Symbolic Trajectory Evaluation (STE):
Automatic Refinement and Vacuity Detection

Orna Grumberg
Technion, Israel

Marktoberdort 2007

Agenda

* Model checking

» Symbolic Trajectory Evaluation
* Basic Concepts

» Automatic Refinement for STE
* Vacuity in STE

System Verification

Given a (hardware or software) system

and a specification,

does the system satisfy the specification?
Not decidablel!

We restrict the problem to a decidable one:
* Finite-state reactive systems
* Propositional temporal logics

Finite state systems

* hardware designs
» Communication protocols

» High level (abstract) description of
non finite state systems

Properties in temporal logic

 mutual exclusion:
always —(cs; A ¢s,)

- non starvation:
always (request = eventually grant)

* communication protocols:
(— get-message) until send-message

Model of a system

Kripke structure / transition system

Model of systems
M=<S, I, R, L>

S - Set of states.
I < S - Initial states.
*R cSxS - Total transition relation.
- L: S—» 24 - Labeling function.
AP - Set of atomic propositions

T=S0S;S,... iS a path in M from s iff
S = spand
for every i>0: (s;,s;.;)eR

Propositional temporal logic

AP - a set of atomic propositions
Temporal operators:

6p @ @ @ @ °© o o
Fp o© O @ O 0 o o
Xp © @ O O 0 o0 0
pUq @ @ @ O 0 0 o0

Path quantifiers: A for all path
E there exists a path

Model Checking

An efficient procedure that receives:
A finite-state model describing a system

= A temporal logic formula describing a
property

It returns
yes, if the system has the property
no + Counterexample, otherwise

10

Model Checking

= Emerging as an industrial standard
tool for hardware design: Intel, IBM,

Cadence, Synopsys,...

= Recently applied successfully also for
software verification: NASA,
Microsoft, ETH, CMU, ...

11

Model checking

A basic operation: Image computation

Given a set of states Q, Image(Q)
returns the set of successors of Q

Image(Q) ={ s' | 3s [R(s,s") AQ(s)]}

12

Model checking AGp on M

» Starting from the initial states of M,
iteratively compute the set of
successors.

- At each iteration check whether it
reached a state which satisfies —p.

- If so, declare a failure.

* Stop when no new states are found.
- Result: the set of reachable states.

13

Reachability + checking AG a

1 2

'

> (a4

S
o

Reach=New=1={1,2}

14

Return: M |#= AG a

1 2

> (a4

@
(e

Fallure: New g S,

15

Reachability + checking AG (avb)

1 2

'

3¢y a4

S
o

Reach=New=1={1,2}

16

Return: Reach, M |= AG (avb)

Reach={1, 2,3,4,5,6} New = emptyset

17

Main limitation:

The state explosion problem:

Model checking is efficient in time but
suffers from high space requirements:

The number of states in the system model
grows exponentially with

= the number of variables
= the number of components in the system

18

Symbolic model checking

A solution to the state explosion problem which
uses Binary Decision Diagrams (BDDs)
to represent the model and sets of states.

* Can handle systems with hundreds of Boolean
variables

19

Binary decision diagrams
(BDDs)

* Data structure for representing
Boolean functions

» Often concise in memory
» Canonical representation

* Most Boolean operations on BDDs can
be done in polynomial time in the BDD
size

20

BDDs in model checking

+ Every set A can be represented by its
characteristic function

1 ifucA

fa(u) = 10 ifugA

~

* If the elements of A are encoded by
sequences over {0,1}n then f, is a Boolean
function and can be represented by a BDD

21

Representing a model with BDDs

- Assume that states in model M are

encoded by {0,1}" and described by
Boolean variables v;...v,

* Reach, New can be represented by BDDs
over vi...v,

* R (a set of pairs of states (s,s’))
can be represen’red by a BDD over
Vi...V, Vi ...V,

22

Example: representing a model
with BDDs

S={sy5,5;}
R = {(515,), (s2,52), (53,51 }

State encoding:
st viv,=00 s,0 vv,=01 s vyv,=11

For A = {s;, s,} the Boolean formula
representing A:

fA(Vl,Vz) = (—|V1 AN —|V2) Vv (—|V1 /\Vz) - —|V1
23

falvy, Vo, Vi, V)=
(—=V; A =V, A =V AVS,) v
(—Vv; AV, A =V AVS,) Vv
(Vi AV, A=V A —VS,)

f, and f can be represented by BDDs.

24

BDD for f(a,b,c) =(arb)ve

Decision tree 6D

Lo BDD

**
*
**
*

»
...
Y.

25

SAT-based model checking

Another solution to the state explosion problem

* Translates the model and the
specification to a propositional formula

+ Uses efficient tools for solving the
satisfiability problem

Since the satisfiability problem is NP-
complete, SAT solvers are based on

heuristics.

26

SAT solvers

» Using heuristics, SAT tools can solve
very large problems fast

* They can handle systems with
thousands variables

27

Bounded model checking
Most commonly used SAT-based model checking

For checking AGp:

- Unwind the model for k levels, i.e.,
construct all computation of length k

+ If a state satisfying —p is encountered,
then produce a counter example

The method is suitable for falsification, not
verification

28

SAT-based model checking

» Can also handle general temporal logic
specifications

» Can be used for verification by using
methods such as induction and
interpolation.

29

Bounded model checking in detail

+ Construct a formula fy, describing all possible
computations of M of length k

+ Construct a formula f,, expressing that
¢=EF—p holds within k computation steps

+ Check whether f = fy, A, issatisfiable

If f is satisfiable then M |= AGp
The satisfying assignment is a counterexample

30

Example - shift register

Shift register of 3 bits: <x,y, z>
Transition relation:
R(xy.zxy.,z)= X=y Any=z A z=1

| |

error

Initial condition:
I(x,y,z) = x=0vy=0v z=0

Specification: AG (x=0 v y=0 v z=0)

31

Propositional formula for k=2

fM - (XO:O V YO:O vV ZO:O) AN
(X1=Yo A Y1729 A Z3=1) A
(X2=Y1 A Y272y A Z2,71)

f(p - VizO,..Z (=1 Ayi=1 A Z=1)

Satisfying assignment: 101 011 111
This is a counter examplel

32

A remark

In order to describe a computation of
length k by a propositional formula we
need k copies of the state variables.

With BDDs we use only two copies of
current and next states.

33

Abstraction-Refinement

A successful approach to deal with the state
explosion problem in model checking

Concrete model Abstract model %
pass

-q.ﬂml-l\/

Refined model
~I'C

Abstraction-refinement (cont.)

M, - abstract model M, - concrete model

- 2-valued abstraction
Myl=0 = M |= o
MA |¢ (P — MC 9

- 3-valued abstraction
Myl=0 = M |= o
Myl = M. [=o
M, ? = M_?

35

Agenda

* Model checking

» Symbolic Trajectory Evaluation
* Basic Concepts

» Automatic Refinement for STE
* Vacuity in STE

36

Symbolic Trajectory Evaluation
(STE)

A powerful technique for hardware model
checking that can handle

* much larger hardware designs
+ relatively simple specification language

Widely used in industry, e.g., Intel, Freescale

37

STE is given

* A circuit M

+ A specification A = C, where
- Antecedent A imposes constraints on M
- Consequent C imposes requirements on M

A and C are formulas in a restricted
temporal logic (called TEL)

38

STE

* Works on the gate-level representation
of the circuit

» Combines symbolic simulation and
abstraction

39

Current STE

- Automatically constructs an abstract
model for M, based on A (MxA)

+ Checks whether MxA E C

Return:
- Pass: M A=C

- Fail + counterexample
- Undecided: refinement is needed
This is a form of 3-valued abstraction

* Manually refines A (and thus also MxA)

40

Agenda

* Model checking

» Symbolic Trajectory Evaluation
* Basic Concepts

» Automatic Refinement for STE
* Vacuity in STE

41

Modeling a circuit

* A Circuit M is described as a graph whose
nodes n are inputs, gates, and latches

* We refer to node n at different times t
In fact, we look at an unwinding of the circuit

for k times
* kis determined by A = C

42

Modeling a circuit (cont.)

* The value of an input node at time t is
nondeterministic: O or 1

* The value of a gate node at time t depends
on the values of its source nodes at time t

» The value of a latch node at time t depends
on the values of its source nodes at time t
and t-1

43

Example: a circuit

n, y N = 0
N3
T

Time=0

44

Simulation Based Verification

+ Assigns values to the inputs of the model
over time (as in the example)

» Compares the output values to the expected
ones according to the specification

* Main drawback: the model is verified only for
those specific combinations of inputs that
were tested

45

Symbolic Simulation

+ Assigns the inputs of the model with
Symbolic Variables over {0O,1}

X D X AY
y >

» Checks all possible combinations of inputs
at once

* Main drawback: representations of such
Boolean expressions (e.g. by BDDs) are
exponential in the number of inputs

46

STE solution

- Adds an "unknown" value X, in
addition to O, 1, and symbolic
variables

- Needs also an "over-constrained”
value

47

4-valued lattice

To describe values of nodes, STE uses:
0,1, X, and L

» (n,t) has value X when the value of n
at time t is unknown

» (n,t) has value L. when the value of n
at tfime t is over-constrained

/\
\/

O=x 1=x 1=0

48

Operations on lattice elements

* Meet: ar b is the greatest lower
bound of aand b)

Xn1=1 Xn0=0 Onl=1 .. @< >

1
» Join: a U b is the least upper bound

lﬂ}‘-un

49

Lattice Semantics

- X is used to obtain abstraction

- 1 is used to denote a contradiction
between a circuit behavior and the
constraints imposed by the antecedent A

- Note: the values of concrete circuit node
are only O and 1.

50

- Xvi1=1 XvO0=X

Quaternary operations

X v
«c XAl=X XA0=0 XA
-X =X

» Any Boolean expression containing L
has the value L

51

Symbolic execution

»+ STE combines abstraction with symbolic
simulation to represent multiple executions
at once

+ Given a set of symbolic variables V, the
nodes of the circuit are mapped to
symbolic expressions over VU{0,1,X,1}

52

Example: symbolic abstract execution

VX 21:X
. 1 @ : g nZ X > V1 XVZ?I:X

Time 1Ny In, n, n, n3
0 Vq X | vi21iX X X
: X Vs V.21 X (vl X | viave?1:X

53

The difference between X and veV

¢« X A X=X
- v A v = false

+ Different occurrences of X do not
necessarily represent the same value
("unknow")

» All occurrences of v represent the same
value

54

* Each line is a symbolic state

» Trajectory: sequence of states,
compatible with the behavior of the

circuit
Time 1Ny In, n, n, n3
0 Vy v?1: X X X
1 X Vo | vp?LliX (v 21X [Vinve?liX

55

Implementation issues

+ The value of each node (n,t) is a
function from Vto {0,1, X, L }

* BDD representation - Dual rail

Two Boolean functions:
f..i:V—>{01}
f..>:V->{01]}

56

Dual rail

For a specific assignment to V
*© fo (V) A =f, ;2%V) represents 1 for (n,t)

(fn,Tl / fn,fo) (ﬂ,"’)

(1.0) !
(0,1) 0
(0,0) X
(1.1) 1

57

STE / model checking

»+ STE holds local view of the system:
for each (n,t) separately

* Model checking holds global view:
A state - values of all nodes at time t

58

Trajectory Evaluation Logic (TEL)

Defined recursively over V, where
p is a Boolean expression over V

nis a node
f, f,, f, are TEL formulas
N is the next-time operator

(n is p) (p > f)
(firf2) (N)

59

Example: TEL formula

f = (inl is vy) A
N (in, is v,) A N2 (viav, — (n3 is 0))

60

Semantics of TEL formulas

TEL formulas are interpreted over
- Symbolic execution ¢ over V, and
- assignment ¢ : V — {0,1}

- [v.oEFf]le{l, O, X, L}

Note: (¢,0) represents an (abstract) execution,

i.e., a series of expressions, each over {0,1,X,1}

61

The same ¢ is applied o f and to o

Example: TEL semantics

f - N (Vl/\VZ—) (n3 |S 1))

Time | ing | in, ny n, n3
0 vi | X v,?1: X X X
1 X | Vo | v,21:X | v21: X |viav,21:X

For every ¢, [00Ff]=1

62

Example: TEL semantics

f=N(n;is (vav,21:0))

Time | ing | in, ny n, n3
0 vi | X v,?1: X X X
1 X | Vo | v,21:X | v21: X |viav,21:X

For o¢(viavy)=0, [ocFf]1=X

63

TEL Semantics

» For every TEL formula f,
[0,c F f] = L iff Ji,n: ¢(c) (i)(n) = L

A sequence that contains L does not satisfy
any formula

64

TEL semantics (cont.)
(c does not contains 1)

Note: ¢(p) {0,1}
- [0.c E(nisp)] =1 iff &(cs)O)n) = o(p)

* [6,0 E (nis p)] = O iff
¢(c)(0)(n) € {0,1} and ¢(c)(0)(n) # &(p)

© [0,0 = (nis p)] = X iff o(c)(0)(n) = X

65

TEL semantics (cont.)

) [(I),G = (fl/\fZ)] = [(I),G = fl] A [(I),G = fZ]
*[poF(—>1f)]=9¢(-p)v o Ff]

* [poFE(NF)] = [¢.00 FFf]

66

TEL semantics (cont.)

[cEf]1=0 iff for some ¢, [¢,c E f]=0

[cEf]1=X iff forall ¢,[dp,0 Ef]=#0 and
for some ¢, [d,0 E f]=X

67

TEL semantics (cont.)

[cEf]=1 iff forall ¢, [d,cF f] ¢ {0,X}
and for some ¢, [d,0 F f]=1

[cEf]=1L iff forall ¢, [dpoETf]-L

68

Back to STE...

Recall that our goal is to check whether
MEA=C

where A imposes constraints on M and
C imposes requirements

69

MxA: Abstraction of M derived by A

The defining trajectory of M and A, denoted
MxA , is defined as follows:

* MxA is a symbolic execution of M that
satisfies A

» For every symbolic execution c of M
[cE Al & o= MxA

n,t | no,t | N3t | Nyt
MxA 1 X 0 X
c | 1/L 0/ "

MxA (cont.)

+ [Seger&Bryant] show that every circuit M and
TEL formula f has such Mxf

71

MxA (cont.)

* MxA is the abstraction of all executions of M
that satisfy A and therefore should also
satisfy C

- Tf MxA satisfies C then all executions that
satisfy A also satisfy C

72

Checking M E A=C with STE

+ Compute the defining trajectory MxA of M
and A

» Compute the truth value of [MxA E C]
- [MxAEC]=1— Pass

- [MxA E C]= 0 — Fail

- [MxA E C] = X — Undecided

+ The size of MxA (as described with BDDs)
is proportional to A, not o M |

73

Example: MxA

A =(in; is v{) A N (in, is v,) C=N(n;is 1)
ing x@wm:x X
) nl > nz > \%/\Vz?l :x
In
Time 1Ny In, n, n, n3
0 Vy X v,?1: X X X
1 X Vs V.21 X | vi?2liX | vyav,21:X

74

Undecided results

A = (iny is v1) A N (in, is v2)
C= N(n;is 1)

In MxA the value of (n;,1) is v;Av,?21:X
C requires (n;,1) to be 1

For &(viav2)=0, [¢, MXA EC] = X

When v,Av, is 0, STE results in “"undecided” for
(n;,1) and thus refinement of A is needed

75

Agenda

* Model checking

» Symbolic Trajectory Evaluation
* Basic Concepts

» Automatic Refinement for STE
* Vacuity in STE

76

Our Automatic Refinement
Methodology

* Choose for refinement a set Iref of inputs
at specific times that do not appear in A

+ For each (n,t) € Iref , v,,is afresh
variable, not in V

- The refined antecedent is:

Anew =AA A(n,'r)eIref Nt(n IS Vn,’r)

77

Refinement (cont.)

Arew has the property that:

MEA=C < MI:Anew:>C

Here we refer to the value of A=C / A, ,,=C
over the concrete behaviors of M

78

Goal:
Add a small number of constraints to A,
keeping MxA relatively small, while

eliminating as many undecided results as
possible

Remark: Eliminating only some of the
undecided results may still reveal "fail”.
For "pass”, all of them need to be eliminated

79

Choose a refinement goal

We choose one refinement goal (root,)
* A node that appears in the consequent C
* Truth value is X

* Has minimal t and depends on minimal
number of inputs

We will examine at once all executions in
which (root,tt) is undecided

80

Choosing Iref for (root,tt)

Naive (syntactic) solution:

Choose all (n,t) from which (root,tt) is
reachable in the unwound graph of the
circuit

Will guarantee elimination of all undecided
results for (root,tt)

81

Better (semantic) solution

» Identify those (n,t) that for some
assignment are on a path to (root,tt)
along which all nodes are X

- Iref is the subset of the above,
where n is an input

» Will still guarantee elimination of all
undecided results for (root,tt)

83

Heuristics for smaller Iref

Choose a subset of Iref based on
circuit topology and functionality, such as:

* Prefer inputs that influence (root,tt) along
several paths

» Give priority to control nodes over data
nodes

- And more

84

Experimental Results for
Automatic Refinement

We implemented our automatic refinement within
the Intel's STE tool Forte.

We ran it on two nhontrivial different circuits:

+ Intel's Content Addressable Memory (CAM)
- 1152 latches, 83 inputs and 5064 gates

- IBM's Calculator design
- 2781 latches, 157 inputs and 56960 gates

We limited the number of added constraints at each
refinement iteration to 1

85

Some more implementation issues

» Recall that the value of each node (n,t) is a
function from V to {O0,1, X, L }

+ BDD representation - Dual rail
Two Boolean functions:
foil:V->{01}
f.2:V->{01

86

(fn,fl ’ fn,'ro)
(1,0)
(0.1)
(0.0)

(1,1)

Dual rail

(n,t)

— X O =

87

Notation:
* (fo4t, £,4:°) represents (n,t) in MxA

" (gn,’rl :9n,f°) represents (n,t) inC

88

Symbolic counterexample

v(n,T)eC [(gn,fl A _Ifn'.rl A\ fn,TO) \V/
(G A Foyd A —Fpi®)]

Note: C is never |

* Represents all assignments to V in which for
some node (n,t), MxA and C do not agree on
0/1

- User needs to correct either the circuit or
the specification

89

Symbolic incomplete trace

v(n,'r)ec [(gn,fl v gn,to) N
(_'fn,‘r1 N\ _'fn,‘ro)]

* Represents all assignments to V in which for
some hode (h,t), C imposes some
requirement (O or 1) but MxA is X

- Automatic/manual refinement is needed

90

Semantic I ; can be computed in a
similar manner

91

How do we get L in STE ?

A=inisOAin,isuningisO angis 1

Nl Ind -

N, U_ 14] 1
Ne,

in30 E:U n5

Antecedent failure

b
I

O 1

2

92

Antecedent failure is the case in which,
for some assignment, MxA contains L

» Can only occur when the antecedent imposes a
constraint on internal node

- Reflects contradiction between
- Antecedent constraints
- Circuit execution

» In our work, such assignments are ignored during
verification

93

Agenda

* Model checking

» Symbolic Trajectory Evaluation
* Basic Concepts

» Automatic Refinement for STE
* Vacuity in STE

94

Vacuity in model checking

Example:
M |= AG (request — F granted)

holds vacuously if
* request is always false or
» granted is always true

95

Vacuous Results

A:inl |SO/\|n3 iSV/\n3iS 1

ing O X
. N
mZ X@

X

11=1

ing ¥

mn:x

Counterexample for v=0. Spurious?

E—

96

Vacuous Results - Refined

A=inisOAin,isuningisO angis 1

ing O !

Nl Ind -

|n2 U_ "4 g 1
Ne

in30 %u N5

The counterexample iIs spurious!

[y
B

Oni=1

2

97

The Vacuity Problem

Given an STE assertion A = C, an assignment ¢ to V
and a circuit M:

- A = Cis vacuous in M under ¢ if

- there is no concrete execution of M that
satisfies ¢(A)

OR

- C under ¢ imposes ho requirements.

For example, if C=(v4->(n is v,)) then for
assignments in which v;=0, C imposes no
requirement

98

The Vacuity Problem (cont.)

+ A = C fails vacuously in M if
- [MxAEC]=0

AND

- for all assignments ¢ so that
[0 MxA EC]=0, A= Cisvacuous in M

under ¢

99

The Vacuity Problem (cont.)

»+ A = C passes vacuously in M if
- [MxAEC]=1

AND

- for all assignments ¢ so that
[0 MXAEC]=1, A= Cisvacuous in M

under ¢

100

Observation

* Vacuity can only occur when A contains
constraints on internal nodes (gates,
latches)

* Antecedent failure is an explicit vacuity.
Our goal is to reveal hidden vacuity.

101

Detecting (non-)vacuity

Given a circuit M, an STE assertion
A=C and an STE result (either fail or
pass), our purpose is to find an
assignment ¢ to V and an execution of
M that satisfies all the constraints in

$(A)

102

Detecting (non-)vacuity

In Addition:

* In case of pass, ¢ should also impose
requirements in C

- In case of fail, the execution should
constitute a counterexample

103

Detecting (non-)vacuity

We developed two different algorithms
for detecting vacuity / non-vacuity:

* An algorithm that uses BMC and runs
on the concrete circuit.

* An algorithm that uses STE and
automatic refinement.

104

Detecting (hon-)vacuity using BMC

1.
2.
3

Transform A into an LTL formula
Encode M and A as a BMC formula

In case of fail STE result, add the

counterexample as a constraint to the
BMC formula

In case of pass STE result, add
constraints to enforce at least one
requirement in C

Return "vacuous” if and only if the
resulting formula is unsatisfiable

105

Detecting (hon-)vacuity using BMC

Main drawback: no abstraction is used

We would like to detect vacuity while
utilizing STE abstraction

106

Detecting (non-)vacuity using STE

A" = Aout is g new STE assertion, where

- A"includes all constraints on inputs in
A, and

- A°tincludes the constraints on internal
nodes in A

Run STE on An= Aout | et ® denote the

set of assignments to V for which
[MxAn £ Aout]=1

107

Detecting (non-)vacuity using STE
(cont.)

1. Incase[MxA E C]=1: If thereisan

assignment in @ that imposes a
requirement in C, return “pass non
vacuously”

2. Incase [MxA E C]=0: If there exists
»e® and ¢ so that [¢',MxA E C]=0 and

(NG’ is satisfiable) , return “fail non
vacuously”

108

Detecting (non-)vacuity using STE
(cont.)

3. If thereis no ¢ so that
[0, Mx AN EA°UT]=X, return "vacuous”

4. Refine A"= A°" and return to step 2

109

Summary

What makes STE successful?

The combination of:

» Symbolic simulation

+ Abstraction

* Local (dual rail) BDD implementation

110

Conclusion and future work

Generalized STE (6STE) extends STE by providing a
specification language which is as expressive as -
regular languages.

Other directions:

- automatic refinement for GSTE (FMCAD'07)

* Vacuity definition and detection for GSTE

+ SAT-based STE (ATVA 2007)

* New specification language for GSTE (FMCAD'07)

111

References

Model Checking

Model checking
E. Clarke, O. Grumberg, D. Peled, MIT Press, 1999.

Abstraction-refinement in model checking

Counterexample-guided abstraction refinement for symbolic
model checking

E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith,

JACM 50(5): 752-794 (2003)

Vacuity in model checking

Efficient detection of vacuity in temporal model checking
I. Beer, S. Ben-David, C. Eisner, Y. Rodeh, Formal Methods
in System Design, 18, 2001.

112

References

STE

Formal verification by symbolic evaluation of partially-
ordered trajectories

C-J. Seger and R. Bryant, Formal Methods in System Design,
6(2), 1995.

FORTE

* An industrially effective environment for formal hardware
verification
C-J Seger,R. Jones, J. O'Leary, T. Melham, M. Aagaard, C.
Barrett, D. Syme, IEEE transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(9), 2005
FORTE

http://www.intel.com/software/products/opensource/toolsl
/verification

113

References

Refinement in STE
+ Automatic refinement and vacuity detection for symbolic
trajectory evaluation
- R. Tzoref and O. Grumberg, CAV'06
- R. Tzoref, Master thesis, Technion, Haifa, 2006

SAT-based assistance in abstraction refinement for

symbolic trajectory evaluation
J-W. Roorda and K. Claessen, CAV'06

GSTE

Introduction to generalized symbolic trajectory evaluation
J.Yang and C-J. Seger, IEEE transactions on very large
scale integrated systems, 11(3), 2003.

114

THE END

