma_n - f, \quad a_n = \|e_n\|,$$

$$A_n = \|e_n\|_2 \quad \text{where} \quad \|u\|_2 = \left(\int_a^b |u(x)|^2 dx\right)^{1/2};$$

then (see [4])

$$(I - \lambda K)^\gamma e_n = \lambda E_n, \quad \text{where} \quad E_n = \kappa_n \rho_n + e_n + \lambda \eta^{(n)} \gamma_n.$$

The error estimate given below is expressed by $\|E_n\|$ and $\|E_n\|_2$, which are, in turn, obtained in terms of e_n, $\eta^{(n)}$ and the $\rho_n(x_{i_n})$, $i = 1, \ldots, n$. In fact

\begin{align*}
(4) \quad \|E_n\| & \leq a_n + |\lambda| b_n + M c_n, \\
(5) \quad \|E_n\|_2 & \leq A_n + |\lambda| B_n + c_n \max_i \left(\int_a^b |K(x,x_{i_n})|^2 dx\right)^{1/2}.
\end{align*}
where

\[b_n = \sum_{i=1}^{n} \left| w_i \gamma(i) \right| \max_{i} \left| \kappa(n)(x, x_{in}) \right|, \]

\[B_n = \sum_{i=1}^{n} \left| w_i \gamma(i) \right| \left(\int_{a}^{b} \left| \kappa(n)(x, x_{in}) \right|^2 dx \right)^{1/2}, \]

\[M = \max_{I \times I} K(x, t), \]

\[c_n = \sum_{i=1}^{n} \left| w_i \rho_n(x_{in}) \right|. \]

By (3) and the Cauchy-Schwartz inequality,

\[\| \bar{e}_n \| \leq |\lambda| \left(\| E_n \| + \| \tilde{e}_n \| \| F \| \right), \]

where \(F(x) = \left\{ \int_{a}^{b} |K(x, t)|^2 dt \right\}^{1/2}. \)

It remains now to determine a constant \(\alpha > 0 \) such that for every \(u(x) \in C(I) \)

\[\| u \|_2 \leq \alpha \| u - \lambda K u \|_2, \]

then, by (3),

\[\| e_n \|_2 \leq \alpha |\lambda| \| E_n \|_2, \]

and consequently, by (6),

\[\| \tilde{e}_n \| \leq |\lambda| (\| E_n \| + |\lambda| \| F \| \| E_n \|_2), \]

with bounds for \(E_n(x) \) and \(\| E_n \|_2 \) given by (4) and (5).
For a symmetric kernel, the value of α in (8) was found in [4] to be $\sup_i |1 - \lambda_i^{-1}|$, where λ_i, $i = 1,2,\ldots$, are the eigenvalues. This result will now be generalized for every continuous kernel $K(x,t)$.

Putting $G = K^*K$, where $K^*(x,t) \equiv \overline{K(t,x)}$, it follows that

$$\|u - \lambda Ku\|^2_2 = \|u\|^2_2 - (Hu,u),$$

where $(f,g) = \int_a^b f(x)\overline{g(x)}dx$ is the scalar product of two complex functions f and g, and $H = \lambda K + \bar{\lambda}K^* - |\lambda|^2G$.

Since $H(x,t)$ is Hermitian, it follows that either (Hu,u) is always ≤ 0, or there exists

$$A = \max_{\|u\|_2 = 1} (Hu,u) = (Hu_0,u_0)$$

with $\|u_0\|^2_2 = 1$. Therefore, if λ is not an eigenvalue of $K(x,t)$, then for every $u(x)$ with $\|u\|^2_2 = 1$,

$$\|u - \lambda Ku\|^2_2 \geq 1 - (Hu_0,u_0) = 1 - A = \|u_0 - \lambda Ku_0\|^2_2 > 0,$$

and (7) holds with $\alpha = (1-A)^{-1/2}$.

3. **Bounding of α**

To find an upper bound for α, an upper bound $C < 1$ for A is required. Now, if the function $H(x,t)$ is not sufficiently differentiable,
or the function \(G(x,t) \) defined above is unobtainable in exact form, a Hermitian sufficiently differentiable approximation \(\hat{H}(x,t) \) of \(H(x,t) \) can be found such that \(\delta(x,t) = H(x,t) - \hat{H}(x,t) \) is sufficiently small; then

\[
A = (H u_o, u_o) = (\hat{H} u_o, u_o) + (\delta u_o, u_o) \leq \lambda + \gamma,
\]

where \(\lambda = \max \| u \|_2 \) and \(\gamma = \sup \| u \|_2 = 1 \).

and similarly,

\[
\dot{\lambda} \leq A - \gamma' \quad \text{where} \quad \gamma' = \inf \| u \|_2 = 1.
\]

Since \(\delta(x,t) \) is Hermitian, it follows that \(\gamma \geq 0 \) and \(\gamma' \leq 0 \).

Now let \(\Gamma \) and \(\Gamma' \) be the upper bounds for \(\gamma \) and \(-\gamma' \) respectively, and choose \(\hat{H}(x,t) \) in such a way that

\[
\lambda \leq c < 1 - \Gamma,
\]

which by (9) and (10) can be ensured, for instance, by requiring that

\[A + \Gamma + \Gamma' < 1. \]

To find an estimate for \(\lambda \), the following result of Wielandt [5], which holds for some classes of quadrature formulae (depending on \(\hat{H}(x,t) \)), may be used:

Let \(\mu_i^{(n)} \) be the sequences of eigenvalues of the matrices \(\hat{H}^{(n)} \), where

\[
\hat{H}^{(n)}_{ij} = \sqrt{w_{in} w_{jn}} \hat{H}(x_{in}, x_{jn}), \quad i, j = 1, \ldots, n,
\]
completed by $\hat{\mu}_i(n) = 0$ for $i > n$, and let $\hat{\lambda}_i$ be the corresponding eigenvalues of $\hat{H}(x,t)$; then $\hat{\mu}_i(n) + \hat{\lambda}_i^{-1}$ uniformly in i, i.e.

$$|\hat{\mu}_i(n) - \hat{\lambda}_i^{-1}| \leq q_n \quad \text{where} \quad \lim_{n \to \infty} q_n = 0.$$

In particular

$$\hat{\kappa} = \lim_{n \to \infty} \hat{\lambda}_n,$$

where $\hat{\lambda}_n = \max_{|z|=1} z^* \hat{H}(n) z$ is the maximal eigenvalue of $\hat{H}(n)$.

Now suppose (11) holds; then, there exists an integer N such that for every $n > N$, and for a suitable choice of c

$$(12) \quad \hat{\lambda}_n + q_n \leq c < 1 - r$$

and consequently

$$\hat{\lambda}_n + |\hat{\lambda}_n - \hat{\lambda}| \leq \hat{\lambda}_n + q_n \leq c.$$

It thus remains to find a value of n (assuming that (11) is satisfied) such that (12) holds.

4. Evaluation of $\hat{\gamma}_n(x)$ and numerical examples

To obtain an approximation to the solution of the system (2) from which
\(\gamma_n(x) \) is evaluated, the following iterative process is applied for some \(n' < n \) (see [2], p. 186),

(13) \(Y_{m+1} = Y_m - r_m - \lambda(I-\lambda K_{n'})^{-1} K_n r_m \) where \(r_m = (I-\lambda K_n)Y_m - f \)

with arbitrary \(Y_0 \), provided that

\[|\lambda|^2 \| (I-\lambda K_{n'})^{-1} (K_n - K_{n'}) K_n \| < 1, \]

until \(\max_i |r_m(x_{in})| \) is sufficiently small for some \(m \). The first approximation \(Y_0 \) is taken in all the following numerical examples as \((I-\lambda K_{n'})^{-1} f \).

Equation

\[y(x) - \lambda \int_0^1 |2x - t| y(t) dt = 1 - \lambda [2x^2 + \frac{1}{2}(1-2x) |1 - 2x|] \]

Solution

\[y(x) \equiv 1. \]

Bounds

\[M = 2, \quad F(x) = 4x^2 - 2x + \frac{1}{3} \leq \frac{7}{3} \]

The midpoint quadrature formula is used for all cases determined by the values of \(\lambda \) in the table below. The bounds \(B(\lambda) \) for \(\| (I-\lambda K)^{-1}\| \) are those obtained by Anselone and Moore from the corresponding bounds \(B_n(\lambda) \) for \(\| (I-\lambda K_n')^{-1}\| \).
Now, recalling the definitions for \(H(x,t), \hat{H}(x,t) \) and \(\delta(x,t) \) at the end of Section 2 and at the beginning of Section 3,

\[
H(x,t) = \lambda |2x-t| + \bar{\lambda} |2t-x| - |\lambda|^2 \left(\frac{8+|x-t|^3}{6} + xt - x - t \right);
\]

\(\hat{H}(x,t) \) is obtained through approximation of the function \(|z|\) in \([-1,1]\) to a partial sum of its Fourier series, namely

\[
\hat{H}(x,t) = 2 \text{Re}(\lambda) - 8\pi^{-2}[\lambda S_N(2x-t) + \bar{\lambda} S_N(2t-x)] - |\lambda|^2 \left(\frac{8+|x-t|^3}{6} + xt - x - t \right),
\]

where

\[
S_N(z) = \sum_{k=1}^{N} \frac{(2k-1)^{-2}}{2} \cos \left(\frac{1}{2} \pi z \right),
\]

\[
\delta(x,t) = -8\pi^{-2}[\lambda R_N(2x-t) + \bar{\lambda} R_N(2t-x)], \quad \text{where} \quad R_N(z) = \sum_{k=N+1}^{\infty} \frac{(2k-1)^{-2}}{2} \cos \left(\frac{1}{2} \pi z \right).
\]

Now

\[
(\delta y, y) = -16\pi^{-2} \text{Re} \sum_{k=N+1}^{\infty} \bar{\lambda}(2k-1)^{-2}(\alpha_k' \alpha_k + \bar{\beta}_k' \bar{\beta}_k),
\]

where

\[
\alpha_k = \int_0^1 y(x) \cos \left(\frac{1}{2} \pi x \right) dx, \quad \beta_k = \int_0^1 y(x) \sin \left(\frac{1}{2} \pi x \right) dx,
\]

\[
\alpha_k' = \int_0^1 y(x) \cos \left((2k-1) \pi x \right) dx, \quad \beta_k' = \int_0^1 y(x) \sin \left((2k-1) \pi x \right) dx;
\]

then by the Cauchy-Schwartz and Bessel inequalities,
(δy, y) ≤ 16π⁻²|λ|(2N+1)⁻² \sum_{k=N+1}^{\infty} |\tilde{a}_k\alpha_k + \tilde{b}_k\beta_k| ≤ 16π⁻²|λ|(2N+1)⁻²[S_N^{(1)}S_N^{(2)}]^{1/2},

where

\[S_N^{(1)} = \sum_{k=N+1}^{\infty} (|\alpha_k|^2 + |\beta_k|^2), \quad S_N^{(2)} = \sum_{k=N+1}^{\infty} (|\alpha_k'|^2 + |\beta_k'|^2), \]

and

\[S_N^{(1)} ≤ \sum_{k=1}^{\infty} (|\alpha_{2k}|^2 + |\beta_{2k}|^2) + \sum_{k=1}^{\infty} (|\alpha_{2k-1}|^2 + |\beta_{2k-1}|^2) ≤ \|y\|_2^{2}, \]

\[S_N^{(2)} ≤ \frac{1}{2}\|y\|_2^{2}, \]

yielding

\[\max\{δy, y\} ≤ 8\sqrt{\pi}\,|λ|\pi^{-2}(2N+1)^{-2}. \]

Approximation of \(\max(\tilde{N}y, y)\|y\|_2 = 1 \) is effected by application of Wielandt's Theorem 7 ([5], p. 273).

Also, the error functions \(e_n(x) \) and \(\eta(x, t) \) can be explicitly given using the error formula in Section 8 of [3] with

1) \(\alpha = \beta = \omega = 0, \quad \gamma = 1, \quad \delta = 1 \) or \(0 \),

2) the - sign in the expansion changed into + (as a result of dropping sign \((x-t) \) from the definition of the integrand),

and

3) \(N = 4 \) with vanishing remainder term (since the integrands are piecewise polynomial functions of their arguments).
In fact,

\[e_n(x) = -n^{-2}(f_n(x) + \frac{4}{3n}(4x-|4x-1|)B_3(\frac{1}{2} - n \min(2x,1)) + n^{-2}[\bar{B}_4(\frac{1}{2} - 2nx) - B_4(\frac{1}{2})]
+ \text{sgn}(1-4x)(\bar{B}_4(\frac{1}{2} - 2nx) - \bar{B}_4(\frac{n-1}{2}))], \]

\[n^{(9)}(x,t) = -n^{-2}(g_n(x,t) + \frac{4}{3n} \text{sgn}(t-4x)[\bar{B}_3(\frac{1-nt}{2}) - \bar{B}_3(\frac{1}{2} - n \min(2x,1))]), \]

where \(\bar{B}_j(y)\) is the periodic extension outside \([0,1]\) of the Bernoulli polynomial \(B_j(y)\) and

\[
 f_n(x) = \begin{cases}
 0 & \text{if } x \leq \frac{1}{2} \\
 \frac{8x-3}{24} & \text{if } x > \frac{1}{2}
\end{cases}
\]

\[
 g_n(x,t) = \begin{cases}
 1 + 6|4x-t|[\bar{B}_2(\frac{1}{2} - 2nx) + \bar{B}_2(\frac{1-nt}{2})], & \text{if } x \leq \frac{1}{2} \\
 \frac{t}{2} + 2x-1 + 6(2-t)\bar{B}_2(\frac{1-nt}{2}), & \text{if } x > \frac{1}{2}
\end{cases}
\]

Hence,

\[a_n < n^{-2}(s_n + \frac{5}{12}), \quad A_n < \|f_n\| + n^{-2}s_n < n^{-2}(0.27 + s_n) \]

\[|n^{(n)}(x,x_{in})| < (48n^2)^{-1}(22-7x_{in} + \frac{32\sqrt{3}}{9n}). \]
\[
\int_0^1 |\eta(n)(x, x_{in})|^2 dx < (6n^2)^{-2} \int_0^{1/2} \left[\left(u_{in} + \frac{4n^{-2}}{3} + 4x^2 \right) (x^2 - x + \frac{7}{48})^2 + (2x + \frac{5}{8} x_{in} - \frac{1}{4})^2 \right. \\
+ \left. C_n^2 - \frac{C_n}{n} (u_{in} + 2) \right] dx,
\]

where
\[
s_n = \frac{\sqrt{3}}{9n} + n^{-2}, \quad u_{in} = x_{in}(x_{in} - 2), \quad C_n = 1 + \frac{4\sqrt{3}}{9n}.
\]

Comparison of the new error estimates with those of [1] and with the actual error is given in the following table:

| \lambda | n | n' | Bound for \(B_n'(\lambda) \) by [1] | Bound for \(B_n(\lambda) \) by [1] | N from (14) | m from (13) | Bound for \(A \) by [1] | Error Estimate by [1] | New Error Estimate | Actual max \(|g_n(\frac{i}{20})| \) 0≤i≤20 |
|---------|----|----|-------------------------------------|-------------------------------------|-------------|-------------|-----------------|-----------------------|-------------------|---------------------|
| 2 | 400| 90 | 40.823 | 124.47 | 14 | 2 | 6.8 | 0.0031 | 1.551·10⁻⁴ | 2.56·10⁻⁸ |
| 10 | 1000| 100| 50.225 | 943.2 | 14 | 2 | 1.25 | 0.0642 | 4.405·10⁻³ | 1.8·10⁻⁵ |
| 18 | 2000| 100| 82.45 | uncomputable | 14 | 3 | 1.443 | - | 9.03·10⁻⁴ | 10⁻⁶ |
| 20 | 1000| 100| 95 | | 14 | 3 | 1.51 | - | 0.027 | 4.3·10⁻⁶ |
| 30 | 3000| 150| 167.6 | | 14 | 4 | 1.952 | - | 1.322·10⁻³ | 1.265·10⁻⁸ |
| -30 | 3000| 150| 265.6 | | 14 | 4 | 2.372 | - | 1.675·10⁻³ | 5.3·10⁻⁸ |
| -20 | 1000| 100| 216.64 | | 14 | 4 | 3.22 | - | 0.006 | 3·10⁻⁷ |
References

