ERROR ESTIMATE FOR THE NUMERICAL SOLUTION OF FREDHOLM'S INTEGRAL EQUATION

by

E. Rakotch

Technical Report No. 6

May, 1970.
ERROR ESTIMATE FOR THE NUMERICAL SOLUTION OF FREDHOLM'S INTEGRAL EQUATION*

by

E. Rakotch

ABSTRACT

A bound on the actual error incurred in the numerical solution of Fredholm's integral equation, using bounds for eigenvalues of a symmetric kernel, is obtained.

1. Introduction

Following [4], a numerical solution of the equation

\[y(x) = \lambda \int_{a}^{b} K(x,t)y(t)dt = f(x), \quad a \leq x \leq b \]

with arbitrary kernel \(K(x,t) \) continuous in \(a \leq x, t \leq b \), is considered. Such a solution at points \(x_i \) of \(I = [a,b] \) is obtained from the system

\[y_i^{(n)} - \lambda \sum_{j=1}^{n} w_i^{(n)} K_{ij} y_j^{(n)} = f_i, \quad i=1, \ldots, n \]

where \(K_{ij} = K(x_i,x_j) \), \(f_i = f(x_i) \), and \(w_i^{(n)} > 0 \) are coefficients of the integration method \(S \), the assumptions for \(K(x,t) \), \(f(x) \), \(\lambda \) and \(S \) being as in [4].

*This article is a part of the author's D.Sc. Thesis. Acknowledgement is due to Dr. J. Steinberg, Department of Mathematics, Technion, I.I.T. for his help and guidance in writing the thesis.
In fact, let \(y^{(n)} \) be an approximate solution of (2) obtained by actual computation, and let

\[
\rho_i^{(n)} = y_i^{(n)} - \lambda \sum_{j=1}^{n} w_j^{(n)} K_{ij} y_j^{(n)} - f_i, \quad i = 1, 2, \ldots, n.
\]

Define the function

\[
y_n(x) = \lambda \sum_{j=1}^{n} w_j^{(n)} y_j^{(n)} K(x, x_j) + f(x)
\]

Then an estimate for the error \(e_n(x) = y_n(x) - y(x) \) is to be found.

The symmetric case with a special kind of quadrature formula (namely, such that the eigenvalues \(\mu_i^{(n)} \) of the matrices \((w_j^{(n)} K_{ij}) \) converge to the reciprocal eigenvalues \(\lambda_i^{-1} \) according to Wielandt [6]) and other methods are considered in [4]. Another error estimate for the above method, which requires a bound for the maximum norm of the inverse operator in (1) or (2), is given by Anselone and Moore [1].

2. Error Bound

Introducing, in analogy to [4], the following notation:

\[
\varepsilon_n(x) = \sum_{i=1}^{n} w_i^{(n)} K(x, x_i) f(x_i) - \int_{a}^{b} K(x, t) f(t) dt
\]

\[
\eta_n(x, t) = \sum_{i=1}^{n} w_i^{(n)} K(x, x_i) K(x_i, t) - \int_{a}^{b} K(x, z) K(z, t) dz
\]

\[
a_n = \max_{I} |\varepsilon_n(x)|
\]

\[
A_n = \|\varepsilon_n\| \quad \text{where} \quad \|u\| = \left(\int_{a}^{b} u^2(x) dx \right)^{1/2}
\]

\[
M = \max_{I \times I} |K(x, t)|
\]
Then (see [4])

\[e_n(x) = \lambda \int_a^b K(x,t)e_n(t)dt = \lambda E_n(x) \]

where

\[E_n(x) = \lambda \sum_{i=1}^{n} w_i^{(n)} y_i^{(n)} \eta_n(x,x_i) + \epsilon_n(x) + \sum_{i=1}^{n} w_i^{(n)} \rho_i^{(n)} K(x,x_i) \]

Further

\[|E_n(x)| \leq a_n + |\lambda| b_n + M c_n \]

\[\|E_n\| \leq A_n + |\lambda| B_n + \sqrt{b-a} M c_n \]

where

\[b_n = \sum_{i=1}^{n} w_i^{(n)} |y_i^{(n)}| \max_I |\eta_n(x,x_i)| \]

\[B_n = \sum_{i=1}^{n} w_i^{(n)} |y_i^{(n)}| \left(\int_a^b \eta_n^2(x,x_i)dx \right)^{1/2} \]

\[c_n = \sum_{i=1}^{n} w_i^{(n)} |\rho_i^{(n)}| \]

and the bounds for \(a_n, A_n, b_n, \) and \(B_n \) are evaluated from those of the error terms for \(\int_a^b K(x,t)f(t)dt \) and for \(\int_a^b K(x,z)K(z,t)dz \) in the method S.

By (3) and the Cauchy-Schwarz inequality

\[|e_n(x)| \leq |\lambda| \left[\|E_n(x)\| + \|e_n\| \sqrt{F(x)} \right] \]

where

\[F(x) = \int_a^b K^2(x,t)dt \]
Now for every \(R(x,t) \in C(I \times I) \) and \(u(x) \in C(I) \) define the function \(v = Ru \) by

\[
v(x) = \int_a^b R(x,t)u(t)dt
\]

and let

\[
G(x,t) = \int_a^b K(z,x)K(z,t)dz
\]

It remains now to determine a constant \(\alpha > 0 \) such that for every \(u(x) \in C(I) \)

\[
\|u\| \leq \alpha \|u - \lambda Ku\|
\]

Then by (3)

\[
\|e_n\| \leq \alpha |\lambda| \|E_n\|
\]

and consequently, by (6)

\[
|e_n(x)| \leq |\lambda| \left[|E_n(x)| + |\lambda| \alpha \|E_n\| \sqrt{f}\right]
\]

with bounds for \(E_n(x) \) and \(\|E_n\| \) given by (4) and (5).

For a symmetric kernel the value of \(\alpha \) in (8) was found in [4] to be

\[
\sup_i |1 - \lambda_i^{-1}|
\]

where \(\lambda_i, i=1,2,... \) are the eigenvalues. This result will be now generalized for every continuous kernel \(K(x,t) \).

From the definition of \(G(x,t) \) it follows that

\[
\|u - \lambda Ku\|^2 = \|u\|^2 - (Hu,u)
\]
where

\[H(x,t) = \lambda [K(x,t) + K(t,x) - \lambda G(x,t)] \]

From the symmetry of \(H(x,t) \) it follows that either \((Hu,u) \) is always \(\leq 0 \), or there exists

\[A = \max_{\|u\|=1} (Hu,u) = (Hu_o,u_o) \]

with \(\|u_o\| = 1 \). Therefore, if \(\lambda \) is not an eigenvalue of \(K(x,t) \), then for every \(u(x) \) with \(\|u\| = 1 \)

\[\|u - \lambda Ku\|^2 \geq 1 - (Hu_o,u_o) = 1 - A = \|u_o - \lambda Ku_o\|^2 > 0 \]

and (7) holds with \(\alpha = (1-A)^{-1/2} \).

3. Evaluation of \(\alpha \)

To find an upper bound for \(\alpha \), an upper bound \(C < 1 \) for \(A \) is required. Now, if the function \(G(x,t) \) defined above is unobtainable in exact form, then a symmetric approximation \(\tilde{G}(x,t) \) of \(G(x,t) \), having at least the same derivatives as \(G(x,t) \), can be found (e.g. by a quadrature formula). Further let

\[\delta(x,t) = \tilde{G}(x,t) - G(x,t) \]

\[\tilde{H}(x,t) = \lambda [K(x,t) + K(t,x) - \lambda \tilde{G}(x,t)] \]

Then

\[\tilde{H}(x,t) = \tilde{H}(t,x) \]

\[H(x,t) = \tilde{H}(x,t) + \lambda^2 \delta(x,t) \]
Now

\[A = (H u_o, u_o) = (\tilde{H} u_o, u_o) + \lambda^2(\delta u_o, u_o) \leq \tilde{A} + \lambda^2(\delta u_o, u_o) \]

where

\[\tilde{A} = \max_{\|u\|=1} (H u, u) \]

and by the Cauchy-Schwarz inequality

\[(\delta u_o, u_o) \leq \gamma = \left[\int_a^b \int_a^b \delta^2(x,t) dx dt \right]^{1/2} \]

Therefore

\[(9) \quad A \leq \tilde{A} + \lambda^2 \gamma \]

and similarly

\[(10) \quad \tilde{A} \leq A + \lambda^2 \gamma \]

Now choose \(\tilde{G}(x,t) \) in such a way that

\[(11) \quad A + 2\lambda^2 T \leq B < 1 \]

where \(T \) is a computed bound for \(\gamma \); then by (10)

\[\tilde{A} \leq c < 1 - \lambda^2 T \]

and the required bound \(C = c + \lambda^2 T \) is obtained by (9).

To find an estimate for \(\tilde{A} \), the following result of Wielandt [6], which holds for some classes of quadrature formulae (depending on \(\tilde{H}(x,t) \)), may be used:
Let \(\tilde{\mu}_i^{(n)} \) be the sequences of eigenvalues of the matrices \(\tilde{H}^{(n)} \), where

\[
\tilde{H}^{(n)}_{ij} = \sqrt{w_i^{(n)} w_j^{(n)}} \tilde{H}(x_i, x_j), \quad i, j = 1, \ldots, n
\]

completed by \(\tilde{\mu}_i^{(n)} = 0 \) for \(i > n \), and let \(\tilde{\lambda}_i \) be the corresponding eigenvalues of \(\tilde{H}(x,t) \); then \(\tilde{\mu}_i^{(n)} \rightarrow \tilde{\lambda}_i^{-1} \) uniformly in \(i \), i.e.

\[
|\tilde{\mu}_i^{(n)} - \tilde{\lambda}_i^{-1}| < q_n \quad \text{where} \quad \lim_{n \to \infty} q_n = 0
\]

In particular

\[
\tilde{A} = \lim_{n \to \infty} \tilde{A}_n
\]

where \(\tilde{A}_n = \max_{|z|=1} z^* \tilde{H}^{(n)} z \) is the maximal eigenvalue of \(\tilde{H}^{(n)} \).

Now suppose that (11) holds; then there exists an integer \(N \) such that for every \(n > N \) and for a suitable choice of \(c \)

\[
(12) \quad \tilde{A}_n + q_n < c < 1 - \lambda^2 r
\]

and consequently

\[
\tilde{A} < \tilde{A}_n + |\tilde{A}_n - \tilde{A}| < \tilde{A}_n + q_n < c
\]

Therefore it remains to find a value of \(n \) (on assumption that (11) is satisfied) such that (12) holds.

4. **Convergence**

By the property of the quadrature formula

\[
(13) \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} \max_{x, t} |\eta_n(x, t)| = 0
\]

\[
(14) \quad \lim_{n \to \infty} \sum_{i=1}^{n} w_i^{(n)} = b - a
\]
If $\tilde{y}^{(n)}$ is the exact solution of (2), then $p_i^{(n)} = 0$ for each i, and consequently
\[c_n = \sum_{i=1}^{n} w_i^{(n)} |p_i^{(n)}| = 0. \]

Now introduce the Chebycheff norm $\| \|$; then, to obtain a uniform convergence of $y_n(x)$ to $y(x)$, it suffices to show that the sequence $\| \tilde{y}^{(n)} \|$ is bounded. Indeed
\[|E_n(x)| \leq |\lambda| \sum_{i=1}^{n} w_i^{(n)} |\tilde{y}_i^{(n)}| |n(x,x_i)| + |e_n(x)| \leq \]
\[\leq |\lambda| \| \tilde{y}^{(n)} \| \max_{I \times I} |n(x,t)| \sum_{i=1}^{n} w_i^{(n)} + a_n \]
and the required result follows by (13), (14) and (8).

A topological proof of convergence is given in [1]. Another proof, by purely analytical methods, will be given below.

Let P_n be the matrix of the system (2), $R(x,t,\lambda)$ the resolvent of the equation (1), and let
\[N = \max_{I \times I} |R(x,t,\lambda)|. \]
Then
\[P_n = I - \lambda L^{(n)} \]
where
\[L^{(n)} = w^{(n)} k \]
and it is to be proved that the sequence $\| P_n^{-1} \|$ is bounded. For this purpose we show that (see [3], where the formula contains a minor misprint)
\[P_n^{-1} = (I - \lambda^2 G^{(n)})^{-1}(I + \lambda R^{(n)}) \]
where
\[G_{ij}^{(n)} = \sum_j w_j \left[\lambda \int_a^b R(x_i, t, \lambda) n(t, x_j) dt + n(x_i, x_j) \right] \]

\[R_{ij}^{(n)} = \sum_j w_j R(x_i, x_j, \lambda) \]

Then by (13) and (14) it follows that
\[\lim_{n \to \infty} \| R^{(n)} \| < (b-a)N \]
\[\lim_{n \to \infty} \| G^{(n)} \| = 0 \]

and consequently
\[\lim_{n \to \infty} \left\| P_n^{-1} \right\| \leq [1 + |\lambda|(b-a)N] \lim_{n \to \infty} (1 - \lambda^2 \| G^{(n)} \|)^{-1} = 1 + |\lambda|(b-a)N \]

i.e. \(\| P_n^{-1} \| \) is bounded.

Proof of (15): The resolvent \(R(x, t, \lambda) \) satisfies the equation
\[R(x, t, \lambda) - \lambda \int_a^b R(x, z, \lambda) K(z, t) dz = K(x, t) \]

Then
\[\lambda \int_a^b R(x_i, t, \lambda) n(t, x_j) dt = \lambda \int_a^b R(x_i, t, \lambda) \left[\sum_{m=1}^n w_m K(t, x_m) K_{mj} - \lambda \int_a^b K(t, z) K(z, x_j) dz \right] dt - \lambda \int_a^b \left[\int_a^b R(x_i, z, \lambda) K(t, z) dz \right] K(z, x_j) dz \]

\[- \lambda \int_a^b R(x_i, z, \lambda) K(t, z) dz \]

\[- \int_a^b R(x_i, z, \lambda) K(z, x_j) dz = \sum_{m=1}^n w_m [R(x_i, x_m, \lambda) - K_{im}] K_{mj} \]

\[- \int_a^b [R(x_i, z, \lambda) - K(x_i, z)] K(z, x_j) dz \]

\[- \int_a^b R(x_i, z, \lambda) K(z, x_j) dz - n(x_i, x_j) \]
Hence

\[G_{ij}^{(n)} = w_{ij}^{(n)} \left[\sum_{m=1}^{n} w_{mj}^{(n)} R(x_i, x_m, \lambda) K_m - \int_{a}^{b} R(x_i, z, \lambda) K(z, x_j) dz \right] \]

Now

\[w_{ij}^{(n)} \sum_{m=1}^{n} w_{mj}^{(n)} R(x_i, x_m, \lambda) K_m = H_{ij}^{(n)} \]

where \(H^{(n)} = R(n)L(n) \), and by (16)

\[\lambda w_{ij}^{(n)} \int_{a}^{b} R(x_i, z, \lambda) K(z, x_j) dz = R_{ij}^{(n)} - L_{ij}^{(n)} \]

Therefore

\[I - \lambda^2 G^{(n)} = I - \lambda^2 R(n)L(n) + \lambda (R(n) - L(n)) = (I + \lambda R(n))(I - \lambda L(n)) \]

which proves (15).

5. Numerical Results

In the following examples all the numerical results are computed at points with constant distance \(h \), including the endpoints. The new estimates are then compared with those of Kantorovich and Krylov [2].

Equation

(17) \[y(x) + \int_{0}^{1} xe^{xt} y(t) dt = e^x \]

Solution

\[y(x) \equiv 1 \]
Bounds

\[M = e \]

\[F(x) = \int_0^1 x^2 e^{2xt} dt = \frac{x}{2} (e^{2x} - 1) < \frac{1}{2} (e^2 - 1) = 3.1945 \ldots \]

A bound for \(\alpha \), obtained by taking

\[\tilde{G}(x,t) = \sum_{n=0}^{N} \frac{(x+t)^n}{n!(n+3)} \]

and using results of Wielandt [6] for Simpson's quadrature formula, is

\[\alpha < 1.021 \]

Denote

\[C_n = [180(n-1)^4]^{-1} \]

\[u(x,t) = K(x,t)f(t) = xe^{(x+1)t} \quad v(x,t,z) = K(x,z)K(z,t) = xze^{(x+t)z} \]

Then

\[0 \leq \epsilon_n(x) \leq C_n \left[\frac{\partial^3 u}{\partial t^3} (x,1) - \frac{\partial^3 u}{\partial t^3} (x,0) \right] = C_n x(x+1)^3 (e^{x+1} - 1) \]

\[0 \leq \eta_n(x,t) \leq C_n \left[\frac{\partial^3 v}{\partial z^3} (x,t,1) - \frac{\partial^3 v}{\partial z^3} (x,t,0) \right] = \]

\[= C_n x(x+t)^2 [(x+t+3) e^{x+t} - 3] \leq C_n (1+t)^2 [(t+4) e^{t+1} - 3] \]

since

\[\frac{\partial^k u}{\partial t^k} (x,t) \geq 0, \quad \frac{\partial^k v}{\partial z^k} (x,t,z) \geq 0, \quad k=1,2,\ldots \]
for every \(0 \leq x, t, z \leq 1 \). Consequently

\[
A_n < C_n \left[\int_0^1 x(x+1)^6 (e^{x+1} - 1)^2 \, dx \right]^{1/2} < C_n \left[\sum_{i=1}^n w_i \frac{x}{x_i+1} (x_i+1)^6 (e^{x_i+1} - 1)^2 \right]^{1/2}
\]

and similarly

\[
\int_0^2 \frac{x^2(x,t)^2}{n} \, dx < C_n \left[\sum_{i=1}^n w_i \frac{x}{x_i(x_i+t)^4} (x_i+t+3)e^{x_i+t-3} \right]^2
\]

Case 1: \(n = 11 \)

\[
a_n < 2.84 \cdot 10^{-5} \quad A_n < 1.02 \cdot 10^{-5}
\]

\[
b_n < 2.75 \cdot 10^{-5} \quad B_n < 8.32 \cdot 10^{-6} \quad c_n < 7.1 \cdot 10^{-9}
\]

Error estimate

\[
|e_n(x)| < 8.97 \cdot 10^{-5}
\]

The actual maximal error at \(x = 0.02j \) is about \(7.5 \cdot 10^{-7} \).

Using the notations of Kantorovich and Krylov [2] (p.103-107) the following results are obtained:

\[
s = 4, \quad k_n = C_n
\]

(18)

\[
S \leq \max_i |y_i^{(n)}| + \frac{1}{2n-2} \max_i |y_i'(x)|
\]

(19)

\[
N_o = N(x) = N_t = M_r(x) = e, \quad N_r(x) = (r+1)e
\]

(20)

\[
P_s = 2^s e^2, \quad Q_s = (1 + \frac{s}{2})2^s e^2
\]
Now

$$B = 1.806$$

and by (17)

$$S < 1.14$$

Hence ([2] p.107)

$$H(0) < 1.15$$

and consequently ([2] p.106)

$$|e_n(x)| < 1.73 \cdot 10^{-3}$$

which is about 19 times greater than our estimate.

Case 2: \(n = 21 \)

\[
\begin{align*}
a_n &< 1.78 \cdot 10^{-6} \\
A_n &< 6.3 \cdot 10^{-7} \\
b_n &< 1.72 \cdot 10^{-6} \\
B_n &< 5.2 \cdot 10^{-7} \\
c_n &< 7 \cdot 10^{-9}
\end{align*}
\]

Error estimate

$$|e_n(x)| < 5.64 \cdot 10^{-6}$$

The actual maximal error at \(x = 0.02j \) is about \(5 \cdot 10^{-8} \).

Now

$$B = 1.857$$

and by (18)

$$S < 1.068$$

which together with (19) and (20) yields in a similar manner

$$|e_n(x)| < 1.05 \cdot 10^{-4}$$
Numerical solution of equation (17) by the Gaussian quadrature yields the following results:

By [5] p. 48

\[e_n(x) = -k_n \frac{2^n}{2^n x} [xe(x+t)t] = -k_n x(x+1)^{2n} e(x+1)t \quad 0 < t = \tau(x) < 1 \]

\[\eta_n(x,t) = -k_n \frac{2^n}{2^n z} [xze(x+t)z] = -k_n x(x+t)^{2n-1} [\xi(x+t)+2n]e(x+t)\xi \quad 0 < \xi = \xi(x,t) < 1 \]

where

\[k_n = \left[\binom{2n}{n}^2 (2n+1)! \right]^{-1} \]

Thus

\[a_n < 2^n k \frac{e^2}{n} \quad A_n < k e^1 \frac{1}{\int_0^1 x^2(x+1)^{4n} e^{2x} dx} \frac{1}{\sqrt{2}} \]

(21) \[|\eta_n(x,t)| < k_n x(x+t)^{2n-1} (x+t+2n)e^{x+t} \]

By the notations of [2] p.106

\[\sigma \leq k_n \tau(2n) \leq k_n (p_{2n} + Q_{2n}) \]

where \(p_{2n} \) and \(Q_{2n} \) are defined by (20).

For \(n = 4 \)

\[a_4 < 1.06 \cdot 10^{-6} \quad A_4 < 3.2 \cdot 10^{-7} \quad c_4 < 4.5 \cdot 10^{-9} \]

and by (21)

\[b_4 < 1.063 \cdot 10^{-6} \quad B_4 < 3 \cdot 10^{-7} \]

Hence

\[|e_n(x)| < 3.273 \cdot 10^{-6} \]
The actual maximal error at $x = 0.02j$ is about $2 \cdot 10^{-8}$.

Using the notations of [2] the following results are obtained:

$$B = 1.387$$

$$S \leq \max |y_1^{(4)}| + \max(d_i |0 \leq i \leq 4| \max |y_4'(x)| < 1.462$$

where

$$d_0 = x_1, \quad d_4 = 1-x_4, \quad d_i = \frac{1}{2} (x_{i+1} - x_i), \quad i=1,2,3$$

Hence

$$H^{(0)} < 1.463$$

and consequently

$$|e_n(x)| < 4.22 \cdot 10^{-5}$$

REFERENCES

