
1

Symbolic Trajectory Evaluation (STE):
Automatic Refinement and Vacuity Detection

Orna Grumberg
Technion, Israel

Marktoberdort 2007

2

Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE

3

System Verification
Given a (hardware or software) system
and a specification,
does the system satisfy the specification?

Not decidable!

We restrict the problem to a decidable one:
• Finite-state reactive systems
• Propositional temporal logics

4

Finite state systems

• hardware designs
• Communication protocols
• High level (abstract) description of

non finite state systems

5

Properties in temporal logic

• mutual exclusion:
always ¬(cs1 ∧ cs2)

• non starvation:
always (request ⇒ eventually grant)

• communication protocols:
(¬ get-message) until send-message

6

Model of a system
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb

7

M=<S, I, R, L>

• S - Set of states.
• I ⊆ S - Initial states.
• R ⊆ S x S - Total transition relation.
• L: S→ 2AP - Labeling function.
AP – Set of atomic propositions

Model of systems

8

π=s0s1s2... is a path in M from s iff
s = s0 and
for every i≥0: (si,si+1)∈R

9

Propositional temporal logic

AP – a set of atomic propositions
Temporal operators:
Gp
Fp
Xp
pUq
Path quantifiers: A for all path

E there exists a path

10

Model Checking

An efficient procedure that receives:
A finite-state model describing a system
A temporal logic formula describing a
property

It returns
yes, if the system has the property
no + Counterexample, otherwise

11

Model Checking

Emerging as an industrial standard
tool for hardware design: Intel, IBM,
Cadence, Synopsys,…

Recently applied successfully also for
software verification: NASA,
Microsoft, ETH, CMU, …

12

Model checking

A basic operation: Image computation

Given a set of states Q, Image(Q)
returns the set of successors of Q

Image(Q) = { s’ | ∃s [R(s,s’) ∧Q(s)]}

13

Model checking AGp on M

• Starting from the initial states of M,
iteratively compute the set of
successors.

• At each iteration check whether it
reached a state which satisfies ¬p.
– If so, declare a failure.

• Stop when no new states are found.
– Result: the set of reachable states.

14

Reachability + checking AG a

a,b a

ab,c

c

a,c a,bb

Reach = New = I = { 1, 2 }

1 2

3 4

5
6 7

8

15

Return: M |≠ AG a

a,b a

ab,c

c

a,c a,bb

Failure: New ⊄ Sa

1 2

3 4

5
6 7

8

16

Reachability + checking AG (a∨b)

a,b a

ab,c

c

a,c a,bb

Reach = New = I = { 1, 2 }

1 2

3 4

5
6 7

8

17

Return: Reach, M |= AG (a∨b)

a,b a

ab,c

c

a,c a,bb

Reach = {1, 2, 3, 4, 5, 6} New = emptyset

1 2

3 4

5
6 7

8

18

Main limitation:

The state explosion problem:
Model checking is efficient in time but

suffers from high space requirements:

The number of states in the system model
grows exponentially with
the number of variables
the number of components in the system

19

Symbolic model checking

A solution to the state explosion problem which
uses Binary Decision Diagrams (BDDs)
to represent the model and sets of states.

• Can handle systems with hundreds of Boolean
variables

20

Binary decision diagrams
(BDDs)

• Data structure for representing
Boolean functions

• Often concise in memory
• Canonical representation
• Most Boolean operations on BDDs can

be done in polynomial time in the BDD
size

21

BDDs in model checking

• Every set A can be represented by its
characteristic function

1 if u∈A
fA(u) = 0 if u ∉ A

• If the elements of A are encoded by
sequences over {0,1}n then fA is a Boolean
function and can be represented by a BDD

22

Representing a model with BDDs
• Assume that states in model M are

encoded by {0,1}n and described by
Boolean variables v1...vn

• Reach, New can be represented by BDDs
over v1...vn

• R (a set of pairs of states (s,s’))
can be represented by a BDD over
v1...vn v1’...vn’

23

Example: representing a model
with BDDs

S = { s1, s2, s3 }
R = { (s1,s2), (s2,s2), (s3,s1) }

State encoding:
s1: v1v2=00 s2: v1v2=01 s3: v1v2=11

For A = {s1, s2} the Boolean formula
representing A:

fA(v1,v2) = (¬v1 ∧ ¬v2) ∨ (¬v1 ∧v2) = ¬v1

24

fR(v1, v2, v’1, v’2) =
(¬v1 ∧ ¬v2 ∧ ¬v’1 ∧v’2) ∨
(¬v1 ∧ v2 ∧ ¬v’1 ∧v’2) ∨
(v1 ∧ v2 ∧ ¬v’1 ∧ ¬v’2)

fA and fR can be represented by BDDs.

25

a
b

c

10

c

1 1

b
c

1 1

b

cc
b

0 11 0

a
b

cc

1 1 10

c c c

BDD for f(a,b,c) = (a ∧ b) ∨ c

Decision tree

a
b

c

10

BDD

26

SAT-based model checking
Another solution to the state explosion problem

• Translates the model and the
specification to a propositional formula

• Uses efficient tools for solving the
satisfiability problem

Since the satisfiability problem is NP-
complete, SAT solvers are based on
heuristics.

27

SAT solvers

• Using heuristics, SAT tools can solve
very large problems fast

• They can handle systems with
thousands variables

28

Bounded model checking
Most commonly used SAT-based model checking

For checking AGp:
• Unwind the model for k levels, i.e.,

construct all computation of length k
• If a state satisfying ¬p is encountered,

then produce a counter example

The method is suitable for falsification, not
verification

29

SAT-based model checking

• Can also handle general temporal logic
specifications

• Can be used for verification by using
methods such as induction and
interpolation.

30

Bounded model checking in detail

• Construct a formula fM,k describing all possible
computations of M of length k

• Construct a formula fϕ,k expressing that
ϕ=EF¬p holds within k computation steps

• Check whether f = fM,k ∧ fϕ,k is satisfiable

If f is satisfiable then M |≠ AGp
The satisfying assignment is a counterexample

31

Example – shift register
Shift register of 3 bits: <x, y, z>
Transition relation:
R(x,y,z,x’,y’,z’) = x’=y ∧ y’=z ∧ z’=1

|____|
error

Initial condition:
I(x,y,z) = x=0 ∨ y=0 ∨ z=0

Specification: AG (x=0 ∨ y=0 ∨ z=0)

32

Propositional formula for k=2

fM = (x0=0 ∨ y0=0 ∨ z0=0) ∧
(x1=y0 ∧ y1=z0 ∧ z1=1) ∧
(x2=y1 ∧ y2=z1 ∧ z2=1)

fϕ = Vi=0,..2 (xi=1 ∧ yi=1 ∧ zi=1)

Satisfying assignment: 101 011 111
This is a counter example!

33

A remark

In order to describe a computation of
length k by a propositional formula we
need k copies of the state variables.

With BDDs we use only two copies of
current and next states.

34

Abstraction-Refinement

Reconstruct

Refine

Concrete model

Abstract Verify

Abstract model pass

fail

Refined model

A successful approach to deal with the state
explosion problem in model checking

35

Abstraction-refinement (cont.)

MA - abstract model MC - concrete model
• 2-valued abstraction

MA |= ϕ ⇒ Mc |= ϕ
MA |≠ ϕ ⇒ MC ?

• 3-valued abstraction
MA |= ϕ ⇒ Mc |= ϕ
MA |≠ ϕ ⇒ Mc |≠ ϕ
MA ? ⇒ Mc ?

36

Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE

37

Symbolic Trajectory Evaluation
(STE)

A powerful technique for hardware model
checking that can handle

• much larger hardware designs
• relatively simple specification language

Widely used in industry, e.g., Intel, Freescale

38

STE is given

• A circuit M
• A specification A ⇒ C, where

– Antecedent A imposes constraints on M
– Consequent C imposes requirements on M

A and C are formulas in a restricted
temporal logic (called TEL)

39

STE
• Works on the gate-level representation

of the circuit
• Combines symbolic simulation and

abstraction

40

Current STE
• Automatically constructs an abstract

model for M, based on A (M×A)
• Checks whether M×A ² C

Return:
– Pass: M ² A ⇒ C
– Fail + counterexample
– Undecided: refinement is needed
This is a form of 3-valued abstraction

• Manually refines A (and thus also M×A)

41

Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE

42

Modeling a circuit

• A Circuit M is described as a graph whose
nodes n are inputs, gates, and latches

• We refer to node n at different times t

In fact, we look at an unwinding of the circuit
for k times

• k is determined by A ⇒ C

43

Modeling a circuit (cont.)

• The value of an input node at time t is
nondeterministic: 0 or 1

• The value of a gate node at time t depends
on the values of its source nodes at time t

• The value of a latch node at time t depends
on the values of its source nodes at time t
and t-1

44

1

1

Time=0

1

0

0
0

0

Time=1

Example: a circuit

in1

in2
n1 n2

n3

0 0

45

Simulation Based Verification

• Assigns values to the inputs of the model
over time (as in the example)

• Compares the output values to the expected
ones according to the specification

• Main drawback: the model is verified only for
those specific combinations of inputs that
were tested

46

Symbolic Simulation
• Assigns the inputs of the model with

Symbolic Variables over {0,1}

• Checks all possible combinations of inputs
at once

• Main drawback: representations of such
Boolean expressions (e.g. by BDDs) are
exponential in the number of inputs

x
y x ∧ y

47

STE solution

• Adds an “unknown’’ value X, in
addition to 0, 1, and symbolic
variables

• Needs also an “over-constrained”
value ⊥

48

4-valued lattice
To describe values of nodes, STE uses:

0,1, X, and ⊥
• (n,t) has value X when the value of n

at time t is unknown
• (n,t) has value ⊥ when the value of n

at time t is over-constrained

0

X

⊥
1 0 b x 1 b x ⊥ b 0 ⊥ b 1

49

Operations on lattice elements

• Meet: a 6 b is the greatest lower
bound of a and b

X61=1 X60=0 061=⊥ …

• Join: a 7 b is the least upper bound

0

X

⊥
1

50

Lattice Semantics

• X is used to obtain abstraction

• ⊥ is used to denote a contradiction
between a circuit behavior and the
constraints imposed by the antecedent A

• Note: the values of concrete circuit node
are only 0 and 1.

51

Quaternary operations

• X ∨ 1 = 1 X ∨ 0 = X X ∨ X = X
• X ∧ 1 = X X ∧ 0 = 0 X ∧ X = X

• ¬X = X

• Any Boolean expression containing ⊥
has the value ⊥

52

Symbolic execution

• STE combines abstraction with symbolic
simulation to represent multiple executions
at once

• Given a set of symbolic variables V, the
nodes of the circuit are mapped to
symbolic expressions over V∪{0,1,X,⊥}

53

v2?1:X
Time=0Time=1

1
0

n3n2n1in2in1Time

Example: symbolic abstract execution

in1

in2
n1 n2

n3

v1 X v1?1:X X X

X v2 v2?1:X v1?1:X

v1

X

v1?1:X X X
X

v2

v1 ∧ v2?1:X

v1∧v2?1:X

54

The difference between X and v∈V

• X ∧ ¬X = X
• v ∧ ¬v = false

• Different occurrences of X do not
necessarily represent the same value
(“unknow”)

• All occurrences of v represent the same
value

55

• Each line is a symbolic state
• Trajectory: sequence of states,

compatible with the behavior of the
circuit

1
0

n3n2n1in2in1Time
v1 X v1?1:X X X

X v2 v2?1:X v1?1:X v1∧v2?1:X

56

Implementation issues

• The value of each node (n,t) is a
function from V to {0,1, X, ⊥ }

• BDD representation – Dual rail
Two Boolean functions:
fn,t

1 : V → { 0,1 }
fn,t

0 : V → { 0,1 }

57

Dual rail

For a specific assignment to V
• fn,t

1(V) ∧ ¬fn,t
0(V) represents 1 for (n,t)

(fn,t
1 , fn,t

0) (n,t)
(1,0) 1
(0,1) 0
(0,0) X
(1,1) ⊥

58

STE / model checking

• STE holds local view of the system:
for each (n,t) separately

• Model checking holds global view:
A state – values of all nodes at time t

59

Trajectory Evaluation Logic (TEL)

Defined recursively over V, where
p is a Boolean expression over V
n is a node
f, f1, f2 are TEL formulas
N is the next-time operator

(n is p) (p → f)

(f1∧f2) (N f)

60

Example: TEL formula

f = (in1 is v1) ∧
N (in2 is v2) ∧ N2 (v1∧v2 → (n3 is 0))

61

Semantics of TEL formulas

TEL formulas are interpreted over
• Symbolic execution σ over V, and
• assignment φ : V → {0,1}

• [φ,σ ² f] ∈ {1, 0, X, ⊥ }

Note: (φ,σ) represents an (abstract) execution,
i.e., a series of expressions, each over {0,1,X,⊥}

62

v1∧v2?1:Xv1?1:Xv2?1:XV2X1
XXv1?1:XXV10
n3n2n1in2in1Time

The same φ is applied to f and to σ
f = N (v1∧v2→ (n3 is 1))

Example: TEL semantics

For every φ, [φ,σ ² f] = 1

63

v1∧v2?1:Xv1?1:Xv2?1:XV2X1
XXv1?1:XXV10

n3n2n1in2in1Time

f = N (n3 is (v1∧v2?1:0))

Example: TEL semantics

For φ(v1∧v2)=0, [φ,σ ² f] = X

64

TEL Semantics

• For every TEL formula f,
[φ,σ ² f] = ⊥ iff ∃i,n: φ(σ) (i)(n) = ⊥

A sequence that contains ⊥ does not satisfy
any formula

65

TEL semantics (cont.)
(σ does not contains ⊥)

Note: φ(p) ∈ {0,1}

• [φ,σ ² (n is p)] = 1 iff φ(σ)(0)(n) = φ(p)

• [φ,σ ² (n is p)] = 0 iff
φ(σ)(0)(n) ∈ {0,1} and φ(σ)(0)(n) ≠ φ(p)

• [φ,σ ² (n is p)] = X iff φ(σ)(0)(n) = X

66

TEL semantics (cont.)

• [φ,σ ² (f1∧f2)] = [φ,σ ² f1] ∧ [φ,σ ² f2]

• [φ,σ ² (p → f)] = φ(¬p) ∨ [φ,σ ² f]

• [φ,σ ² (N f)] = [φ,σ1 ² f]

67

TEL semantics (cont.)

[σ ² f] = 0 iff for some φ, [φ,σ ² f]=0

[σ ² f] = X iff for all φ, [φ,σ ² f] ≠ 0 and
for some φ, [φ,σ ² f]=X

68

TEL semantics (cont.)

[σ ² f] = 1 iff for all φ, [φ,σ ² f] ∉ {0,X}
and for some φ, [φ,σ ² f]=1

[σ ² f] = ⊥ iff for all φ, [φ,σ ² f]= ⊥

69

Back to STE…

Recall that our goal is to check whether
M ² A ⇒ C

where A imposes constraints on M and
C imposes requirements

70

M×A: Abstraction of M derived by A

The defining trajectory of M and A, denoted
M×A, is defined as follows:

• M×A is a symbolic execution of M that
satisfies A

• For every symbolic execution σ of M
[σ ² A]=1 ↔ σ b M×A

n3,t

σ
M×A

n4,tn2,tn1,t
1 X 0 X

1/⊥ 0/⊥

71

M×A (cont.)

• [Seger&Bryant] show that every circuit M and
TEL formula f has such M×f

72

M×A (cont.)

• M×A is the abstraction of all executions of M
that satisfy A and therefore should also
satisfy C

• If M×A satisfies C then all executions that
satisfy A also satisfy C

73

Checking M ² A⇒C with STE

• Compute the defining trajectory M×A of M
and A

• Compute the truth value of [M×A ² C]
– [M×A ² C] = 1 → Pass
– [M×A ² C] = 0 → Fail
– [M×A ² C] = X → Undecided

• The size of M×A (as described with BDDs)
is proportional to A, not to M !

74

1
0

n3n2n1in2in1Time

Example: M×A
A =(in1 is v1) ∧ N (in2 is v2) C = N (n3 is 1)

in1

in2
n1 n2

n3

v1

X

v1 X

v1?1:X X
X

v1?1:X X X
X v2

v2

X

v2?1:X v1?1:X

v2?1:X

v1∧v2?1:X

v1∧v2?1:X

75

Undecided results

A = (in1 is v1) ∧ N (in2 is v2)
C = N (n3 is 1)

In M×A the value of (n3,1) is v1∧v2?1:X
C requires (n3,1) to be 1

For φ(v1∧v2)=0, [φ, M×A ² C] = X

When v1∧v2 is 0, STE results in “undecided” for
(n3,1) and thus refinement of A is needed

76

Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE

77

Our Automatic Refinement
Methodology

• Choose for refinement a set Iref of inputs
at specific times that do not appear in A

• For each (n,t) ∈ Iref , vn,t is a fresh
variable, not in V

• The refined antecedent is:

Anew = A ∧ Λ(n,t)∈Iref Nt(n is vn,t)

78

Refinement (cont.)

Anew has the property that:

M ² A ⇒ C ⇔ M ² Anew ⇒ C

Here we refer to the value of A⇒C / Anew⇒C
over the concrete behaviors of M

79

Goal:
Add a small number of constraints to A,
keeping M×A relatively small, while
eliminating as many undecided results as
possible

Remark: Eliminating only some of the
undecided results may still reveal “fail”.
For “pass”, all of them need to be eliminated

80

Choose a refinement goal

We choose one refinement goal (root,tt)
• A node that appears in the consequent C
• Truth value is X
• Has minimal t and depends on minimal

number of inputs

We will examine at once all executions in
which (root,tt) is undecided

81

Choosing Iref for (root,tt)

Naïve (syntactic) solution:
Choose all (n,t) from which (root,tt) is

reachable in the unwound graph of the
circuit

Will guarantee elimination of all undecided
results for (root,tt)

82

X
X

X
X

X

1

83

Better (semantic) solution
• Identify those (n,t) that for some
assignment are on a path to (root,tt)
along which all nodes are X

• Iref is the subset of the above,
where n is an input

• Will still guarantee elimination of all
undecided results for (root,tt)

84

Heuristics for smaller Iref

Choose a subset of Iref based on
circuit topology and functionality, such as:

• Prefer inputs that influence (root,tt) along
several paths

• Give priority to control nodes over data
nodes

• And more

85

Experimental Results for
Automatic Refinement

We implemented our automatic refinement within
the Intel’s STE tool Forte.

We ran it on two nontrivial different circuits:
• Intel’s Content Addressable Memory (CAM)

– 1152 latches, 83 inputs and 5064 gates
• IBM’s Calculator design

– 2781 latches, 157 inputs and 56960 gates

We limited the number of added constraints at each
refinement iteration to 1

86

Some more implementation issues

• Recall that the value of each node (n,t) is a
function from V to {0,1, X, ⊥ }

• BDD representation – Dual rail
Two Boolean functions:
fn,t

1 : V → { 0,1 }
fn,t

0 : V → { 0,1

87

Dual rail

(fn,t
1 , fn,t

0) (n,t)
(1,0) 1
(0,1) 0
(0,0) X
(1,1) ⊥

88

Notation:

• (fn,t
1 , fn,t

0) represents (n,t) in MxA

• (gn,t
1 , gn,t

0) represents (n,t) in C

89

Symbolic counterexample

V(n,t)∈C [(gn,t
1 ∧ ¬fn,t

1 ∧ fn,t
0) ∨

(gn,t
0 ∧ fn,t

1 ∧ ¬fn,t
0)]

Note: C is never ⊥

• Represents all assignments to V in which for
some node (n,t), MxA and C do not agree on
0/1

• User needs to correct either the circuit or
the specification

90

Symbolic incomplete trace

V(n,t)∈C [(gn,t
1 ∨ gn,t

0) ∧
(¬fn,t

1 ∧ ¬fn,t
0)]

• Represents all assignments to V in which for
some node (n,t), C imposes some
requirement (0 or 1) but MxA is X

• Automatic/manual refinement is needed

91

Semantic Iref can be computed in a
similar manner

X
X

X
X

X

1

92

How do we get ⊥ in STE ?

in1

in2
n1

n2in3

n3 n6

A = in1 is 0 ∧ in2 is u ∧ in3 is 0 ∧ n3 is 1

n4

Antecedent failure

n5

0

0

u
u

¬u

0 6 1= ⊥
⊥

⊥

0

93

Antecedent failure is the case in which,
for some assignment, MxA contains ⊥

• Can only occur when the antecedent imposes a
constraint on internal node

• Reflects contradiction between
– Antecedent constraints
– Circuit execution

• In our work, such assignments are ignored during
verification

94

Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE

95

Vacuity in model checking

Example:
M |= AG (request → F granted)

holds vacuously if
• request is always false or
• granted is always true

96

Vacuous Results

in1

in2
n1

n2in3

n3 n6

A = in1 is 0 ∧ in3 is v ∧ n3 is 1
C = N(n6 is 1)

n4

Counterexample for v=0. Spurious?

n5

0

v

X

X
X61=1

1
v

v v?1:X

97

Vacuous Results - Refined

in1

in2
n1

n2in3

n3 n6

A = in1 is 0 ∧ in2 is u ∧ in3 is 0 ∧ n3 is 1

n4

The counterexample is spurious!

n5

0

0

u
u

¬u

0 6 1= ⊥
⊥

⊥

0

98

The Vacuity Problem
Given an STE assertion A ⇒ C, an assignment φ to V

and a circuit M:

• A ⇒ C is vacuous in M under φ if

– there is no concrete execution of M that
satisfies φ(A)

OR
– C under φ imposes no requirements.
For example, if C=(v1->(n is v2)) then for

assignments in which v1=0, C imposes no
requirement

99

The Vacuity Problem (cont.)

• A ⇒ C fails vacuously in M if
– [M×A ² C] = 0
AND

– for all assignments φ so that
[φ ,M×A ² C] = 0, A ⇒ C is vacuous in M

under φ

100

The Vacuity Problem (cont.)

• A ⇒ C passes vacuously in M if
– [M×A ² C] = 1
AND
– for all assignments φ so that

[φ ,M×A ² C] = 1, A ⇒ C is vacuous in M
under φ

101

Observation

• Vacuity can only occur when A contains
constraints on internal nodes (gates,
latches)

• Antecedent failure is an explicit vacuity.
Our goal is to reveal hidden vacuity.

102

Detecting (non-)vacuity

Given a circuit M, an STE assertion
A⇒C and an STE result (either fail or
pass), our purpose is to find an
assignment φ to V and an execution of
M that satisfies all the constraints in
φ(A)

103

Detecting (non-)vacuity

In Addition:
• In case of pass, φ should also impose

requirements in C

• In case of fail, the execution should
constitute a counterexample

104

Detecting (non-)vacuity

We developed two different algorithms
for detecting vacuity / non-vacuity:

• An algorithm that uses BMC and runs
on the concrete circuit.

• An algorithm that uses STE and
automatic refinement.

105

Detecting (non-)vacuity using BMC

1. Transform A into an LTL formula
2. Encode M and A as a BMC formula
3. In case of fail STE result, add the

counterexample as a constraint to the
BMC formula

4. In case of pass STE result, add
constraints to enforce at least one
requirement in C

5. Return “vacuous” if and only if the
resulting formula is unsatisfiable

106

Detecting (non-)vacuity using BMC

Main drawback: no abstraction is used

We would like to detect vacuity while
utilizing STE abstraction

107

Detecting (non-)vacuity using STE
• Ain ⇒ Aout is a new STE assertion, where

– Ain includes all constraints on inputs in
A, and

– Aout includes the constraints on internal
nodes in A

• Run STE on Ain ⇒ Aout . Let Φ denote the
set of assignments to V for which
[M×Ain ² Aout]=1

108

Detecting (non-)vacuity using STE
(cont.)

1. In case [M×A ² C]=1: If there is an
assignment in Φ that imposes a
requirement in C, return “pass non
vacuously”

2. In case [M×A ² C]=0: If there exists
φ∈Φ and φ’ so that [φ’,M×A ² C]=0 and
(φ.φ’ is satisfiable) , return “fail non
vacuously”

109

Detecting (non-)vacuity using STE
(cont.)

3. If there is no φ so that
[φ, M×Ain ²Aout]=X, return “vacuous”

4. Refine Ain ⇒ Aout and return to step 2

110

Summary

What makes STE successful?

The combination of:
• Symbolic simulation
• Abstraction
• Local (dual rail) BDD implementation

111

Conclusion and future work

Generalized STE (GSTE) extends STE by providing a
specification language which is as expressive as ω-
regular languages.

Other directions:
• automatic refinement for GSTE (FMCAD’07)
• Vacuity definition and detection for GSTE
• SAT-based STE (ATVA 2007)
• New specification language for GSTE (FMCAD’07)

112

References
Model Checking
• Model checking

E. Clarke, O. Grumberg, D. Peled, MIT Press, 1999.

Abstraction-refinement in model checking
• Counterexample-guided abstraction refinement for symbolic

model checking
E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith,
JACM 50(5): 752-794 (2003)

Vacuity in model checking
• Efficient detection of vacuity in temporal model checking

I. Beer, S. Ben-David, C. Eisner, Y. Rodeh, Formal Methods
in System Design, 18, 2001.

113

References
STE
• Formal verification by symbolic evaluation of partially-

ordered trajectories
C-J. Seger and R. Bryant, Formal Methods in System Design,
6(2), 1995.

FORTE
• An industrially effective environment for formal hardware

verification
C-J Seger, R. Jones, J. O’Leary, T. Melham, M. Aagaard, C.
Barrett, D. Syme, IEEE transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(9), 2005

• FORTE
http://www.intel.com/software/products/opensource/tools1
/verification

114

References
Refinement in STE
• Automatic refinement and vacuity detection for symbolic

trajectory evaluation
– R. Tzoref and O. Grumberg, CAV’06
– R. Tzoref, Master thesis, Technion, Haifa, 2006

• SAT-based assistance in abstraction refinement for
symbolic trajectory evaluation
J-W. Roorda and K. Claessen, CAV’06

GSTE
• Introduction to generalized symbolic trajectory evaluation

J. Yang and C-J. Seger, IEEE transactions on very large
scale integrated systems, 11(3), 2003.

115

THE END

