
Translations Between Textual Transition Systems and Petri

Nets

Katerina Korenblat� Orna Grumberg� and Shmuel Katz

Computer Science Department

The Technion� Haifa� Israel

fpokozy�orna�katzg�cs�technion�ac�il
FAX� ���	
 �		 ��	� PHONE� ���	
 �	�

		

Abstract

Translations between models expressed in textual transition systems and those ex�
pressed in structured Petri net notation are presented� in both directions� The transla�
tions are structure�preserving� meaning that the hierarchical structure of the systems is
preserved� Furthermore� assuming non��nite state data manipulation has been abstracted
out of the textual transition system� then translating one model to another and then back
results in a model which is identical to the original one� up to renaming and the form
of Boolean expressions� Due to inherent di�erences between the two notations� however�
some additional information is required in order to obtain this identity� The information
is collected during the translation in one direction and is used in the translation back�

Our translation is also semantics�preserving� That is� the original model and the
translated model are bisimulation equivalent� assuming non��nite data abstraction� Thus�
the translation preserves all temporal properties expressible in the logic CTL��

The translations are both more generally applicable and more detailed than previously
considered� They are shown both for individual modules� with a collection of transitions�
and for a structured system� where modules are combined in di�erent ways�
keywords� model translations� Petri nets� textual transition systems� structure and se�
mantics preservation�

� Introduction

In order to use di�erent veri�cation tools for di�erent properties of a model� it has become
common to translate among notations� Here we show how such translations can be done for
the very di�erent paradigms of textual transition systems as seen in �MP��	 and a structured
version of Petri nets� as seen in� e�g�� �Rei�
	� Each paradigm is translated both for a �at�
simple version� and for a structured one� Rather than considering the translation as an internal
prelude to activating a tool� we emphasize the possible optimizations that are possible in order
to obtain a result natural in the target notation� and which has easy traceability back to the
source� This is important� for example� in order to allow errors discovered in the target model
to be traced back to the corresponding error in the source�

After brie�y presenting the two notations for expressing models� we show our algorithms
for translating from a textual transition system to a Petri net� and then for translations in the
opposite direction� We do assume that the textual transition systems have abstracted away

�

from data manipulations of non
�nite state variables �e�g�� integer variables�� It is impor

tant to note that the notion of �transition� is fundamentally di�erent for the two notations�
A textual transition represents an entire family of connections between states to which the
transition is applicable and the ones after the transition� expressed as a predicate or assign

ments relating the state before and the one after� A Petri net transition also applies to many
con�gurations of tokens in the system �called a marking� that traditionally are associated
with the states� namely all those for which the input places of the transition have tokens�
These are transformed to a con�guration where the output places have tokens� while the rest
of the system con�guration is unchanged� Thus both of these notions of �transition� di�er
from a single edge connecting one full system state to another� in a state transition diagram
or Kripke structure representation� even though those too are called �transition systems��

The translations must connect these concepts� and also treat the di�erent concepts of
modularity and synchronization supported by each� We also show that additional information
from a translation in one direction can be used to help in traceability or to improve the quality
of translations back in the other direction� This is especially useful when a system has been
translated� the result has then been slightly modi�ed� and it is then translated back to the
original notation� Using the additional information can yeild a result which has a similar
structure to the original� The additional information is shown to be �complete� relative to
the abstraction of variables from the textual transition notation mentioned above� That is�
if a model is translated to another and then immediately translated back� then based on the
additional information the same model is obtained� up to renaming and changing the form of
Boolean expressions�

Our translation is also semantics�preserving under data abstraction� That is� the original
model and the translated model are bisimulation equivalent� Thus� the translation preserves
all temporal properties expressible in the logic CTL��

The translations seen in this paper are abstractions of the operation of actual compilers
that are part of the VeriTech framework �GK��	 for translating among speci�cation and
veri�cation tools� The textual transition system notation is similar to the core notation of
VeriTech� that is used as an intermediate notation in translating among diverse tools�

��� Related works

The problem of translating a speci�cation given in terms of one formal model to others
has been considered for many formalisms� The most general frameworks for this are the
VeriTech project and the SAL project �BGL���	� Within the STeP project �BBC���	 there
is a translation from a C
like programming language notation to textual transition systems�
Below we consider translations related speci�cally to Petri net models� Often translations to
Petri nets arise from the task of transforming an input language of some task
oriented Petri
net model �EZ��	� �Kem��	�

On the other hand� translations of Petri Nets to formalisms that provide additional anal

ysis possibilities appear in �Wim	� �GP�
	� �SV��	�

Several papers considered the relationship between various classes of Petri nets and ex

plicit state transition systems� In �NRT��	 behaviour preserving transformations were shown
between elementary transition systems and elementary net systems� In �Vog��	 the existence
of an ST
bisimilar Petri net is proved for an arbitrary asynchronous transition system� There
are works �see� for example �WN��	� �PK��	� characterizing classes of explicit state transi

tion systems generated by di�erent classes of Petri Nets� The idea of those translations is

�

to extract a set of events available in a state of the model and to simulate this set explicitly
in terms of the other model� Those works focus on an extraction of classes of the models
which somehow correspond� On the other hand� our task in this paper is to give a structured
correspondence between wider classes of Petri nets and textual transition systems �that are
closer to programs than are explicit state transiton systems��

In �GP�
	 a translator is presented from Petri nets to the language PROMELA of the
veri�cation tool SPIN� A place in a Petri net is translated to a variable �expressing a number of
tokens in the corresponding place� in PROMELA� and a transition in a Petri net is translated
to a rule for changing variable values� corresponding to the transition �ring� A similar method
is used in �Wim	 for a translation of safe Petri nets to textual transition systems� Our
translation establishes correspondences among transitions in Petri nets and transitions in
textual transition systems in a similar way to theirs� although we attempt to optimize the
result� Moreover� we also give a translation in the other direction�

Since the concept of modularity used in Petri nets is quite di�erent from that accepted in
other formalisms� most existing translations deal with nonmodular Petri nets� A translator
that does refer to the compositional structure of the model is suggested in �SN��	� There a
SA�RT speci�cation model is translated to a class of Petri nets that does allow composing
subnets through external places� Since the modularity in textual transition systems allows
additional possibilities� we use a more powerful Object Oriented Petri net model� and show
a correspondence between modularity of the models in both directions�

� Preliminaries

��� Textual Transition Systems

The textual transition system notation �denoted TTS in the continuation� is similar to the one
described in �MP��	� but extended to treat various degrees of synchronization among modules�
A transition is a state transformer with an enabling condition de�ning the set of states for
which it is applicable� and assignments that relate the state before the transition to the state
afterwards� We will refer to the former as the enable
part� and the latter as the assign
part�
A basic module has a header with the module name followed by formal parameters within
parentheses� locally declared variables� and a set of named transitions� A composed module
has a header as above� and local variables� but contains instantiations of other modules� with
actual parameters in place of formal ones� and with composition operators between them�
Modules can be composed asynchronously �using jjj as in Lotos �� synchronously �using jj �
and partially synchronously� by listing pairs of transitions that must synchronize� between j
delimiters� Thus a typical partial synchronization would appear asM��a� b�j�t� s�jM��� where
t and s are the names of transitions in M� and M�� respectively �see Figure ��� for a richer
example��

Two transitions that are synchronized are equivalent to a single �product� transition de

�ned by taking the conjunction of their enabling predicates� and with both sets of assignments�
A module composed asynchronously from instantiations of two submodules is equivalent to a
basic module with the union of the transitions in the components� One with synchronous com

position is equivalent to taking the cross product of the transitions in the components� while
a partial synchronization is equivalent to taking the cross product of those that synchronize
and the union of the rest�

�

��� Object Oriented Petri Nets

In this paper we use as a Petri net model a combination of object
oriented concepts and
standard place�transition Petri nets� The approach chosen for expressing the structuring
primitives and composing mechanisms is from �EJN��	� �Ess��	� restricted to the case of safe
place�transition Petri nets� Inheritance is out of our scope since there is no analogous concept
in textual transition systems�

First� we de�ne a safe Petri net as a structure N � �P� T� F� m��� where P and T are
disjoint sets of places and transitions� respectively� F � �P � T � � �T � P �� and m� � P

is the initial marking of N � A marking of N is the set of its places which contain tokens�
A place p is a preplace of a transition t �written p � �t� if �p� t� � F � It is a postplace of
t �written p � t�� if �t� p� � F � A transition t is enabled at a marking m if �t � m and
t � ��m n �t� � �� i�e� all preplaces of t contain a token and all postplaces of t that are not
preplaces do not contain a token� A marking m� is obtained by �ring of enabled transition t

from m if m� � �m n �t�� t�� i�e� in a �ring of a transition tokens move from preplaces of the
transition to its postplaces� A marking is reachable if it is obtained from the initial marking
by �ring a sequence of transitions�

A PN�class is characterized by a safe Petri net� a set of interfaces� a set of class instance
holders referring to other classes� and a set of arcs connecting interfaces with places� transitions
or other interfaces outside of the class� Directed and undirected interfaces are distinguished�
For the �rst ones only interface
to
place and transition
to
interface arcs are allowed� We
de�ne a basic PN�class as a PN
class which does not refer to other classes� A place from a
PN
class is an input place of this class if there is an arc from some interface of the PN
class
to this place� We denote places� transitions and interfaces by net elements�

Petri net models are presented as communicating PN
class instances and net elements�
Class instances communicate by sending and receiving tokens to and from one another� They
are hierarchically structured� i�e� they may contain other class instances�

If a Petri net model is obtained from a translation of a transition system model using our
TTS	PN
translation then we assume the following agreements on net element names�

� Two places constructed from one boolean variable are called by the same name super

scripted by ��� and ����

� Several places that correspond to one program counter are called by the same name�
beginning with �� and extended with the program counter values�

� Several PN
transitions that correspond to one TTS
transition are called by the same
name with di�erent superscripts�

� A pair of input and output interfaces used for connection with the same outside place
are called by the same name with pre�xes In and Out � respectively�

� Translating Transition Systems to Petri Nets

��� Basic issues of the translation

Each transition system model can be translated into a Petri net model� There are two styles
of translation� The �rst one constructs a �at Petri net in which we lose information about the
modularity of the transition system model� The second style translates a transition system

�

model to a hierarchical Petri Net �for instance� the Petri net model described above� that
keeps the original modular structure of the model� Note that for an arbitrary transition system
model� a single module representation can be constructed using the semantics of transition
systems� Then the translation of a transition system model to a �at Petri net is a special
case of the modular translation which will be described below�

The main stages of the translation from transition systems to Petri Nets involve trans

lating a basic TTS
module� and representing the modular structure of a transition system
model� In the �rst stage� we associate internal variables of the TTS
module with places and
external variables �including parameters� with interfaces� transitions from the TTS
module
are associated with transitions in the corresponding PN
class �in a way to be described later��

In treating the modularity� an instantiation of a TTS
module is translated to an instance
of the corresponding PN
class whose interfaces are connected with outside places produced
for the external variables and actual parameters of the TTS
module� Asynchronous com

position of two TTS
modules is translated to a PN
class consisting of the instances of the
PN
subclasses corresponding to those TTS
modules� To represent partial synchronization we
extend the set of interfaces of the corresponding synchronized PN
classes with new interfaces
which correspond to preplaces�postplaces of the synchronized PN
transitions� Synchronous
composition of two TTS
modules is translated as a partial synchronization between those
TTS
modules in which all transitions are synchronized�

Explicit control constructions� allowed in other model notations� can be expressed in
transition systems by program counters� To translate them to Petri Nets we produce a
special place for each value of each of the program counters� Moving a token through these
places gives the required control order�

Below we explain the translation outlined above in greater detail�

��� Representation of variables

To translate a variable of an enumerated type we can produce a place for each variable value
and obtain a place�transition net� In this paper we consider in detail the translation of
a boolean variable to a pair of places� We also give a brief description of an extension of
this technique for a variable of an enumerated type by showing how to handle the program
counters�

An unbounded �e�g�� integer� variable is abstracted before the translation to a boolean
one which is identically equal to true� Note that in transition system models an uninitialized
variable is given some arbitrary initial value and from then on it is always de�ned� Therefore�
an abstracted variable can be considered as a resource which is always present and whose
value is not considered� We mark a fully abstracted variable with the label �abs� to show that
it is obtained by abstraction of a variable of a more powerful type�

Usually a boolean variable is translated to a pair of places corresponding to its values�
At any state of the constructed Petri net we have exactly one token in this pair of places
which represents a concrete value of the variable� However� there exists a class of boolean
variables which we can represent by one place and interpret its true
value as the presence
of a token in the place� and its false
value as the absence of a token� We can identify this
class as the set of variables whose old and new values cannot be false simultaneously in any
TTS
transition where the variable appears� In the continuation� such variables are marked
with the label �tkn�� As will be shown in Section � when we translate a Petri net model to a
transition systems representation� for each place we obtain a variable from this class if we do

�

v v01

INIT_

INIT_

v

v

INIT_

INIT_

v

INIT_ INIT_v1 v0v01

(a) (b)

v

Figure ���� Modeling of nondeterministic choice of the initial value of v

not translate it in a special way due to some name agreements�
Thus we have a transition system model with boolean variables some of which are labeled

with �abs� or �tkn�� Consider a variable v� In the general case �there is no label for v�� we
represent v as a pair of places v� and v� for true and false values of v� respectively� If v
is marked with �abs� we translate it to the place v� which always contains a token� If v is
marked with �tkn� we translate it to the place v which contains a token i� v � true�

We say that an initial value of a variable is necessary if there is an execution of the
transition system model in which the variable is used before its value is assigned by the
noninitialized part of the model� For each variable which is not initialized but whose initial
value is necessary� we model nondeterministic choice of its initial value in the following way�
For a boolean variable v without a label we add to the Petri net model an additional place
INIT v containing a token in the initial marking� A place vi obtains a token from INIT v

through the corresponding transition INIT vi �see Fig� ���a�� For a boolean variable labeled
with �tkn� we produce a construction analogous to the previous case except that a place v�

does not exist �see Fig� ���b�� So there is an option of throwing away the initializing token�
For an abstracted variable its concrete value is not considered and we can initialize it by
putting a token in the corresponding place�

We refer to parameters and external variables of the TTS
module as external identi�ers�
An external identi�er of the TTS
module is translated to interfaces of the corresponding PN

class just as an internal variable is translated to places� In a Petri net model� input� output�
and undirected interfaces are distinguished� A variable with a label �abs� is translated to
an undirected interface� For a variable of other types we produce an input interface if the
corresponding variable value is used in the module and an output interface if the corresponding
variable value is produced in the module� Name agreements for an interface are the same as
for a place� however if we need both input and output interfaces for an external identi�er we
add �In � and �Out � pre�xes to their names to distinguish them�

��� Representation of TTS�transitions

Since a notion of a transition exists in both models� we will distinguish between TTS

transitions and PN
transitions�

When a variable is represented in Petri Nets by several places� any change of its value
has to be expressed explicitly by �ring of some PN
transition with its old value as an input
and the new value as an output� So we need a separate PN
transition for each valuation of
variables appearing in a TTS
transition �see Fig� �����

For each TTS
transition we want a small number of PN
transitions� To decrease the
number of PN
transition we transfer the enable
part of the TTS
transition to disjunctive

�

VAR a� x� y� z � bool
TRANS t� ��

enable� a � �x � y��z�
assign� a� � false

t
ρ2 tρ3tρ1x1 y1

a1

0a

z0

Figure ���� Translation of a TTS
transition t

Obtained

UsedLost

t
ρ

t
ρ

ρ
t

t
ρ

Figure ���� Construction of a PN
transition

normal form and translate a part of the transition corresponding to each disjunct as a separate
PN
transition� For example� if we translate the TTS
transition t from Figure ��� directly we
will obtain a PN
transition for each of the seven valuations of variables x� y� z and a that
satisfy the enabling condition� Using the disjunctive normal form �a
 x� � �a
 y� � �a
�z�
we can consider only three PN
transitions for the valuations corresponding to each disjunct�

Fix a TTS
transition t� Below we consider the case in which all variables are local� The
case of external variables of the translated TTS
module is obtained by using interfaces for
the variables instead of places�

A set of conditions of a TTS
transition t �written Cond�t�� is the set of disjuncts from
the disjunctive normal form of the enable�part of t� For each condition c from Cond�t� and
a valuation � of variables of c � assign�t� and their primed version satisfying enable�t�� we
construct a PN
transition t� in the following way� Let us denote by Obtained t� �Lost t

�
� a

set of places corresponding to new �old� values of variables which are changed in t� A set
of places corresponding to variables which are used in t but do not change their values is
denoted by Used t�� Let us characterize these sets for di�erent types of variables in a formal
way� Consider a variable v such that ��v� � val and ��v�� � val�� If val � val�� we put
the place corresponding to this value in Used t�� Consider the case where a value of v is
changed� If v is not labeled� the place corresponding to val belongs to Lost t

�
and the place

corresponding to val� belongs to Obtained t�� If v is labeled with �tkn� then the corresponding
place belongs to Obtained t� if val � false� or to Lost t

�
if val � true� Since after abstraction

we obtain a variable which is always true� a place corresponding to an abstracted variable
always belongs to Used t��

Now we can construct t� as a PN
transition with a set of preplaces Lost t
�
�Used t� and a

set of postplaces Obtained t��Used t� �see Fig� �����
As was shown before� the TTS
transition t from Figure ��� is translated to three PN

transitions t�� � t�� � t�� � where �� � a�true� a��false� x�true� x��true� �� � a�true� a��false�

�

VAR a � int �a � boolean�� abs��
	PC � int INIT

TRANS t��
enable� 	PC �

assign� a� � a�
 �a� � true�

	PC � � �
TRANS t�� ��

enable� 	PC � �
assign� a� � � �a� � true�

TRANS t��
assign� 	PC � �

a

t1 t2

&

t3

PC1

ρ2

&PC3

t3
ρ3t3

ρ1

&PC2

Figure ���� Translation of program counters ��� � �PC � �� �� � �PC � �� �� � �PC � ��

y�true� y��true� and �� � a�true� a��false� z�false� z��false� As an example we construct
t�� as follows� Since ���a� �� ���a��� the place a� corresponding to ���a� belongs to Lost t

��

and the place a� corresponding to ���a
�� belongs to Obtained t�� � Since ���x� � ���x

��� the
place x� corresponding to ���x� belongs to Used t�� �

Let us consider now the translation of program counters� To express the order of execution
among PN
transitions de�ned by a program counter we produce a special place for each
possible value of the program counter� When we translate a transition with a program counter
we cannot produce a token on the place for its current value without removing a token from
the place for its previous value because a program counter can have no more than one value�
We assume that program counters are always initialized� Obviously� a place corresponding to
the initial value of the program counter contains a token in the initial state�

As was done for boolean variables� we construct for each value of a program counter in
a TTS
transition a separate PN
transition� Given a TTS
transition and a program counter
with known old and new values in it� to express the change of the program counter value in
the constructed PN
transition we add the place corresponding to the old value of the program
counter to its input� and the place corresponding to the new one to its output� Note that a
TTS
transition in which the program counter appears only in the assign
part is equivalent to
a version of that transition with a disjunction over all possible values of the program counter
in the enable
part�

The translation of a program counter is illustrated in Fig� ���� We produce a place a

for a fully abstracted variable a �a result of abstraction is shown in the brackets�� and places
�PC�� �PC�� �PC� for the corresponding values of �PC� For the TTS
transition t� we
have three possible values of �PC and three PN
transitions t

��
� � t��� and t

��
� � respectively�

In the TTS
transition t� �PC does not assigned� therefore a token is returned to the place
�PC� after execution of the PN
transition t��

��� Translation of modular structure

In this section we translate an arbitrary TTS
module to a PN
class assuming that its variables
are translated to places and interfaces as shown before� and for each submodule the corre

sponding PN
class is already produced� We need to show how an instantiation of a submodule
induces arcs connecting the interfaces of the corresponding subclass with net elements outside
of this subclass� To �nish the translation we must also show how the di�erent composition
operations in�uence connections between the produced instances of subclasses�

/
\/

\v/
\/

\v/
\/

\v

(a) (b) (c)

v v v

Figure ���� Representation of the correspondence between interfaces and their actual values

N
m2

N m |||m
N

m1

21 :

Figure ���� Translation of asynchronous composition

Given a TTS
module m and an external identi�er v in it� an instantiation of m uses a
corresponding actual parameter of m� if v is a parameter� or v itself� otherwise� which will
be denoted by hvi� We �rst describe the construction of arcs connecting a PN
class with its
outside in the case of variables labeled with �tkn�� As shown in Section ���� variables v and
hvi are translated to the interface v and a place hvi� If v is an input interface we have an arc
�hvi� v� �see Fig� ���a�� and if v is an output interface we have an arc �v� hvi� �see Fig� ���b��

In the case of variables labeled with �abs�� as shown in Section ���� variables v and hvi are
translated to the undirected interface v� and a place hvi�� Then we have a bidirectional arc
�v�� hvi�� �see Fig� ���c��

An asynchronous composition of two TTS
modules is represented in a Petri net model as
a class consisting of instances of classes corresponding to these modules �see Fig� �����

Next we consider the translation of partial synchronization of two TTS
modules� Given
a PN
transition t from class Nm� a new class Nm n t is constructed as the class containing
all PN
transitions of Nm besides t and additional input �output� interfaces for preplaces
�postplaces� of t� A partial synchronization m�j�t�� t��jm� is represented as a class consisting
of instances of classes Nm� nt� and Nm� nt� connected with the new PN
transition t�t� from
Nm�j�t��t��jm� in the following way� t�t� connects to interfaces corresponding to local variables
used in the TTS
transition ti and to places corresponding to external identi�ers used in the
TTS
transition ti� To illustrate partial synchronization consider Fig� ���� For the PN
class
Nm� we construct the PN
class Nm� nt� which contains new interfaces v�� v� and does not
contain the PN
transition t�� The produced synchronized transition t�t� is connected with its
preplaces v�� u� and postplaces v�� u� in the subclasses through the corresponding interfaces
and with the outside preplace a� and postplace a� directly�

Note that if some external identi�er have di�erent �old or new� values in the TTS

transitions t� and t�� the corresponding synchronized transition does not exist� So we con

struct a synchronized transition t�t� only in cases where the original and obtained values in
t� and t� coincide�

�

t1

1

2

a
t2

u

u

0

v2

v1

a1

N :
m 1

2

1

2

1

1

a0

a1

2m1 m

v

v

u

u

1 2N t N t\ \

v u
1

2
v u

2

1

t t2

N 1m |(t t 1 2)|m 2

N :m 2

=>

Figure ���� Translation of partial synchronization

A full synchronization can be considered as a partial synchronization of all combinations
of transitions from the synchronized TTS
modules�

We now consider the translation of a global program counter appearing in more than one
TTS
module� As was done in the �at case� we translate each possible value of the program
counter to a place� For a value appearing in only one module we produce a place in the subnet
corresponding to this module� A value appearing in several modules will be translated as a
global variable and will be used in subnets through interfaces�

� Translating Petri nets to Transition Systems

��� Representation of elements of a PN�class

In this section we show how a Petri net model can be translated to a transition system
model� As for the other direction� there are two important aspects of the translation� The
�rst is the construction of basic TTS
modules for basic PN
classes� and the second is the
representation of structured PN
classes� To construct a basic TTS
module corresponding
to a given basic PN
class we translate its places to variables� interfaces to either external
variables or parameters and PN
transitions to TTS
transitions�

To design the translation of a basic PN
class Nm� we �rst consider the translation of its
interfaces� We need a criterion to decide which interfaces will be represented by parameters
of m and which by external variables� if in all instantiations of Nm the interface is connected
with outside places that correspond to the same variable� then the interface is translated to
an external variable� Otherwise� the interface is translated to a formal parameter of m and
the name of this parameter agrees with the name of the interface�

For places in Nm we produce internal variables in m except for input places� Places
with the pre�x � �corresponding to a program counter� will be translated in a special way�
described later� For places v�� v� from Nm we produce a boolean variable v in m which is
initialized with � if there exists an initial token in the place v� and with � otherwise� In the
same way we can translate a pair of places which contain exactly one token in any state of

��

VAR a� v � bool

�
 TRANS t�t�t��
enable� a � �v
assign� v� � �a � v

a� � a
v

a v a

t t t

0 1 1

0

1 2 3

Figure ���� Translation of PN
transitions

the net �this pair of places forms a place invariant�� However� here the choice of which place
represents ��� and which ��� is arbitrary� The initialization of the corresponding variable is
de�ned according to this choice�

Consider now a place v in Nm that has no superscript and is not a part of a place invariant�
We produce a boolean variable v in m with the label �tkn� which indicates that the value of
the variable is to be interpreted as the presence of a token in the place� We initialize such
a variable with true if the corresponding place contains a token in the initial marking� and
with false otherwise�

An input place is translated to an external variable if it can receive a token only through
one arc� It is translated to a parameter� otherwise� In both cases it will be handled like any
other place when the PN
class containing Nm will be translated�

Next we consider the translation of PN
transitions� We refer to transitions that are
connected with places only� Transitions connected with interfaces are translated in the same
way�

A possible approach is to translate each PN
transition to a TTS
transition in which all
variables are de�ned� Another approach is to identify a set of PN
transitions which can be
represented by one TTS
transition under di�erent valuations of its variables� Each such set
will be translated to a single TTS
transition� The advantage of the latter approach is that
the resulting system is more concise� Furthermore� if such a set of PN
transitions is the
result of the TTS	PN
translation� then this approach results in a model which has a greater
resemblance to the original transition system model�

We therefore follow the second approach� For this purpose we introduce the notion of
generalized transition which is a set of PN
transitions with the same set of variables produced
for their input and output places� A set of PN
transitions obtained from one TTS
transition
in a preceding TTS	PN
translation is also considered as a generalized transition� Recall
that all PN
transitions in this set have the same name with di�erent superscripts and are
therefore easy to identify�

As an example of a generalized transition� consider the PN
transitions t�� t� and t� �see
Fig� ����� Note that �t� � fa�� v�g� �t� � fa�� v�g� �t� � fa�� v�g� These sets of places
correspond to the set of variables fa� vg� Similarly� the outputs of t�� t� and t� correspond to
the set of variables fa� vg� Thus� ft�� t�� t�g is a generalized transition�

Given a generalized transition T �ft�� � � � � tng� we construct the TTS
transition tT as
follows� First we construct an enabling predicate for each tj in T � The enable
part of tT is
the disjunction of all these enabling predicates� Then we construct the assign
part of tT � For
each variable v� corresponding to a preplace or a postplace of some tj in T � the assign
part
de�nes the value of v after the execution of tT �

��

Given a PN
transition tj from T � the enabling predicate for tj is the conjunction of the
following conditions� For each place p connected with tj � that has a variable v corresponding
to it� if p is an input place with a superscript � ��� the condition is v ��v� respectively�� if
p is an input place without superscript the condition is v� if p is an output place without
superscript which is not an input place the condition is �v� The reason for the latter case
is that we deal with safe Petri nets in which a transition is not enabled if one of its output
places contains a token�

We now show how to construct the assign
part� Given a PN
transition tj from T and a
place v without superscript connected with tj � the assign
part of t

T contains the assignment
v� � true if v is an output place and v� � false if v is not an output place� This de�nition is
motivated by the fact that output places receive a token after the execution of the transition
while input places lose their token�

Consider now the case in which v is a variable with a superscript which corresponds to
an output place of a PN
transition from T � Suppose that each set of input places determines
a unique value of v in T �

For each tj from T we construct a formula f tj � f
tj
� 	 f

tj
� � where f

tj
� is the conjunction of

variables or their negations corresponding to the input places of tj � and f
tj
� is the value of v in

tj � The formula fT is de�ned as the conjunction of f tj for each tj from T � and the assign
part
of tT contains the assignment v� � fT � To simplify the assign
part it is sometimes useful to
conjunct it with the enabling condition of tT � Note that this conjunction never changes the
values calculated by the transition since the transition is executed only when it is enabled�

Next we handle a generalized transition T which� for some input values can produce two
di�erent new values for some variable v� For each maximal subset T � of T � which contains
only one new value of v we construct a formula fT

�

as shown above� Since in textual transition
systems a nondeterministic choice is possible only for variables and constant values� if there is
a set T � for which fT

�

cannot be expressed by a variable or a constant value then we translate
each T � to a separate TTS
transition� Otherwise� the assign
part of tT de�nes the new value
of v by a nondeterministic choice among the formulas fT

�

for each subset T � of T containing
only one new value of v�

The following example demonstrates the translation of the generalized transition T �
ft�� t�� t�g �see Fig� ����� Since for each input of T there is only one new value for v and
a� T is translated to one TTS
transition� We construct the TTS
transition t�t�t� as follows�
for t� we have the enabling predicate �a
 �v� for t� a
 �v� and for t� a
 v� Combining the
three predicates by disjunction and applying some simpli�cations we obtain the enable
part
of t�t�t�� a � �v�

To construct an assign
part of t�t�t� we write the relationship between the input valuations
and the output values of v� ���a
 �v�	 true�
 ��a
 �v�	 false�
 ��a
 v�	 true� ��a� v

and of a� ���a
 �v�	 false�
 ��a
 �v�	 true�
 ��a
 v�	 true� � a� v� Conjuncting this
expression with the enable
part we obtain� �a � v�
 �a � �v� � a� Therefore the assign
part
of t�t�t� will be v� ��a � v and a� � a�

We will now describe the translation of places corresponding to program counters� Note
that in a Petri net any control structure is expressed by moving tokens and no program
counters are used� However� a Petri net can contain places of a special form which have
been introduced in the translation of program counters from a transition system model� In
back
translation of a Petri net with such places� we restore the program counters in the
following way� A set of places of the form �PCi corresponds to the program counter �PC in

��

1m
N 2N

m
N

m1 m
NN 1 N

m2

(b) (c)

2m

(a)

yx x y x y

Figure ���� Types of connection among PN
classes

a transition system model� Fix a PN
transition tPN connected with one of the places �PCi�
and a TTS
transition tTTS obtained from tPN � For any input place �PCi of tPN we add
the conjunct �PC � i to the enable
part of tTTS� and for any output place �PCi of tPN we
add an assignment �PC� � i to the assign
part of tTTS� In the case of generalized transition
we obtain the enable
 and assign
parts for separate transitions as shown above and compose
them as in the case of usual places�

If the TTS	PN
translation handles enumerated
type variables similarly to program coun

ters� then the back PN	TTS
translation can handle enumerated
type variables in the same
way�

��� Composing structured classes

In the translation of a structured PN
class� �rst we �nd PN
transitions of a special form
which are used for synchronization of di�erent subnets� Such PN
transitions will be used for
the construction of partial synchronization in the transition system model� Bellow we refer
to a PN
transition in a PN
class as a synchronized transition if it is connected with interfaces
of more than one subclass�

Since the structure of a TTS
module has to be homogeneous �i�e�� it cannot mix sub

modules with simple transitions�� in a PN
class Nm which contains both subclasses and net
elements we extract an additional subclass Nm add and translate it to a separate submodule
m add� Nm add consists of all transitions appearing in Nm except for the synchronized ones�
and all places appearing in Nm except for places connected with interfaces�

A PN
class can contain component holders that refer to other PN
classes� During class
instantiation each component holder is replaced by an instantiation of the PN
class it refers
to� Thus� to construct a TTS
module corresponding to a structured PN
class we need to
translate instances of subclasses and relations among them�

Here we consider three types of connections among PN
classes in a Petri net model �see
Fig� �����

�a� an output transition of one PN
class connects to an input place of another PN
class�

�b� PN
classes are connected through an external synchronized transition�

�c� PN
classes are connected through an external place�

Connections are translated together with the translation of instances of PN
classes� An
instance of a PN
class is translated to an instantiation of the corresponding TTS
module�
whose actual parameters are determined by the connections to the given PN
class� Below we
describe the translation of the di�erent types of connections�

��

v

t’

t

N
m’

N
m

x

y

MODULE m��� MODULE m���

TRANS t� TRANS t�

enable� �x�y enable� �x�y

assign� x�y�	true assign� x�y�	true

MODULE m���� MODULE m��v��

TRANS t�� TRANS t��

enable� x�y enable� v

assign� x�y�	false assign� v�	false

MODULE SYSTEM��� MODULE SYSTEM���

VAR x�y� boolean INITVAL false VAR x�y� boolean INITVAL false

m�����m��� m�����m��x�y�

�I� �II�

Figure ���� Translation of the connection of type �a� using an external variable x�y �I�� or a
parameter v with the actual value x�y �II�

In case �a� we produce an additional external variable for the arc connecting the interfaces
of two submodules� We use it in the submodules instead of the variables produced for the
interfaces and instead of the input places connected to these interfaces �see Fig� ����I���
Another possible translation is to use the external variable as an actual parameter of the
submodules connected by the given interfaces �see Fig� ����II���

In case �b� we translate two subnets connected through a synchronized transition to a
partial synchronization between two TTS
submodules corresponding to the given subnets�
We now show how to produce a synchronized pair of TTS
transitions corresponding to a
synchronized PN
transition� If we have no extra information we translate all places connected
to a synchronized transition as external variables� We then construct a TTS
transition for
the synchronized PN
transition using these external variables� This TTS
transition is added
to each of the submodules and used in a synchronization pair� If there is extra information
available� we can more meaningfully divide a synchronized transition to a pair of separate PN

transitions belonging to the synchronized subclasses� The extra information can be obtained
from an analysis of the model or from a previous TTS	PN
translation� and is discussed
further in the following section�

In case �c�� if an interface of either Nm� or Nm� is translated as a parameter� we translate
the outside place connected with the interface to be an external variable� This variable is
then used as the actual parameter of the TTS
module m� or m�� respectively� Otherwise� in
both m� and m� we use the external variable corresponding to the intermediate place instead
of the variables produced for the interfaces connected with this place�

� Additional information

When we apply a translation in one direction� slightly change the system� and then apply
a translation in the other direction it would be desirable to obtain a system similar to the
original� However some information is lost in the process of translation� This information
can be saved as additional information outside of the constructed model and can later be
used in a back translation� One way to keep the additional information is by adding labels
to elements of the constructed model and by using a number of name agreements� It should
be noted that if additional information is not available� some of it can be retrieved by an

��

analysis of the model�
We �rst describe the additional information collected during the TTS	PN
translation�

Recall that the TTS	PN
translation is applied to an abstracted transition system model
in which variables are restricted to be either fully abstracted or de�ned over �nite domain�
Below we assume that all �nite domains are boolean� except those of program counters�

�PLC� When a boolean variable v is translated to a pair of places� the places are names v�

and v� to denote that they represent true and false values of v�

�ABS� For a fully abstracted variable� the corresponding place is labeled �abs��

�TR� A TTS
transition is usually translated to several PN
transitions� These have names
composed of the name of the TTS
transition with di�erent superscripts�

�PAR� When an external identi�er �a parameter or an external variable� is translated to an
interface� the interface is labeled by �par� if the external identi�er is a parameter�

�SYN� When a pair of synchronized transitions �each from a di�erent TTS
module� is trans

lated to one PN
transition� the arcs connected to the PN
transition are each labeled by
the name of the TTS
module it came from�

�PC� A program counter �PC is translated to a set of places� one for each of its values�
The place corresponding to the value i will be named �PCi�

We now describe the additional information collected during the PN	TTS
translation�

�TKN� When a place is translated to a variable� we label the variable by �tkn� to denote
that its values can be interpreted as the presence of a token� i�e�� its false
value is never
used in an enabling condition of a TTS
transition without being changed�

�ADD� When a class Nm consists of net elements as well as subclasses� the net elements are
translated as a separate subclass� The corresponding TTS
module is labeled by �add�

to indicate that it should not be translated back as a separate subclass�

�VarMv� When translating an input place of some PN
class as an external variable of the
corresponding TTS
module� we label the external variable by �input� to indicate that it
belongs to the PN
class�

As shown in Section �� the suggested additional information is �complete� in the sense that
applying two translations in a row results in the original model� up to renaming�

� Example

As an example we consider an Alternating Bit Protocol� Let us translate its Petri net
representation �Fig� ���� to a transition system model �Fig� ����� First we translate basic
PN
classes� For the PN
class SENDER with interfaces new� next� mes and ack we produce
a TTS
module SENDER with parameters new� next� For arcs �mes� mes�� �ack� ack� joining
PN
classes SENDER and RECEIVER we produce external variables m and a which are used in
the translation of these PN
classes instead of the variables produced for the interface mes
and the input place sent mes �an interface ack and an input place sent ack� respectively��

��

send_new_mes

new

send_ackreceive_ack

release_mes

ALTERNATIVE

SENDER RECEIVER

lost_ack

lost_mes

reject_messend_old_mesold

sent_ack

sent_mes

mes mes

new_mes

new

next

next_mes return_ack

return

ack ack

previous_ack

previous

next

next_ack

send_new_mes

new

send_ackreceive_ack

release_mes

ALTERNATIVE

SENDER RECEIVER

lost_ack

lost_mes

reject_messend_old_mesold

sent_ack

sent_mes

mes mes

new_mes

new

next

next_mes return_ack

return

ack ack

previous_ack

previous

next

next_ack

ack_bit0

ack_bit1mes_bit1

mes_bit0

Figure ���� Petri Net representation of Alternating Bit Protocol

��

HOLD�PREVIOUS

VAR mes�bit�� boolean INITVAL true

mes�bit�� boolean INITVAL false

ack�bit�� boolean INITVAL true

ack�bit�� boolean INITVAL false

MODULE SENDER�new� next�	

VAR old� boolean INITVAL false

TRANS send�new�mes�

enable� new
� �old
� �m

assign� old
�true

m
�true

new
�false

TRANS send�old�mes�

enable� old
� �m

assign� m
�true

old
�true

TRANS receive�ack�

enable� a
� old
� �next

assign� next
�true

a
�false

old
�false

TRANS lost�ack�

enable� a

assign� a
�false

�

MODULE ALTERNATIVE�new�mes� next�mes� previous�ack� next�ack� return�ack�	

VAR m� boolean INITVAL false

a� boolean INITVAL false

�SENDER�new�mes� next�mes����RECEIVER�previous�ack� next�ack� return�ack��

�

MODULE SYSTEM��	

�ALTERNATIVE�mes�bit�� mes�bit�� ack�bit�� ack�bit�� ack�bit�����

ALTERNATIVE�mes�bit�� mes�bit�� ack�bit�� ack�bit�� ack�bit���

�

MODULE RECEIVER�previous� next� return�	

VAR new� boolean INITVAL false

TRANS release�mes�

enable� m
� previous
� �new

assign� new
�true

m
�false

previous
�false

TRANS reject�mes�

enable� m
� return
� �new

assign� new
�true

m
�false

return
�false

TRANS send�ack�

enable� new
� �next
� �a

assign� a
�true

next
�true

new
�false

TRANS lost�mes�

enable� m

assign� m
�false

�

Figure ���� Transition systems representation of Alternating Bit Protocol

send_new_mes

new

send_ackreceive_ack

release_mes

RECEIVER

lost_ack

send_old_mesold reject_mes

lost_mes

a

a a

mm

m

previous
new

next return next

SENDER

Figure ���� Changed part from Figure ��� after translation from TTS

��

For the internal place old we produce a boolean variable old initialized with false� As an
example of the translation of a PN
transition let us consider the PN
transition receive ack�
The enable
part of the corresponding TTS
transition receive�ack is constructed as follows�
For the preplaces old� sent ack of receive ack we obtain the condition old
 a where the
variable a is used instead of the variable corresponding to the input place sent ack as was
described above� For the postplace next of receive ack we obtain the condition �next� In the
assign
part we assign true to the variable next corresponding to the postplace of receive ack�
and false to the variables old and a corresponding to the preplaces of receive ack�

The PN
class ALTERNATIVE consists of an instance of the PN
class SENDER and an in

stance of the PN
class RECEIVER� It is translated to the TTS
module ALTERNATIVE with
parameters corresponding to the interfaces of ALTERNATIVE and the internal variables m and
a representing arcs between those two subclasses� The instance of SENDER is translated to an
instantiation of SENDER with the actual parameters new�mes� next�mes� These parameters
correspond to the interfaces new mes and next mes of ALTERNATIVE that are connected with
interfaces new and next of SENDER� The instance of RECEIVER is translated analogously� and
the obtained two module instantiations are composed by asynchronous composition operation�

The Petri net model consists of two instances of the PN
class ALTERNATIVE connected
through external places ack bit�� ack bit�� mes bit�� and mes bit�� These places are trans

lated to the global variables with the same names� ack�bit� and mes�bit� are initialized
with true because the corresponding places contain tokens� We translate the Petri net model
to an asynchronous composition of two instantiations of the TTS
module ALTERNATIVE using
the obtained global variables as actual parameters�

Next we translate the transition system representation of the Alternating Bit Protocol
�Fig� ���� to a Petri net model� without using additional information� The changed part is
shown in Figure ��� by bold lines� Note that all variables of the transition system model
can be labeled with �tkn� because they originate from Petri net places� We now explain the
translation of the basic TTS
module SENDER� Its internal variable old is translated to the
place old� The parameters new� next and external variables a� m are translated to input
interfaces new� a and output interfaces next� m� To exemplify the translation of a TTS

transition let us translate send�old�mes� This TTS
transition is translated to the unique
PN
transition send old mes because we have only one condition old
 �m in its enable
part�
and only one possible new valuation �old � true� m � false	 for its variables� It is easy to
see that Lostsend old mes � �� Obtainsend old mes � fmg� and Usedsend old mes � foldg�

The TTS
module ALTERNATIVE is translated to the PN
class ALTERNATIVE consisting of
an instance of the PN
class SENDER and an instance of the PN
class RECEIVER which are
connected with places mes and ack and with the interfaces of ALTERNATIVE� The TTS
module
SYSTEM is translated analogously to ALTERNATIVE�

The only di�erence between the original Petri net model and the one obtained after two
translations is that the places sent mes and sent ack have been moved outside of the PN

classes RECEIVER and SENDER� respectively� In addition� some of the places and interfaces
are named di�erently� Using the additional information �VarMv� will result in moving places
m and a into the subclasses of the PN
class ALTERNATIVE� Thus� the new Petri net model
will be identical to the original one �up to renaming of net elements��

�

� Correctness

Given a Petri net model N with a set of places PN � the Kripke structure of N is a four tuple
M�N� � �MN � mN

� � R
N � LN�� where

� MN � �P
N
is the set of reachable markings of N �

� mN
� is the initial marking of N �

� RN �MN �MN is a transition relation such that �m�m�� � RN if m� is obtained from
m by �ring a transition of N �

� LN � MN 	 �P
N

is the identity function�

Let TS be a textual transition system with a set of variables V ar extended with labels
from the set f�tkn�� �abs�� �PC�g� Let P �V ar� be the set of places corresponding to variables
in V ar� Such a correspondence is obtained by both TTS	PN
 and PN	TTS
translations�
The Kripke structure of TS is a four tuple M�TS� � �STS� STS

� � RTS � LTS�� where

� STS is the set of reachable states of TS�

� STS
� is the set of initial states of TS�

� RTS � STS � STS is a transition relation such that �s� s�� � RTS if s� is obtained from
s after the execution of some TTS
transition�

� LTS � STS 	 �P �V ar� is a function labeling a state of TS with the set of places cor

responding to variable values in the state� The table below de�nes for each value of a
variable v in a state s the place produced for it by both translations�

value of v label of v producing place
true � v�

false � v�

true �tkn� v

false �tkn� �
true �abs� v�

i �PC� vi

Note that the labeling of the Kripke structure of TS is not standard since it labels by places
of Petri nets rather than by values of the variables� This is done in order for the Kripke
structures of TS and N to be comparable by the bisimulation preorder�

Theorem � Given a textual transition system TS in which all variables are initialized� and
a Petri net model N obtained from TS by the TTS	PN�translation� the Kripke structures
M�TS� and M�N� are bisimulation equivalent�

Proof Sketch� Let us construct a relation B � STS �MN as follows� B � f�s� LTS�s�� j
s � STSg� Note that for every reachable state s of TS LTS�s� is a reachable marking of N �
It can easily be shown that B is a bisimulation relation� �

Note� A textual transition system in which not all variables are initialized has an initial
state for each possible valuation of the uninitialized variables� Such a system is translated
to the Petri net with PN
transitions which initialize the uninitialized variables �see Fig� �����

��

The initializing PN
transitions and some of the markings they produce have no corresponding
part in the textual transition system� Therefore� M�N� and M�TS� are not bisimilar� This
can be �xed by de�ning an initializing stage in which only initializing transitions can execute�
The initial states of M�N� are then de�ned as the states at the end of the initializing stage�

Theorem � Given a Petri net model N and a textual transition system TS obtained from
N by the PN	TTS�translation� the Kripke structures M�N� and M�TS� are bisimulation
equivalent�

Theorem � If the TTS	PN�translation is applied to a textual transition system TS� yielding
a Petri net model N � and the PN	TTS�translation is then applied to N � using the additional
information �PAR�� �PLC�� �PC�� �TR�� and �SYN�� then the resulting model is identical to
TS up to naming of variables and transitions and the form of boolean conditions�

Theorem � If the PN	TTS�translation is applied to a Petri net model N � yielding a textual
transition system TS� and then the TTS	PN�translation is applied to TS� using the addi�
tional information �TKN�� �ADD�� and �VarMv�� then the resulting model is identical to N

up to naming of net elements�

References

	BBC�
�� N� Bjorner� A� Browne� E� Chang� M� Colon� A� Kapur� Z� Manna� H�B� Sipma� and T�E�
Uribe� Step� The stanford temporal prover � user
s manual� Technical Report STAN�CS�
TR�
������� Department of Computer Science� Stanford University� November �

��

	BGL���� Saddek Bensalem� Vijay Ganesh� Yassine Lakhnech� C�esar Mu�noz� Sam Owre� Harald
Rue�� John Rushby� Vlad Rusu� Hassen Sa��di� N� Shankar� Eli Singerman� and Ashish
Tiwari� An overview of SAL� In C� Michael Holloway� editor� LFM ����� Fifth NASA

Langley Formal Methods Workshop� pages �����
�� Hampton� VA� June ����� Available
at http���shemesh�larc�nasa�gov�fm�Lfm�����Proc��

	EJN
�� R� Esser� J�W� Janneck� and M� Naedele� Using an object�oriented petri net tool for
heterogeneous systems design� A case study� In Proceedings of Algorithmen und Werkzeuge

fur Petrinetze� �

��

	Ess
�� R� Esser� An Object Oriented Petri Net Approach to Embedded System Design� Phd
dissertation� ETH Zurich� �

��

	EZ

� B� Eichenauer and M� Zelm� Transformation of cimosa�models into petrinet�models with
pace� Technical report� �

� http���www�ibepace�com�

	GK

� O� Grumberg and S� Katz� VeriTech� translating among speci�cations and
veri�cation tools�design principles� In Proceedings of third Austria�Israel Sym�

posium Software for Communication Technologies� pages ������
� April �

�
http���www�cs�technion�ac�il�Labs�veritech��

	GP
�� B� Grahlmann and C� Pohl� Pro�ting from spin in pep� In Proceedings of the SPIN���

Workshop� �

��

	Kem��� P� Kemper� Logistic process models go petri nets� In S� Philippi� editor� Fachberichte
Informatik	 No
 ������� �
 Workshop Algorithmen und Werkzeuge fur Petrinetze	 �
���
pages �
���� Universitatt Koblenz�Landau� Institut fur Informatik� �����

	MP
�� Z� Manna and A� Pnueli� The Temporal Logic of Reactive and Concurrent Systems� Spec�

i
cation� Springer�Verlag� �

��

��

	NRT
�� M� Nielsen� G� Rozenberg� and P�S� Thiagarajan� Elementery transition systems� Theoret�
ical Computer Science�
������� �

��

	PK
�� M� Pietkiewicz�Koutny� Transition systems of elementary net systems with inhibitor arcs�
In P� Azma and G� Balbo� editors� ��th International Conference on Application and Theory

of Petri Nets� volume ���� of LNCS� pages �������� Springer�Verlag� �

��

	Rei
�� W� Reisig� Elements of Distributed Algorithms� Modeling and Analysis with Petri Nets�
Springer�Verlag� �

��

	SN
�� L� Shi and P� Nixon� An improved translation of sa�rt speci�cation model to high�level
timed petri nets� In FME���� Industrial Bene
t and Advances in Formal Methods� volume
���� of LNCS� pages �������� Springer�Verlag� �

��

	SV
�� R� Sisto and A� Valenzano� Mapping petri nets with inhibitor arcs onto basic lotos behaviour
expressions� IEEE Transactions on Computers� ����������������� �

��

	Vog

� W� Vogler� Concurrent implementation of asynchronous transition systems� In Application

and Theory of Petri Nets ����	 ��th International Conference	 ICATPN���� volume ����
of LNCS� pages �������� Springer�Verlag� �

�

	Wim� G� Wimmel� A bdd�based model checker for the pep tool� Technical report� Project Report
�

�� http���theoretica�Informatik�Uni�Oldenburg�DE� pep�

	WN
�� G� Winskel and M� Nielsen� Models for concurrency� In S� Abramskky� D� Gabbay� and
T�S�E� Maibaum� editors� Handbook of Logic in Computer Science� volume �� pages ������
�

��

��

