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Abstract

This work presents a novel approach for evaluating the quality of the model
checking process. Given a model of a design (or implementation) and a tem-
poral logic formula that describes a specification, model checking determines
whether the model satisfies the specification.

Assume that all specification formulas were successfully checked for the
implementation. Are we sure that the implementation is correct? If the
specification is incomplete, we may fail to find an error in the implementa-
tion. On the other hand, if the specification is complete, then the model
checking process can be stopped, and no additional specification formulas
need be checked. Thus, knowledge of whether the specification is complete
may help us avoid missed implementation errors and save precious verifica-
tion time.

The completeness of a specification for a given implementation is de-
termined as follows. The specification formula is first transformed into a
tableau. The simulation preorder is then used to compare the implemen-
tation model and the tableau model. We suggest four comparison criteria,
each revealing a certain dissimilarity between the implementation and the
specification. The comparison can be made on different abstraction levels,
chosen by the user. When the most strict comparison is applied, empty
criteria imply that the tableau is bisimilar to the implementation model
and that the specification fully describes the implementation. We then also
conclude that there are no redundant states in the implementation.

In order to allow comparison using different abstraction levels we devel-
oped a reduced tableau for safety ACTL formulas. The states of the reduced
tableau consist of the exact requirements imposed by the formula. Every-
thing else is regarded as “don’t care.”

The method is exemplified on a small hardware example. We imple-
mented our method symbolically as an extension to SMV. The implemen-
tation involves efficient OBDD manipulations that reduce the number of
OBDD variables to half of the naive use.



Chapter 1

Introduction

1.1 Why Model Checking is Not Complete

The increasing complexity of hardware components, and of the industrial
VLSI logic design in particular, impose new challenges in design verification
and compliance. The traditional verification methods, which are mainly
dynamic-simulation based, are no longer adequate for covering the entire
range of functionality to be checked. The effort spent on design verification
is huge. This effort tends to increase with the increase in design complexity
and in quality requirements. These trends have led to the rapid development
and flourishing of the model checking field.

Given a model of the design (or implementation) and a temporal logic
formula that describes a specification, model checking [8] determines whether
the model satisfies the specification.

Model-checking algorithms were first developed about two decades ago
for various temporal languages [31, 7]. The methods began to appeal to the
industry when they became symbolic and their memory requirements were
reduced [28]. In symbolic model checking, the algorithm deals with sets of
states rather than dealing explicitly with each state. This is accomplished
with an efficient data structure representation, known as an OBDD [3].

The strength of model checking is that the technique can exhaustively
cover the whole state space of a relatively small model. Exhaustive coverage
of control logic is a task that is far beyond the ability of traditional verifica-
tion techniques. However, the fact that model checking can only deal with
relatively small models is the major limitation of this method.

Small and critical portions of industrial designs are verified daily using



model checking. It is indeed true that a model checking technique, applied
on an appropriate model, reaches 100% of its state space. This fact is the
basis of a common but false conception: if model checking is exhaustive, who
could ask for more? However, reaching all states is not sufficient: one also
has to verify all the relevant requirements. If a requirement is not checked
in the model checking verification process, one would like an indication of
this.

1.2 Evaluating Completeness

This work presents a novel approach for evaluating the quality of the veri-
fication when using model checking.

Assume that all specification formulas were successfully checked for a
given implementation. Are we sure that the implementation is correct? If
the specification is incomplete, we may fail to find an error in the implemen-
tation. On the other hand, if the specification is complete, then the model
checking process can be stopped without checking additional specification
formulas. Thus, knowledge of whether the specification is complete may
help us avoid missed implementation errors and save precious verification
time. Completeness of a set of specification formulas is achieved when any
addition of a valid formula to the set will not change the system behavior
as described by the specification.

Below we describe our method for determining whether a specification is
complete with respect to a given implementation. We focus only on safety
properties written in the universal branching-time logic ACTL [14]. ACTL
is the temporal language obtained from the branching temporal language
CTL when removing the existential operators. We further remove the live-
ness operators syntactically. This logic is relatively restricted, but can still
express most of the specifications used in practice. Moreover, it can fully
characterize every implementation model. The restriction to the safety sub-
set of ACTL is done only from complexity considerations, and does not
influence the ability to reach a complete set of specification formulas. We
consider a single specification formula (the conjunction of all properties).

We first apply model checking to verify that the specification formula
is true for the implementation model. The formula is then transformed
into a tableau [14]. One property of the tableau is that it is greater by
the simulation preorder [29] than every model that satisfies the formula. A
simulation preorder between two models means that all valid behavior of



one model can be mapped to the behavior of the other model. Thus, since
the formula is true with respect to the model, the tableau is greater than
the model by the simulation preorder.

Given a tableau for the specification formula, we use the simulation pre-
order to find differences between the implementation and its specification.
We restrict our attention to the reachable portion of the simulation rela-
tion, starting from initial states of the implementation and the tableau.
The simulation relation imposes that every implementation state has a cor-
responding tableau state, but not every tableau state has a corresponding
implementation state. For example, if we find a reachable tableau state
with no corresponding implementation state, then we argue that one of the
following holds: either the specification is not restrictive enough or the im-
plementation fails to implement a meaningful state. In the first case the
specification formula should be corrected while in the second case the im-
plementation is missing some behavior. Our method will not be able to
determine which of the arguments is correct. However, the evidence for the
dissimilarity (in this case a tableau state that none of the implementation
states are mapped to) will assist the designer in making the decision.

We suggest four comparison criteria, each revealing a certain dissimilar-
ity between the implementation and specification. If all comparison criteria
are empty, we conclude that the tableau is bisimilar [30] to the implemen-
tation model and that the specification fully describes the implementation.
We also conclude that there are no redundant states in the implementation.

1.3 Using Reduced Tableau for Completeness Eval-
uation

The method described so far is valid but has drawbacks. If any tableau
is used (e.g. [14], false indication of coverage problems may be received.
We remove such false indications by defining a new tableau structure. We
define a reduced tableau for ACTL safety formulas. Our tableau is based
on the particle tableau for LTL, presented in [26]. We further reduce their
construction by using only elementary formulas and removing redundant
tableau states. Our construction maintains a three-value labeling method.
Although we can use any ACTL tableau structure for determining the
completeness of a specification, we define the reduced tableau for four rea-
sons. First, we would like to eliminate false indications of incompleteness.
Second, our reduced construction builds states composed of exactly the re-



quirement imposed by the formula. Whatever is not required by the given
formula is left as a “don’t care.” The “don’t care” property of the reduced
tableau enables us to deduce incompleteness only on conditions stated ex-
plicitly in the specification formula. Third, the reduced tableau has a smaller
size. Finally, as will be exemplified, the reduced tableau allows us to detect
redundancies in the specification formula.

We show an example of a reduced tableau with 20 states (see figure 13.2).
The tableau presented in [14] would have a state space of 2'° states for the
same formula.

1.4 Applicability of the Comparison Method

Our comparison method can deal with various levels of system description.
One of the major criticisms of our proposed method is that it is necessary
to know all the internal details of the design in order to achieve complete-
ness. In practice, however, all one needs to know in order to describe the
model with respect to the given observable variables is their correct behav-
ior. Variables that are not observable are hidden and do not participate
in the specification formula. If the observable variables are partial and de-
scribe only an abstract system, our method can detail the completeness of
the abstracted formula with respect to the system.

Another advantage of our method is its ability to detect that a model for
the environment of the implementation does not generate all possible input
sequences. If the environment does not generate some input sequence, it
may hide an implementation bug, even when the specification for the model
under test is complete.

Completeness is determined by reaching empty criteria (which imposes
bisimulation). We expand our methodology and suggest a notion of practical
completeness, where bisimulation need not be preserved. Practical complete-
ness is achieved when the comparison criteria are empty with respect to a
three-value reduced tableau. The reduced tableau does not construct states
unless they carry meaningful formula elements. When some condition is not
explicitly mentioned in the specification formula, it is considered a “don’t
care” and is not included in the tableau. When the value of a proposition
is not specified, we may consider it as a shorthand and check that every
possible value of that proposition appears in the implementation. On the
other hand, we may consider it as a real “don’t care” and allow the imple-
mentation to choose only some possible value. The preferred interpretation



may be chosen by the user. In order to provide the user with the choice be-
tween the two possibilities, we define, in addition to the comparison criteria
defined above also a three-value comparison criteria.

The regular (two-value) comparison criteria used with the reduced tableau
compares the implementation and specification under the assumption that
unspecified propositions are interpreted as “don’t cares.” It does require,
however, that every condition that explicitly appears in the specification
must also be satisfied by the implementation. If bisimulation between the
implementation and the reduced tableau is desired, we use the three-value
labeling comparison criteria, allowing the interpretation of “don’t care” to
be “all possible states.”

1.5 Efficient Implementation

We suggest how our method can be implemented symbolically as an exten-
sion to a symbolic model checker such as SMV [27]. Given a model with
n state variables, a straightforward implementation of this method can cre-
ate intermediate results that consist of 4n OBDD variables. However, our
implementation proposal reduces the required number of OBDD variables
from 4n to 2n.

1.6 Summary of Contributions

The main contributions of our work can be summarized as follows:

o We suggest a theoretical framework for quality evaluation of model
checking. Our comparison criteria can assist the designer in finding
errors by showing where the design and the specification disagree, and
suggesting when the verification effort should be terminated.

e We show how to implement our method symbolically and in an effi-
cient manner. Of special interest is the symbolic computation of the
simulation relation for which no good symbolic algorithm is known.

e We define a new reduced tableau for ACTL that is often significantly
smaller in the number of states and transitions than other known
tableaux.



1.7 Thesis Organization

The rest of this work is organized as follows. Chapter 2 describes related
work. Chapter 3 gives the necessary background. Chapter 4 describes the
comparison criteria and the methodology for their use. Chapter 5 exempli-
fies the different criteria by applying the method to a small hardware circuit.
Chapter 6 shows how the comparison method relates to various abstraction
levels of the system. Chapter 7 presents symbolic algorithms that imple-
ment our method. Chapter 8 explains an innovative implementation of our
algorithms. Chapters 9 and 10 define the reduced tableau for ACTL safety
formulas. Chapter 11 presents proof of the correctness of our construction.
Chapter 12 adapts the comparison criteria to the reduced tableau. Chap-
ter 13 shows applications to the reduced tableau. Chapter 14.1 describes
extensions to this work. Finally, the last chapter presents conclusions and
describes future work.



Chapter 2

Related Work

2.1 Model-Checking Coverage

Until recently, the issue of coverage in model checking has not been ad-
dressed. In addition to identifying the quality problem of model checking,
it was not clear how the coverage problem should be addressed. No known
work had been published to suggest an approach for checking coverage, nor
had an algorithm been suggested.

In parallel to our work [20], another work on coverage of model checking
has been independently developed [18]. That work computes the percentage
of states in which a change in an observable proposition will not affect the
correctness of the specification. This percentage is reported as a coverage
metric. The authors’ evidence is closely related to our unimplemented state
criterion that will later be presented. Hoskote et al. assume a flavor of
ACTL, where the only disjunction allowed is of the form p — ¢, such that
p is propositional. The claim is that this subset of ACTL is acceptable.
They use this subset to reduce the complexity of computing the coverage
metric to linear time, with performance only a little worse than the model
checking task. The appealing complexity is achieved by the language they
choose, and by the fact that they can measure the coverage of each formula
separately, and combine at the end of the process. The authors also list a
number of limitations of their work. They are unable to give path evidence,
cannot point out missing functionality aspects in the model, and have no
indication that the specification is complete. In the next chapters we explain
how our work solves these problems.

A more recent work [5] examines the area of model checking coverage



from a wide perspective. Chockler et al. suggest two additional coverage
metrics. The first metric is state-based, and is a generalization of the metric
suggested by [18]. Again, it checks whether a mutation of the state space
(i.e., a value change of an observable proposition in a specific state) satisfies
the given specifications. The second metric is circuit-based and assumes
mutations to the circuit, rather than the state space. An example of a circuit
mutation is to force a value of zero in a specific node, and in any expression
that uses this node. Chockler et al. also suggest a principle: to distinguish
between the design and the environment, and check only the design. This
work examines the complexity of such coverage metrics. Chockler et al.
choose not to deal with the transitions of the model (except transitions
influenced by circuit mutation), thus claiming their coverage to be effective
rather than complete.

In contrast to [18] and to [5], our work is capable of detecting missing
states and transitions in the environment. If you divide the observable
signals to inputs and outputs, the environment is the part of the model that
defines the inputs, as a function of the outputs. Model checking reaches all
states of a circuit only if all the combinations of the inputs are generated. An
input state or input sequence that cannot be generated by the environment
may hide a bug in the circuit. In fact, detecting problems in a model checking
environment is a problem that has not been addressed so far. In section 5.5
we exemplify how environment is checked using our method.

2.2 Equivalence Checking and Simulation

The analysis we perform compares the implementation model and the tableau
model, and tries to identify dissimilarities. It is therefore related to tautol-
ogy checking of finite state machines, as is done in [34]. However the method
in [34] is suggested as an alternative, not as a complement, to model check-
ing.

Another remotely related area is equivalence checking. Boolean and
other versions of equivalence checking are very common in the VLSI in-
dustry. In equivalence checking, two representations of the same function
are compared, and differences, if they exist, are reported. Usually, equiv-
alence checking deals with the equivalence of combinatorial circuits. Some
attempts were also made to compare sequential representations of circuits.
Since designs are deterministic, trace equivalence is straightforward. When
comparing nondeterministic models (which may come from abstracting por-



tions of the design), one will be facing a problem similar to ours: how to
compare a nondeterministic model of the design (and its environment) with
a tableau, which is a nondeterministic structure.

Simulation and bisimulation relations has been applied in the context
of model checking, equivalence checking, refinement checking and minimiza-
tion [25, 10]. It has never been used for checking coverage. Beyond using
simulation, our work describes an efficient implementation of a symbolic al-
gorithm for computing the simulation relation. Previous symbolic algorithm
for simulation may be found in [15]. Our contribution is a memory efficient
implementation of the same principals.

2.3 Tableau Construction

We build a reduced tableau, to be compared with the given implementation
model. We want our tableau, the construction of which will be described
later, to be as small as possible.

In the context of model checking, tableaux have been used for the logic of
LTL [24], ACTL [14] and p-calculus [9]. Most initial constructions defined
the set of tableau states as the powerset of the subformulas of the given
formula, yielding an exponential number of states.

Recently, several works that aim to reduce the tableau size have been
published. In [11], Daniele et al. combine a few tableau construction
algorithms into a single framework. In an approach similar to ours, Daniele
et al. construct the tableau using only elementary formulas. They show
significant reduction in the tableau size relative to previous works. Since
the main motivation for this tableau is for use on the fly in the process
of LTL model checking, not all the possible simplifications are utilized. We
applied the algorithm reported in [11] to our example. The resulting tableau
contained 215 states instead of the 20 states we received using our reduced
tableau construction. Using the tableau of [11] would have introduced false
evidence to our coverage procedure.

An additional work [33] has recently been published on small tableau
construction. Somenzi et al. presented the idea, previously published in
[20], that successors can be eliminated when one successor simulates the al-
lowed behavior of the other. Somenzi et al. implement various Boolean re-
ductions, which are aimed at combining semantically identical states. They
use a method similar to the one developed in this work, by which a Boolean
function is represented by a DNF (Disjunctive Normal Form). The advan-
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tage of a normal form is that it is unique for a certain family of equivalent
formulas. The tableau presented by Somenzi et al. is not a three-value
labeling tableau, but it is certainly appealing from the coverage point of
view.

2.4 Vacuity and Sanity Checks

One of the first suggested methods to identify problems in a model checking
system is to detect vacuous satisfaction of the specification property [1, 22].
A property is vacuously satisfied if part of the specification property does
not influence the satisfaction of the property. For example the property
AG(—p — AX p) may be trivially satisfied in a system where p is always
true. Detecting a vacuous satisfaction may indicate either a badly written
specification property or a problem in the design or the environment.

Vacuity is orthogonal to Model-Checking coverage. A specification for-
mula may be complete, but still may contain a vacuous sub-formula. In
addition, a non-complete specification formula does not imply weather it is
vacuous or not. Vacuity checking is most useful for sanity checking a single
formula, while coverage checking deals with the complete set of specification
formulas.

Checking the validity of the specification formula is also a possible sanity
check. In addition a check of weather the specification formula is satisfied
regardless of the implementation model, may be done.

Another form of sanity checks may be found in the model checking tool
FormalCheck [23], where properties always have an enabling condition. The
tool includes a validation phase that verifies that each enabling condition
is satisfied. Again, detecting an enabling condition that is not possible
indicates of some problem. As will be seen in section 13.3, we suggest a
criterion that enables us to detect redundant portions of the specification
formula. This criterion allows the detection of problems not addressed by
the initial works in this area.

2.5 Coverage of Dynamic Simulation

Checking how well a verification system covers the interesting cases is not
new. It is common in simulation-based hardware verification methods. For
dynamic simulation it is clear that exhaustive coverage of all possible cases
to be checked is far from being feasible. Many coverage metrics are used to

11



monitor and generate test vectors in the dynamic simulation process, and
increase the cases it covers. One of the early measures was toggle coverage,
a metric measuring the percentage of nodes in the design that were toggled
while simulating the test vectors. The nodes of a design are typically ele-
ments that can be assign logical values, a node was considered toggled if it
changed value anywhere in the execution of the test vectors.

An additional common metric is code coverage [4], which defines the
percentage of HDL statements executed during simulation. While code cov-
erage, toggle coverage and similar methods are useful in detecting large
portions of the design not being exercised, these methods are not useful in
identifying that all interesting events are present in the test case. A more de-
tailed measure is Transition coverage [32, 19] that defines the percentage of
code transitions that have been executed. An observability-based approach
is suggested in [12]. There is a difference between a test case being executed
and an erroneous behavior being observed. The suggested approach is to
assign forbidden values to variable, and monitor erroneous behavior of the
system.

It was identified that most design bugs are in the control portion. The
work in [17] defines and measures control events. Defining meaningful con-
trol events is not trivial, and in addition may lead to a state explosion
problem.

The state explosion problem led to a development of projection-directed
state exploration techniques [2]. It turns out that exploring just the projected
control logic of a design may be a non feasible task.

As may be evident from the area of dynamic simulation, checking the
coverage of a verification system is essential. It may also show that reaching
a goal of 100% for a certain coverage metric may be far from complete
coverage.

12



Chapter 3

Preliminaries

Our specification language is the universal branching-time temporal logic
ACTYL [14], restricted to safety properties. Let AP be a set of atomic propo-
sitions. The set of ACTL safety formulas is defined inductively in negation
normal form, where negations are applied only to atomic propositions. It
consists of the temporal operators X (“next-state”) and W (“weak until”)
and the path quantifier A (“for all paths”).

e If p € AP, then both p and —p are ACTL safety formulas.

e If 1 and o are ACTL safety formulas, then so are o1 A @, @1V 2,
AXpr, and Afp; Wes]!.

We use Kripke structures to model our implementations. A Kripke struc-
ture is a tuple M = (S, Sy, R, L), where S is a finite set of states; So C S is
the set of initial states; R C S x S is the transition relation that must be
total; and L : S — 247 is the labeling function that maps each state to the
set of atomic propositions true at that state.

A path in M from a state s is a sequence sy, S1, ... such that so = s and
for every i, (s, 8i+1) € R.

The logic ACTL is interpreted over a state s in a Kripke structure M.

Definition 3.0.1 () [Satisfaction of ACTL safety formulas]
Given a Kripke structure M and a formula ¢, we define s = ¢ recursively:

1. If op=pandp € AP, then s =p iff p € L(s).

'Full ACTL includes also formulas of the form A[p; Ugps] (“strong until”).

13



If o = —p and p € AP, then s |= —p iff p & L(s).
st @1V iff s @1 ors = .

sE @i Ap2 iff s =1 and s = @a.

s = AXp iff for every successor s1 of s s1 |= .

S & e

s | Alp1W o] iff for every path m = s1s9... from s, one of the fol-
lowing holds: either for all i > 0, s; |= @1, or there exists n such that
Sn |= w2 and for all i < n, s; E 1.

A structure M satisfies a formula @, denoted M = ¢, if every initial state
of M satisfies .

We now define the maximal simulation preorder. A simulation preorder
between two structures suggests that all behavior possible in the ”smaller“
model is also possible in the ”large® one.

Definition 3.0.2 (SIM) [Mazimal Simulation Preorder]

Let M' = (5", Sy,R', L") and M = (S,So,R,L) be two Kripke structures
over the same set of atomic propositions AP. A relation SIM' C 8" x S
is a simulation preorder from M' to M [29] if for every initial state s, of
M’ there is an initial state sy of M such that (s{, so) € SIM'. Moreover, if
(s',s) € SIM', then the following holds:

e L'(s") = L(s), and
o Vsi[(s,s)) € R = 3s1[(s,81) € RA(s],81) € STM']].
We define SIM as the mazimal relation of simulation relations SIM’.

If there is a simulation preorder from M’ to M, we write M’ < M. In this
work we refer to this as M' simulates M.

As shown in [14], if M’ simulates M then every ACTL formula satisfied
in M is also true in M'. This is stated in the following Lemma.

Lemma 3.0.1 If M' <M thenVp € ACTLIM ¢ = M' |~ ¢].

Lemma 3.0.2 For every M and M', there is a greatest simulation pre-
order from M' to M.

14



Proof:

The empty relation is a simulation preorder. Furthermore, if STM; and
SIM, are simulation preorders then so is STM; U SIM,. Since S’ x S is
finite there is a greatest simulation preorder. O

It has been shown in [14] that for every ACTL safety formula ¢ it is
possible to construct a Kripke structure 7(1), called a tableau,? for 1.

Definition 3.0.3 (7(¢)) [Tableau for safety ACTL]
Given an ACTL safety formula v, a tableau for ¢ is a Kripke structure
7(1) with the following properties:

e For every structure M, M =1 <= M < 1(1).
o 7(¢) .

We refer to these properties as the tableau properties. In this work we con-
struct a specific reduced tableau that better suits our purpose.

We want to compare a given model M and a formula 1. We rely on
the tableau properties to compare M and 7(1) by analyzing the simula-
tion preorder. Intuitively, the simulation preorder relates two states if the
computation tree that starts from the state of the smaller model can be
embedded in the computation tree that starts from the state of the greater
one. This, however, is not sufficient to determine how similar the two struc-
tures are. Instead, we use the reachable simulation preorder, which relates
two states if they are in the simulation preorder and are also reachable from
initial states along corresponding paths.

Definition 3.0.4 (ReachSIM)

Let SIM C S’ x S be the greatest simulation preorder from M' to M. The
reachable simulation preorder for SIM, ReachSIM C SIM, is defined as
follows: (s',s) € ReachSIM if and only if there is a path @' = sj, s}, ..., s},
in M" with sy, € Sy and s, = s' and a path ™ = sg,S1,...,8 in M with
so € So and s = s such that for all 0 < j <k, (s,s5) € SIM.

In this case, the paths ' and 7 are called corresponding paths leading to s’
and s.

2The tableau for full ACTL is a fair Kripke structure (not defined here). It has the
same properties except that = and < are defined for fair structures.
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Lemma 3.0.3 ReachSIM is a simulation preorder from M' to M.

Proof:

Clearly, for the initial states, (s(,so) € SIM if and only if (s(,s0) €
ReachSTM. Thus, for every initial state of M’ there is a ReachSTM-related
initial state of M. Assume that (s',s) € ReachSTM. First we note that
since ReachSIM C SIM, (s',s) € SIM and therefore L'(s") = L(s).

Now assume that (s',s]) € R'. Then there is s such that (s,s1) € R and
(s],s1) € SIM. Since (s',s) € ReachSIM, there are corresponding paths
7' and 7 leading to s’ and s. These paths can be extended to corresponding
paths leading to s} and s;. Thus, (s},s1) € ReachSIM. O
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Chapter 4

Comparison Criteria

Let M = (S;, Soi, Ri, L;) be an implementation structure and 7(¢) = (Sy, Sot, Re, L)
be a tableau structure over a common set of atomic propositions AP. For
the two structures we consider only reachable states that are the start of an
infinite path.
Assume M < 7(1p). We define four criteria, each associated with a set.
A criterion is said to hold if the appropriate set is empty. For convenience,
we give each criterion the same name as the appropriate set. The following
sets define the criteria :

1. UnImplementedStartState = {s; € Sor | Vs; € Soi | (si,st) & ReachSIM |}
An unimplemented start state is an initial tableau state that has no
corresponding initial state in the implementation structure. The ex-
istence of such a state may indicate that the specification does not
properly constrain the set of start states. It may also indicate the lack
of a required initial state in the implementation.

In Figure 4.1, state t5 is an initial state in the tableau model, but
it does not have a corresponding initial state in the implementation
model.
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Figure 4.1: Unimplemented Start State Example

2. UnImplementedState = {s; € S¢|Vs; € S; [ (si,st) & ReachSIM |}
An unimplemented state is a state of the tableau that has no corre-
sponding state in the implementation structure. This difference may
suggest that the specification is not tight enough, or that a meaningful
state was not implemented.
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Figure 4.2: Unimplemented State Example
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In Figure 4.2, state to is a tableau state that does not have a corre-
sponding state in the implementation model.

. UnImplementedTransition = {(s,s}) € Ry |3si, s € S;,

[(si,st) € ReachSIM, (s}, s;) € ReachSIM and (s;,s)) & R; |}

An unimplemented transition is a transition between two states of the
tableau, for which a corresponding transition in the implementation
does not exist. The existence of such a transition may suggest that
the specification is not tight enough, or that a required transition (be-
tween reachable implementation states) was not implemented.
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Figure 4.3: Unimplemented Transition Example

In Figure 4.3, the transition (¢1,%2) is a tableau transition that does
not have a corresponding transition in the implementation model.
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4. ManyToOne = {s; € Sy|3s14,59; € S;[(s14,51) € ReachSIM, (s9;,5¢) €
ReachSIM and sq; # s9;] }
A many-to-one state is a tableau state to which multiple implemen-
tation states are mapped. The existence of such a state may indicate
that the specification is not detailed enough. It may also suggest that
parts of the implementation are redundant.
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\ \ s \v
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implementation t, — tableau
model model

Figure 4.4: Many-to-One Example

In Figure 4.4, both of the implementation states s; and so are mapped to
the same tableau state t.

Our criteria are defined for any tableau that has the tableau properties
as defined in Chapter 3. Any dissimilarity between the implementation
and the specification will result in a nonempty criterion. Empty criteria
indicate completeness, but they are hard to obtain on traditional tableaux
since such tableaux contain redundancies. In the reduced tableau presented
in Chapter 9, redundancies are removed and therefore empty criteria can be
obtained.
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The algorithm for checking the coverage of a model and its specification
is presented below.

Given a structure M and a property 1, our method consists of the following
steps:

1. Apply model checking to verify that M |= .

2. Build a (reduced) tableau 7(v) for 1.

3. Compute SIM of (M, 7(¢))).

4. Compute ReachSIM of (M,7(1))) from SIM of (M, 1())).

5. For each of the comparison criteria, evaluate if its corresponding set
is empty. If not, present evidence for its failure.

Figure 4.5: Coverage Algorithm

Theorem 4.0.4 Let M be an implementation model and v be an ACTL
safety formula such that M |= 1. Let T(1) be a tableau for ) that has the
tableau properties. If the comparison criteria 1-3 hold, then 7(1p) < M.

Proof:

Since M | ¢, M < 7(¢). Thus, there is a simulation preorder SIM C
S; x S;. Let ReachSIM be the reachable simulation preorder for SIM.
Then ReachSIM~' C S; x S; is defined by (st,8;) € ReachSIM~" if and
only if (s;,s;) € ReachSIM. We show that ReachSIM™"' is a simulation
preorder from 7(¢) to M.

Let so: be an initial state of 7(¢). Since UnImplementedStartState
is empty, there must be an initial state so; of M such that (so;,sor) €
ReachSIM. Thus, (so, s0;) € ReachSIM™!.

Now assume (s, s;) € ReachSTM ~'. Since (s;,s;) € ReachSTIM, L;(s;) =
L;(s;).

Assume (s, 8}) € Ry. Since UnimplementedState is empty, there must
be a state s; € S; such that (s}, s;) € ReachSIM. Since UnImplementedTransition
is empty, we get (s;,s;) € R;. Thus, s; is a successor of s; and (s},s]) €
ReachSIM™".

We conclude that ReachSIM ™" is a simulation preorder and therefore
() <M. O
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Note that since ReachSIM and ReachSIM ™" are both simulation pre-
orders, ReachSIM is actually a bisimulation relation. Thus, if criteria 1-3
hold, then 7(1) and M are in fact bisimilar.

The fourth criterion is not necessary for completeness because, whenever
there are several non-bisimilar implementation states that are mapped to the
same tableau state, there is also an unimplemented state or transition. In
the case of two states mapped to the same tableau state and the specification
is complete, the two states are bisimilar.

However, this criterion may provide useful information and reveal redun-
dancies in the implementation.

It is important to note that the goal is not to find a smaller set of
criteria that guarantees the completeness of the specification. The purpose
of the criteria is to assist the designer in the debugging process. Thus, we
are looking for meaningful criteria that can distinguish between different
types of problems and identify them. In Chapter 9 we define an additional
criterion that can reveal redundancy in the specification.
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Chapter 5

Example

Consider a synchronous arbiter with two inputs, req0,reql, and two ac-
knowledge outputs, ack0,ackl. The assertion of ack; is a response to the
assertion of reg;. Initially, both outputs of the arbiter are inactive. At any
time, at most one acknowledge output may be active. The arbiter grants one
of the active requests in the next cycle, and uses a round robin algorithm
in the case that both request inputs are active. Furthermore, in the case
of simultaneous assertion (i.e., both requests are asserted and neither was
asserted in the previous cycle), request 0 has priority in the first simultane-
ous assertion. In any additional simultaneous assertion the priority rotates
with respect to the previous one.

The implementation and the specification will share a common set of
atomic propositions AP = {req0,reql,ack0,ackl}. An implementation of
the arbiter M, written in the SMV language, is presented below:

1) war

2) req0, reql, ack0, ackl, robin : boolean;

3) assign

4)  init(ack0) := 0;

5)  init(ackl) :=0;

6)  init(robin) :=0;

7)  next(ack0) := case

8) Ireq0 : 0; — No request results no ack

9) Iregl 1 — A single request

10)  lack0& lackl :lrobin; — Simultaneous requests assertions
1) 1 :lackO; — Both requesting , toggle ack
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12) esac;
13) next(ackl) := case
14)  lreql : 05 — No request results no ack

)
)
)
) lreq0 1 — A single request
16)  lack0 & lackl : robin; — simultaneous assertion
) 1 :lackl; — Both requesting , toggle ack
) esac;

) next(robin) :=if req0& reql &lack0 & lackl then !robin

) else robin endif; — Two simultaneous request assertions

From the verbal description given at the beginning of the chapter, one may
derive a temporal formula that specifies the arbiter :

1 = —ack0 A —ack1N
Al(-req0V —reql V ack0 V ackl)W

(req0 A reql A —ack0 A —~ackl A AXack0)] A ~©0
AG(
(=ack0 V —ackl) A -1
(=req0 A —reql — AX(—ack0 A —ackl)) A ~ P9
(req0 A =reql — AXack0) A —~ 3
(=req0 A reql — AXackl) A — 4
(reql A ackO0 — AXackl) A - 5
(req0 A ackl — AXack0) A ~ 6

(req0 A reql A —ack0 A —ackl — AX(ack0 —
Al(—-req0 V —reql V ack0 V ackl)W
(req0 A reql A —ack0 A —ackl A AXackl)]))A — 7
(req0 A reql A —ack0 A —ackl — AX(ackl —
Al(-req0V —reql V ack0 V ackl)W
(req0 A reql A —ack0 A —ackl A AXack0)]))) ~ s

where AGy = A[pW false], and ¢1 — @2 = —o V 1. Using the SMV
model checker,we verified that M |= 1. We then applied our method. We
found that all comparison criteria hold. We therefore concluded that ¢ is a
complete specification for M.

In order to demonstrate the capabilities of our method, we changed the
implementation and the specification in different ways. In all cases the
modified implementation satisfied the modified specification. However, our
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method reported the failure of some of the criteria. By examining the evi-
dence supplied by the report, we could detect flaws in either the implemen-
tation or the specification.

The various state spaces of the example and its modification are too
detailed to be list here. The reduced tableau state space of the specification
formula 1 may be found in figure 13.2.

5.1 Unimplemented Transition Evidence

Consider a modified version of the implementation M, denoted My,q;,5, Ob-
tained by adding the line robin & ackl : {0, 1};

between line (10) and line (11), and by adding the line

ackl :'next(ack0); between line (16) and line (17).

Consider also the modified formula 44,5, Obtained from 1 by replacing g
with (req0 A ackl — AX(ack0 V ackl))A.

SMV shows that Myans &= Yuans. However, when the comparison
method is applied on Myrqns and ¥yans, an Unimplemented Transition is
reported. The evidence supplied is a transition between tableau states s;
and s} such that L;(s;) = Ly(s}) = {req0,reql,lack0,ackl}. Such a transi-
tion is possible by %4.qns but not possible in M;,q,s in the case that variable
robin is not asserted.

If we examine the reason for the incomplete specification, we see that
the evidence shows a cycle where req0 and ackl are asserted, followed by
a cycle where ackl is asserted. This incorrect behavior violates the round
robin requirement. The complete specification would detect that My,4,s has
a bug, since My qns = .

5.2 Unimplemented State Evidence

Consider a modified version of the implementation M, denoted Myimp,
obtained by adding the line ack0 : {0,1};

between lines (10) and line (11), and replacing line (2) with the following
lines:

2.1) req0_temp, reql, ack0, ackl, robin : boolean;

2.2) define req0 := req0_temp & (ack0 & ackl);

Here req0_temp is a free variable, and the input req0 is a restricted input
such that if the state satisfies ack0&ack1l then req0 is forced to be inactive.
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Consider also the modified formula %),yim, obtained from « by delet-
ing ¢1. SMV shows that Mypimp = Yunimp. However, when the compar-
ison method is applied to Mypimp and Yunimp, an Unimplemented State
is reported. The evidence supplied is the state s; such that L;(s;) =
{req0,!reql, ack0,ack1}. This state is possible by ¥ynimp but not possible
in Munimp-

If we check the source of the incomplete specification, we see that the
evidence violates the mutual exclusion property. Both of the arbiter outputs
ackO and ackl are active. This occurs since ypimp does not include the
mutual exclusion requirement. The original complete specification 1 will
detect that My,imp has a bug, since Mypimp [~ 1.

5.3 Many-to-One Evidence

A nonempty many-to-one criterion may imply one of two cases: redundant
implementation or incompleteness. The latter case is always accompanied
by one of criteria 1-3. The former case, where criteria 1-3 hold but we have
many-to-one evidence, implies that the implementation is complete with
respect to the specification, but it is not efficient and contains redundancies.
There is a smaller implementation that can preserve the completeness. This
fact may give insight into the efficiency of the implementation.

The following implementation, M,y,s,, uses five implementation variables
and two free inputs instead of three variables and two inputs of implemen-
tation M. Criteria 1-3 are met for M,,o, with respect to ).

1) var

2)  req0,reql,req0q, reqlq, ackOq, acklq, robin : boolean;

3) assign

4) init(reqOq) := 0; init(reqlq) := 0;

5) init(ack0q) := 0; init(acklq) = 0;

6) init(robin) :=1;

7) define

8) ack0 := case

9) IreqOq : 0; — No request results no ack
10) lreqlq 1 — A single request

11)  lack0Oq & lacklq :lrobin; — Simultaneous requests assertions
12) 1 :lackOq; — Both requesting , toggle ack
13) esac;

26



else robin endif; — Two simultaneous request assertions
next(req0q) := req0; next(reqlq) := reql;
next(ack0q) := ack0; next(acklq) := ackl;

14) ackl := case
15) lreqlq : 05 — No request results no ack
16) lreqOq : 1 — A single request
17)  lack0Oq & lacklq : robin; — simultaneous assertion
18) 1 :lacklq; — Both requesting , toggle ack
19) esac;
20) assign
21) nezt(robin) :=if req0 & reql &lack0 & lackl then !robin

)

)

)

Applying model checking will show that M9, = 1.

In the above example we keep information about the current inputs req0
and reql, as well as their value in the previous cycle (i.e., req0q and reqlq).
Intuitively, we see that each state in M is thus duplicated, so that for each
state in M, we have four states in the state space of M,,2,.

5.4 Unimplemented Start State Evidence

The unimplemented start state criterion does not hold when the specification
is not restricted to the valid start states. Consider a specification formula
obtained from v by removing the g subformula. Applying the compar-
ison method on M and the modified formula would yield unimplemented
start state evidence of a tableau state so; such that {ack0,lackl} C L;(so).
Restricting the specification to the valid start states would cause the unim-
plemented start state criterion to hold.

5.5 Comparing the Environments

A given implementation system usually has two components. The first com-
ponent is the model under test. This is the component we would like to
verify. The second component is the environment of the model under test.
The model under test and its environment communicate via inputs and out-
puts. The environment is necessary in order to restrict the free inputs of the
model under test to include only legal behaviors. The inputs and outputs
define a division of the observable variables into those driven by the environ-
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ment (inputs) and those driven by the model under test (outputs). In our
arbiter example, req0, reql are the inputs, and ack0, ackl are the outputs.

Although we are interested in the behavior of the model under test, it is
very important to check the completeness of the environment. If some legal
input behavior cannot be generated by the environment model, we face the
risk of hiding a bug in the model under test. Even if the specification of the
model under test is complete (i.e a subset of all specification formulas that
fully describe the correct behavior of the model under test), model checking
will fail to reveal such a bug.

Our comparison criteria can find problems in the environment as well
as in the design. We demonstrate this by an example. This example is
somewhat artificial since in our running example req0 and reql are free.
In more complex cases a degenerated environment is not something easy to
detect. Consider a buggy implementation of the arbiter M, denoted M,.op;in0,
such that the internal variable robin is stuck at the value of 0. M pino is
obtained by replacing lines 19 and 20 of M with:
define robin := 0;

We degenerate the free environment by fixing the input req0 at the value
of 0. We do this by deleting the req0 variable from line 2 and adding:
define req0 := 0;

Now consider the complete specification ¢. Even though the specification
is detailed enough, it cannot detect the bug, i.e., M, opino = 9.

Applying our comparison method will reveal that the comparison crite-
ria are not empty, and some tableau states labeled with req0 or robin are
unimplemented. The states that could show the bug could not be generated
by the environment. Since a restricted environment may hide bugs, this is
just as important as finding missing properties.
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Chapter 6

Abstraction and
Non-observable
Implementation Variables

Sometimes we are not interested in the fully detailed specification. We
can then restrict our attention to a subset AP’ of the atomic propositions
AP, called the observable variables. This restriction induces an abstract
implementation which is identical to the original implementation, except
that the state labeling is restricted to AP’. Our specification will only
describe behaviors over AP,

If our method is applied to the abstract system with such a specifica-
tion, and if criteria 1-3 hold, then the abstract system is bisimilar to the
specification. Thus, our method is applicable to partially specified systems.

Given a set of observable variables over which the specification can be
written, we can distinguish three different relationships between implemen-
tations and specifications.

o Fully observable and fully detailed, in which all implementation vari-
ables are observable.

e Partially observable and fully detailed, in which only some of the im-
plementation variables are observable. However, the implementation
behavior can be fully described using only the observable variables.

e Partially observable and partially detailed, in which only some of the
implementation variables are observable and the system can only be
partially described with these variables.
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To demonstrate the different relationships, consider again our arbiter
example. M and 1 exemplify the second case. The implementation variable
robin is not observable, but the system is fully described using req0, reql,
ack0 and ackl. This is typical for cases in which the non-observable variables
are internal.

We can demonstrate the first case by including robin in the set of ob-
servable variables. The following is a fully observable specification of M
which is also complete.

1 = —ack0 A —ackl A\ =robin A

AG(

(=ack0 V —ackl)

—req0 A —reql — AX(—ack0 A —ackl))
req0 A —reql — AXack0)
—req0 Areql — AXackl)
reql A ack0 — AXackl)
req0 A ackl — AXack0)
(—req0 V —reql V ack0 V ackl) A robin — AXrobin)
(=req0 V —reql V ack0 V ackl) A —robin — AX—robin)
req0 A reql A —ack0 A —ackl A —robin — AX(ack0 A robin)) A
(req0 A reql A —ack0 A —ackl A robin — AX(ackl A —robin)) )

>>>>> > > >

(
(
(
(
(
(
(
(

To demonstrate the third case we consider a restricted description of the
system. We choose AP" = {req0,ack0}. The abstract requirements refer
only to the observable variables. Other parts of the arbiter are abstracted
away. The verbal description of the abstract system is as follows:

1. Initially ack0 is not asserted.

2. Ifreq0 is not asserted, then ack( should be de-asserted in the following
cycle.

3. Persistent req0 should cause ack( in one or two cycles. A request is
considered persistent if it remains asserted when not acknowledged.

A formal specification formula would be

z:ba.bstract = —ack( A
AG((—req0 - AX-ack0) A
(req0 — AX(ack0 V (req0 — AXack0))))
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We used the SMV model checker to verify that M | tgpstract- We then
applied our method. We found that comparison criteria 1-3 hold. We there-
fore concluded that ¥gpsirect 18 a complete specification for M, with respect
to the given set of observable variables.

An abstract view of a system allows one to check the completeness of
one of its critical sections: A full specification for the complete system is not
required, nor is it necessary to isolate the critical portion in the implemen-
tation. Note that a complete abstract description of a system will always
be accompanied by a many-to-one indication.

These examples show that we can deal with abstract views of the system:;
the full implementation details are not always necessary.

31



Chapter 7

Implementation of the
Method

7.1 Symbolic Algorithms

In this section we present the symbolic algorithms that implement various
parts of our method. We show how the simulation relation can be computed
symbolically. Since we reduce the number of OBDD variables, less memory
is required than for the naive implementation. In Chapter 7.2 we show
exactly how the number of OBDD variables is reduced. For conciseness, we
use R(s,s'), S(s), etc., instead of (s,s') € R, s € S.

7.1.1 Computing SIM

The computation of the maximal simulation SIM follows the algorithm
presented in [14]. It starts from pairs of states of both models that agree on
the labeling values. The algorithm leaves those states that their successors
also agree on the labeling values. It is computed by an iterative process that
reaches a fixed point.
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Let M = (S;, Soi, Ri, L;) be the implementation structure and let 7(1)) =
(St, Sot, Rt, Lt) be a tableau structure. The following pseudo-code describes
the algorithm for computing SIM: Init: SIMpey = {(si,81) € S; X
S| Li(si) = Li(se) };

Repeat {

SIM cyrrent = SIMne:Dt;

STMnpext = { (i, 8¢) | Vs, [ Ri(84, ;) — 38, [ Re(st, 83) A STMeyrrent(sh, s1)]] A
SIMcurrent(sia St)};

} ’U,’I’Ltll SIMcurrent = SIMnext

SIM := SIM_.rrent

7.1.2 Computing ReachSIM:

Computing ReachSIM is done by starting from pairs of initial states in the
relation STM. The algorithm then computes the successors of both states.
This mutual reachability process continues until a fixed point.

Given the simulation relation STM of the pair (M, 7(¢)), the following
pseudo-code describes the algorithm for computing ReachSIM:
Init: ReachSTMpeqt := (So; X Sot) N SIM,;
Repeat {
ReachSTM yprent == ReachSTMyey;
ReachSIM,, et := ReachSITM yrrent U
{(s},5}) | 3si, st(ReachSTMeyrrent (i, st) AR (i, st)ARy(s¢, ;) ANSTM (sk, s})) }
} until ReachSTMpey = ReachSTM yrrent
ReachSIM := ReachSIM_,rrent

7.2 Efficient OBDD Implementation

We now turn our attention to improving the performance of the algorithms
described in the previous section. We assume that such an algorithm will
be implemented within a symbolic model checker such as SMV [27]. Since
formal analysis always suffers from state explosion, it is necessary to find
methods to efficiently utilize computer memory. When working with OB-
DDs, one such method is to try to minimize the number of OBDD variables
of any OBDD created during the computation.

In the algorithms presented above, some of the sets constructed dur-
ing the intermediate computation steps are defined over four sets of states:
implementation states, specification states, tagged (next) implementation
states, and tagged (next) specification states. For example, the computation
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of SIM,,; is defined by means of the implementation states s;, specifica-
tion states s¢, tagged implementation states s, (representing implementation
next states), and tagged specification states s, (representing specification
next states).

Assume that we need at most n bits to encode each set of states. Then
some of the OBDDs created in the intermediate computations will have
4n, OBDD variables. However, by breaking the algorithm operations into
smaller ones and manipulating OBDDs in a nonstandard way, we managed
to bound the number of variables of the OBDDs created in intermediate
computations by 2n.

We define two operations, compose and compose_odd. compose receives
two OBDDs a(Z,¥) and b(Z, @) over a total number of 3n variables and re-
turns an OBDD c¢(%, @). Similarly, compose_odd receives a(if, Z) and b(i, T)
and returns an OBDD co(y,%@). As will be explained later, the main ad-
vantage of these operations is that they can be implemented using only 2n
OBDD variables. The two operations are defined as follows:

compose(a(Z,y),b(Z,4)) = 3IZ(a(Z,y) A b(Z,d)) (7.1)
compose_odd(a(y, ¥),b(d,Z)) = I (a(y,%) Ab(U,7T)) (7.2)

Computing ST My and ReachSIM,eq; in Chapter 7.1.1 requires 4n vari-
ables. We show below how we compute them using only 2n OBDD variables.

The two operations STM,, .. and ReachSIMje;; can be implemented
using compose and compose_odd as follows. Let vj, 1;2 be the encoding of
the states s;, s., respectively. Similarly, let v}, v_i be the encoding of sy, s},

7
respectively.

The following Lemmas show the implementation of the various expres-
sions using compose and compose_odd.

Lemma 7.2.1  SIM,;er(0i,0;) = STMeyrrent (05, 01) A
—compose_odd(R; (v, v}), ~compose_odd(Ry (0;, v}), STM cyrrent V5, v})))-

The proof below starts from the definition of SIM,.;; and transforms the
format of the expressions to AND Exist, so that the compose_odd operation
can be used.

Proof:

According to the definition of simulation:

S{Mnemt(vza U_i) = . Lo

Vol R; (03, v)) = Fvup [ Ry (g, vp) A SIMeurrent (v}, v))]] A SIMeyrrent(vi, 0t) =
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afEer Booleay mani ulation:_’ L.

VU,[_'R (U_;a ;) \ H/U)If [Rt(v_;f?v)lf) A SIMcurrent(vgavg)]] A SIMcurrent(ﬁiaU_i) =
Using De Morgan manipulation:

_'Elv [R (Uza z) _'Elvt [Rt(vtavt) /\SIMcurrent(U 2)” A SIMcurrent(Uiav_Z) =
According to the compose_odd definition: o
—compose_odd(R; (vz,vz) —compose_ odd(Rt(vt,vt) SIM yrrent(Vi,v1))) A
SIMcurrent(QTia U_;f) O

The ReachSIM algorithm requires that the implementation and spec-
ification “step” together, each along its respective transition relation. We
do this by having one “step” first, followed by the other. This is possible
because the transitions of the two structures are independent. The following
lemma describes how this breakdown is accomplished:

Lemma 7.2.2 ReachSIMep(v),v]) = ReachSIMcmrem(v vV
(compose(compose(ReachSI M yrrent (Ui, 0t), Ri(vi, v Z)) Rt(vt,vt))/\SIM(v

Proof:

We define two functions fpez: and gpest, based on which ReachSIM is de-
fined.

fnezt(qyta U;) = 37)_;'(1%6aChS-Z—]\4current(U_‘ia 'U_i) N R; (U_;, U;)) =

We now represent [, using the compose operator:

= compose(ReachSI M yrrent (Ui, v1), Ri (05, v}))
We deﬁne next *

gnezt(vza vt) = Elvt(fne:rt(vta z) N Rt(vta vt)) =

Using the compose operator:

= Compose(fnemt(v_za ’U;), Ry ('U_Za ’Ué))

We now use the gneg: function, but use it over the 0;, Uy variables, instead
of the v}, v; variables we computed. This renaming operation is standard in
model checking, and is equivalent in this case to taking one step backwards.
We define gpeqt (05, 07) as:

gnezt(ﬁéav_i) < (gnezt(vgavé) A (’6; = ’U;) A (U_Z = ,U)If))

We now can express ReachST My, by:

ReaChSIMne:rt (’6;7 7)_2) = (gnemt(ﬁéa U;)/\SIM(’(F;, Ut))\/ReaChSIMcurrent (U_;, 'U_i)
O

In the above proof, fne.:(0;,0;) holds iff there is a predecessor v; of v]

such that v; and v; are in the ReachSIM,,.;; relation. gnext(?;z, v_i) holds iff
there is a predecessor v; of v] such that v; and v} are in the f,¢. relation.
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However, this means that v) and v} are in the gpe,: relation iff v} has a
predecessor v; and v; has a predecessor vy, such that v; and v; are in the
ReachSTM ppent relation.

The unimplemented transition and many-to-one comparison criteria can
also be implemented with these operations. The other two criteria are de-
fined over 2n variables and do not require such manipulations.

Lemma 7.2.3 UnimplementedTransition(U_{t,v_i) = Ry(0,v;) A

-

compose(compose(—R;(0;, 1)_2), ReachSTM (v;,v)), ReachSTM (v, vz))

We find here transitions in R; that are not in R;, with respect to ReachSITM.
Proof:

We define a function f which maps transitions not in R;, using the v; variable
of the ReachSTM relation. The function creates pairs v}, v;. f is defined as
follows: .

f(vi,0t) = 30;(=Rq(0;, v;) A ReachSTM (4, 0t)) =

= compose(—R;(v;, v_i), ReachSTM (v;,v))

We now define a function g, that takes the function f and map the pairs
using the v; variable of the ReachSTM relation. g is defined as follows:
g(v3,vy) = i(f (v}, 0;) A ReachSIM (v, v})) =

According to the definition of compose:

compose( f (v}, v;), ReachSIM (v, v}))

We now can use g in the definition of UnimplementedT'ransition:
UnimplementedTransition(v;,vy) = g(0;,v;) A Re(0p,v;) O

For computing the many—to—one criterion we use a function that takes two
vectors of implementation variables v; and v3, and returns True if v7 # v5.
We use the notation (v7 # v3) to refer to the function. The following lemma
describes many — to — one in terms of compose:

Lemma 7.2.4 ManyToOne(v;) =
3v1 (ReachSTM (vi,v;) A compose((vi # v3), ReachSTM (v5,7})))

Proof:

ManyToOne(v;) =

According to the definition:

= Jv1, v3(ReachSTM (vi,v;) A ReachSTM (v3,0;) A (07 # 03)) =
Since 97 is independent of v3, we can write:

= Jv1 (ReachSTM (vi,v;) A Fu((v5 # v1) A ReachSTM (v5,v1))) =
From the definition of compose we get:
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= Jui(ReachSIM (vi,v;) A compose((v1 # v3), ReachSIM (v3,0;))) O

We have shown how to reduce the number of OBDD variables from 4n
to 3n. We now show how to further reduce this number to 2n. Our first
step is to use the same OBDD variables to represent the implementation
variables ©; and the specification variables v;. These OBDD variables will
be referred to as untagged. Similarly, we use the same OBDD variables to
represent v, and v;. They will be referred to as tagged OBDD variables.

We also specify that whenever we have relations over both implementa-
tion variables and specification variables, the implementation variables are
represented by untagged OBDD variables while the specification variables
are represented by tagged OBDD variables. Note that the relations R;, Ry,
SIM, ReachSIM are now all defined over the same sets of OBDD vari-
ables. Consequently, in all the derived expressions, we apply compose and
compose_odd to OBDDs that share variables, i.e., ¥ and i are represented
by the same OBDD variables.

The implementation of compose and compose_odd uses nonstandard OBDD
operations in such a way that the resulting OBDDs are also defined over the
same 2n variables. This requires that the OBDD variable change semantics
in the result. (For example, in Equation 7.1, ¢ is represented by tagged
OBDD variables in the input parameters and by untagged variables in the
result.) OBDD packages can be extended with these operations. In the
next chapter we show how to extend the SMV OBDD package to include
the compose and compose_odd operations.
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Chapter 8

SMYV Implementation of the
compose Operation

8.1 OBDD Representation in SMV

The SMV model checker is OBDD-based. It has an internal OBDD package.
The OBDDs are represented such that each model variable is represented by
two OBDD variables. An even number (level) is assigned to the untagged
version of the variable, while a successive odd number is assigned to the
tagged version of the variable. The tagged version represents the value of
the variable in the next state. The tagged and untagged versions of each
variable are used for representing the transition relation, and whenever a
value of the next state is used.

Given a known number of model variables and a known order, an OBDD
is a DAG with a single root, where each node has two sons (left and right),
with increasing variable level, while the leaves of the DAG are two pre-
defined nodes representing the constant ZERO and the constant ONE. The
leaves have no sons.

The OBDD package consists of an OBDD pool, in which each intermedi-
ate OBDD has a single representation. It also consists of OBDD operations.
These include Boolean operations between two OBDD structures, universal
and existential quantification, and others. The main advantage of OBDDs
is that the sub-OBDDs of a single OBDD and of different OBDDs can be
shared in the OBDD pool.

In order to further reduce the memory consumption, we define the tran-
sition relations of the implementation model and the specification model
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over the same set of tagged and untagged variables. By representing R;, Ry,
SIM, ReachSIM over the same set of OBDD variables, sharing between
OBDDs is increased.

We represent the STM and ReachSIM relation with the SMV represen-
tation for a transition relation, where the even OBDD variables are used to
represent the encoding of the implementation model variables and the odd
OBDD variables are used to represent the encoding of the tableau variables.

8.2 The compose and compose_odd Internals

The compose(a(Z, ), b(Z, 1)) = 3Z(a(Z,y) A b(Z, 7)) operation is an AND
Exists operation between two OBDDs, a(Z, %) and b(%, ), each of which
is an OBDD with up to n even variables and up to n odd variables. The
existential operation is over the even OBDD variables Z. The operation is
recursive, dealing with one level at a time. The recursive function is called
from the roots of the two OBDDs. It goes once from the low OBDD level to
the higher OBDD levels and terminates when the leaves are reached. Since
the Exists operation is between two OBDD variables of the same level,
a Boolean OR operation may be used. The result is an OBDD with 2n
OBDD variables, which consists of the tagged OBDD variables of a(%, %)
and b(Z, ). Instead of representing a resulting OBDD with 3n levels, it is
packed so that the tagged variables i/ are represented by even OBDD levels,
and the tagged variables 4 are represented by odd OBDD levels. This change
in the interpretation of OBDD levels is done together with the quantification
of the untagged variables of a(Z, ) and b(Z, @).

The compose_odd(a(y, Z), b(u, £)) = IZ(a(y, ¥) A b(d, Z)) is a dual oper-
ation where the existential operation is on the tagged OBDD variables of
a(y,Z) and b(u,#). Likewise, the resulting OBDD is an OBDD with only
untagged variables. This 3n level OBDD is packed into a 2n OBDD such
that the untagged variables of a(%, Z) are represented by even OBDD levels,
and the untagged variables of b(u, ¥) are represented by odd OBDD levels.

The existential operation over even or odd OBDD variables uses the
standard SMV forsome(c,d) operation. This operation performs an exis-
tential operation on OBDD d, according to the OBDD variables in OBDD
c. Thus, for an existential operation over even OBDD variables, we build a
thread-shaped OBDD, denoted current_vars, where only the even variables
are linked. Each even node has a left son of the next even variable and a
right node of the constant ZERQO. The last even node points left to the con-
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stant ONE. Thus the existential operation over even OBDD variables uses
forsome(current_vars,d).

Likewise, the existential operation over odd OBDD variables uses the
forsome(next_vars,d) operation, where next_vars is a thread-shaped OBDD
with only odd OBDD levels. The C code of the compose and the compose_odd
operations is given in Appendix A and Appendix B respectively.
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Chapter 9

Motivation for the Reduced
Tableau

9.1 Meaningful Information and Smaller Tableau
Structure

The size of tableau structures as defined in [14] is usually too large to be
practical. It may even be much larger than the state space of the given
implementation. This is because the state space of such tableaux contains
all combinations of subformulas of the specification formula. Such tableaux
usually contain many redundant states; these can be removed while still
preserving the tableau properties. Otherwise, these states may introduce
irrelevant evidence.

Much redundancy can be eliminated if each state contains ezactly the set
of formulas required for satisfying the specification formula. Consider, for ex-
ample, the ACTL formula AXAXp. Its set of subformulas is { AXAXp, AXp, p}.
We want a tableau structure in which each state contains only the set of sub-
formulas required to satisfy the formula. Thus, the initial state should satisfy
AXAXp, its successor should satisfy AXp, and its successor should satisfy
p. In each of these states all unmentioned subformulas have a “don’t care”
value. Therefore, one state of the reduced tableau represents many states.
For instance, the initial state { AX AXp} represents four initial states in the
traditional tableau [14]. In such examples we may get a tableau whose size
is linear rather than exponential.

In accordance with the above motivation, the reduced tableau will be
defined over a three-value labeling for atomic propositions, i.e., for an atomic
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proposition p, a state may be labeled by either p, —p or by neither. Also,
only the reachable portion of the structure will be constructed.

The tableau may be reduced further if the set of successors for each state
is constructed more carefully. If a state s has two successors, s’ and s”, such
that the set of formulas of s” is contained in the set of formulas of s’, then s’
is not constructed. Any tableau behavior starting at s’ has a corresponding
behavior from s”. Thus, it is unnecessary to include both.

Given an ACTL safety formula 1, the definition of the reduced tableau
is derived from the Particle tableau for LTL, presented in [26]. This is
done by replacing the use of the X temporal operator with AX. Since
the only difference between LTL and ACTL is that temporal operators are
always preceded by the universal path quantifier, this change is sufficient.
In addition, instead of using the closure of i, we use a smaller subset of
the closure, which is the set of elementary formulas of . Furthermore, we
avoid the construction of redundant successors, thus reducing the tableau
structure even more.

Since the reduced tableau is based on the three-value labeling, the defini-
tions of satisfaction and of the simulation preorder are changed accordingly.
Our reduced tableau 7(¢) for ACTL then has the same properties as the
one in [14]:

e For every Kripke structure M, M < 7(¢) if and only if M = .
o () F 9.

Adopting the reduced tableau also requires that we modify our criteria. This
is necessitated by the three-value labeling semantics.
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Chapter 10

Reduced Tableau for Safety
ACTL

In this chapter we define a reduced tableau for the subset of ACTL safety
formulas. A tableau is a special form of a Kripke structure, consisting of
states labeled with atomic propositions and transitions between the states.
As is often the case with tableaux for temporal logics (e.g. [14, 6]), a state of
the tableau consists of a set of formulas that are supposed to hold along all
paths leaving the state. Unlike typical tableaux, however, the propositions in
the states of the reduced tableau are interpreted over a three-valued domain.
Thus, a state may include a proposition or its negation, or neither one. The
latter case reflects a “don’t care” situation, i.e., the proposition may be
either true or false in the state. The “don’t care” on the propositions also
induces a “don’t care” on Boolean formulas.

As in [14], we wish the reduced tableau for a formula 1 to satisfy 1.
Furthermore, it should be greater by the simulation preorder [29] than any
Kripke structure that satisfies ¢. In order to achieve these goals we will
adapt both the definitions of = and that of the simulation preorder to the
three-valued tableau.

When constructing the tableau, we distinguish between conjunction and
disjunction formulas. In the reduced tableau, if a state satisfies a conjunc-
tion, then it also satisfies its two conjuncts. On the other hand, if it satisfies
a disjunction, it will usually satisfy only one of the disjuncts, leaving the
other as a “don’t care”.

Our tableau construction has two main stages. In the first stage, we
define the states of the reduced tableau. The function cover receives a set
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of ACTL formulas and returns a reduced set of states that “covers” all
possibilities to satisfy the given formulas. cover is then used to produce
the set of initial states as well as the set of successors of a given tableau
state. In the next stage, the reachable states and transitions of the reduced
tableau are generated on-the-fly. We then eliminate unnecessary successors
by further reducing the tableau. Finally, pruning is applied to eliminate
states with no successors.

Below we present the formal definitions of the tableau and of the three-
value satisfaction and simulation.

10.1 Definitions

We present the definitions we need in order to define cover and to construct
the tableau. We will use these definitions both in the construction and in
proving properties of the tableau.

Let AP, be the set of atomic propositions in an ACTL formula ) .

Definition 10.1.1 (AP,;)
AP,, = APw U{-plp € pr}

We now define the set of elementary formulas that includes atomic propo-
sitions, their negation, and formulas of the form AX . Sets of elementary
formulas will be the states of the tableau. We require states to be consistent,
meaning that they do not include a proposition and its negation.

Definition 10.1.2 (el) [elementary formulas set]
The set of elementary formulas of i is defined recursively as follows :
el(p) = {p} where ¢ € APy,
el(p1 V p2) =el(p1) Uel(pz)
el(p1 A p2) = el(p1) Uel(p2)
el(AX ) ={AXp} Uel(p)
el(Alp1 Wepa]) = el(p2) Uel(pr) U {AX Alp1 W]}

The states of the reduced tableau are sets of such formulas.

Definition 10.1.3 (locally consistent)
A set B of elementary formulas is called locally consistent if

V‘Pza@] € Apnp7 'Lf Pi, Pj € B then Pi 7é —Pj-
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A set of states is represented as a set of sets of elementary formulas. To ease
manipulation, we sometimes represent this set by an ACTL formula in dis-
junctive normal form (DNF). In this DNF formula, each disjunct represents
a state and is a conjunction of the elementary formulas in the state. We
therefore define conversions from sets of states to DNF formulas and back.

The following function converts a set of ACTL formulas to their conjunction:

Definition 10.1.4 (conj)
conj : 24¢TL 5 ACTL.
Assume B € 24CTL B = {p1, @9,...,p1}. Then conj(B) = /\le ©0i-

The function conj receives a set of formulas and returns its conjunction.
This function is used to turn a set of ACTL formulas into a single ACTL
formula.

We now define a transformation that removes the AW operator, and
leaves an equivalent formula that all its components are elementary.

Definition 10.1.5 (aw)
oaw : ACTL — ACTL
Given an ACTL formula ¢, we define an equivalent formula, aw(p), denoted
as follows:
awl) = ¢ if o € el(y)
aw(pr V <P2) = aw(p1) V aw(pz)
OM(<P1 A p2) = aw(er) A aw(ps)
aw(Alp1 Wps]) = aw(ps) V (aw(e1) A AX Alpi W)

Note that ¢ and aw(p) are semantically equivalent, i.e. ¢ = aw(p). Note
also that aw(p) includes only elementary formulas and the V, A operators.

Definition 10.1.6 (BACTL) [Boolean ACTL]
The set of BACTL formulas is the set obtained by mapping all ACTL
formulas, using the aw operator.

Definition 10.1.7 (minterm)
A minterm is a formula of the form A; p; such that each @; € el(yp).
Note that a single elementary formula is also a minterm.

Since the V and A operators are associative, we will sometimes represent
a formula as \/; a; (or A\; @;), ignoring the order in which the V operators (A
operators, respectively) are applied. This abuse of notation will be applied
only when there is no chance of confusion.
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Definition 10.1.8 (&(V; @i, V, B;))
Let o, B; be minterms. Then,

®(V; i,V Bj) =V (ci ABj).

Definition 10.1.9 (dnf)

dnf : BACTL — BACTL

Given an BACTL formula ¢, we define the disjunction normal form, dnf(p),
as follows:

dnf(p; V ¢2) = dnf(p1) V dnf(p2)

dnf(p1 A 2) = ®(dnf(p1), dnf(e2))

dnf(p) =p if p € el ()

Note that ¢ = dnf(p).

Definition 10.1.10 (DNF_ACTL)
The set of DNF_ACTL formulas is the set obtained by mapping all BACTL
formulas, using the dnf operator.

Definition 10.1.11 (consistent minterm)
A minterm \; @j is called consistent if there are no j1,52 such that pj1 =

—180]2 .

Definition 10.1.12 (Consistent)

Consistent(p) : DNF_ACTL — {false} U DNF_ACTL

Given a DNF-ACTL formula ¢, Consistent(yp) is obtained from ¢ by re-
moving the minterms that are not consistent.

Consistent(p) = false if no minterm in ¢ is consistent.

Note that ¢ = Consistent(yp) .

Given a DNF_ACTL formula ¢, we define Split(¢) to be a set of sets of
elementary formulas, as follows : Convert each minterm to a set consisting
of its elementary formulas. Now generate a set consisting of all the above
sets.

Definition 10.1.13 (Split)

Split(p) : {false} UDNF_ACTL — 22 s defined as follows:
Split(p1 V p2) = Split(p1) U Split(p2)

Split(Af=1 or) = {erlk =1,...,n}

If ¢ € el(vp) then Split(p) = {¢}

If o = false then Split(p) = {}
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Now we can define the cover of a set of ACTL formulas. The cover
generates a set of sets of elementary formulas. Each set of elementary for-
mulas will define a state of the tableau. Each such state also corresponds
to a minterm, which is the conjunction of all the elementary formulas it
includes. Only locally consistent states are generated. The cover of a set of
formulas represents the various ways to satisfy this set of formulas. As will
be seen later, we use cover to define the set of initial states and the set of
next states.

Definition 10.1.14 (cover)

!
cover(B) : 24CTL _, 92° )

Consider a set of ACTL formulas B. We define
cover(B) = Split(Consistent(dnf(aw(conj(B))))).

We now define the successors of a state. The successors of a state are
determined according to the formulas of the form AX. The following defini-
tions will define the next set of states as a set of ACTL formulas (a state).

Definition 10.1.15 (imps)
imps(P) : 2¢!¥) — ACTL
A formula g is an implied successor of a state P if AXg € P. We denote by
imps(P) the set of implied successors of P, i.e., imps(P) = {g|AXg € P}.

If P does not include any formula of the form AXg, then imps(P) = {} .
The state {} is not committed to satisfying any formula. Thus, it may be
the start of any possible path. Furthermore, it may simulate any state. We
later see that the only son of state {} is the state {} itself.

When computing the set of next states (or the initial states), we may want
to avoid building successor states whose behavior is included in another
successor. We refer to such a successor as a “little brother”, and avoid
constructing this state. If we don’t remove “little brothers”, we not only
get a larger structure, but may also get false evidence when comparing the
implementation with the tableau. Since the behavior of a “little brother” is
simulated by a brother state, we do not lose any legal behavior by eliminat-
ing it. Elimination of little brothers is defined as follows:

Definition 10.1.16 (elb) [Eliminate Little Brothers]
elb : 2271 5 921
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Given a set of sets of elementary formulas B,
elb(B) is the set of minimal elements of B with respect to inclusion.
In other words, elb(B) = {s € B|Vs; € B,s; ¢ s}.

We define min_cover by restricting cover to its minimal elements:

Definition 10.1.17 (min_cover) [Minimal cover]
min_cover(B) : 24¢TL 92°l(¥)”

min_cover(B) = elb(cover(B)).
We now can define the set of successor states of a given state.

Definition 10.1.18 (Successors)
Successors(P) : 2¢(%) — 227"
Successors(P) = min_cover(imps(P)).

10.2 Tableau Construction

We now describe an iterative algorithm, called REDUCED_TAB, that pro-
duces the tableau structure.

Algorithm : REDUCED_TAB

Sro := min_cover({¢})
Sr = 570
R, =10
Mark all states in S; as unprocessed
For each unprocessed state s in S, do
Mark s as processed;
Define L(s) = sN AP,
S := Successors(s);
For each ¢ € S
Add (s,q) to R;
If g & Sr;
Add ¢ to S;;
Mark g as unprocessed;
end if
end for
end for
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A state is labeled by propositions from AP and by their negations. Since
any state is locally consistent, it will never contain both a proposition and
its negation, but it may contain neither of them.

We now prune the structure we obtained, so that any state will have
at least one successor. This is necessary because ACTL formulas are inter-
preted over infinite paths.

Algorithm : PRUNE_TAB

Changed:=true
while Changed=true
Changed:=false
Foreach state s in S, do
If s has no successors
Remove s from S,
Remove from R, any edge going to s
Changed:=true
end if
end for
end while

Applying the algorithms REDUCED_TAB and PRUNE_TAB, we obtain
the tableau 7(¢) =< S;, S;0, R, L > for ¢b. The tableau we construct is
total since any state that has no successors has been removed.

10.3 Definition of Three-Value Satisfaction and Sim-
ulation

In this section we define the satisfaction of an ACTL formula with respect

to the reduced tableau. We also define the simulation relation between a

structure and a reduced tableau. Extending these definitions to any struc-
ture labeled with three-value propositions is straightforward.

Definition 10.3.1 (|=3) [Satisfaction over a reduced tableau]
Given a tableau 7()), a state s € S and a formula ¢ such that AP, C AP,
we define s |=3 ¢ recursively:

1. o =p,p € AP then s =3 p iff p € L(s).
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@ =-p,p € AP then s =3 —p iff -p € L7(s).
53 01V iff s =3 01 or s =3 o
5 =3 01 A2 iff s =3 01 and s =3 po.

s =3 AX p iff for every successor si of s, s1 =3 .

S & e

s =3 AlpiWa] iff for every path m = s1s9... from s, one of the two
holds: either for all i > 0, s; =3 @1, or there exists n such that
Sn [E3 @2 and for all i <n, s; E3 ¢1.

The only difference between =3 and the usual definition of = is in case 2.
Also, s =3 p = s [~3 —p, whereas s [F3 p & s =3 —p.

Definition 10.3.2 (7(v) 3 ¢)
7() 3 @ if for every initial state sy € Sro, So F3 .

Definition 10.3.3 (<3) [simulation relation/

Given a Kripke structure M' with atomic propositions AP' and a reduced
tableau T(1p) with atomic propositions APy C AP', a relation H C S' x S,
is a simulation relation between M’ and 7(1p) if and only if for all si € Sy
there exists so € Sro such that H(s(,so) and for all ' € Sy, and s € S,
if H(s',s), then the following conditions hold.

1. For every p € APy, if p € Ly (s') then —p & L. (s).
2. For every p € APy, if p & Ly (s') then p & L(s).

3. For every state s} such that Ry (s',s}), there is a state sy € S, such
that R (s,s1) and H(s!,s1) .
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Chapter 11

Properties of the Tableau

To prove that there is a simulation relation between a given structure that
satisfies 1 and our tableau construction, we define a relation H. We show the
relationship between H and cover, and use it to prove that H is a simulation
relation. The proof is done using properties of cover. The properties of cover
are based on the properties of its components: conj, aw, dnf, Split, Consistent.

11.1  ow,dnf, Split, Consistent Properties

A formula is said to be of dnf form if it has the form \/, ¢;, where each ¢;
is a minterm.

Lemma 11.1.1
Let ¢ be a BACTL formula. Then dnf(p) =\, @;, where each @; is a
minterm.

Proof:

The proof is by induction on the number of V and A operators in ¢.

Base: Zero V and A operators.

Because there are no V and A operators, ¢ consists of a single elementary
formula, i.e. ¢ € el(¢). Thus, by the dnf definition ,dnf(p) = .

Step: Assume the correctness for ¢ with k operators, and prove the cor-
rectness for k + 1 operators.

Case 1 : The topmost operator is V. Assume ¢ = @1 V @s.

In this case dnf(p) = dnf(p; V p2) = dnf(p;) V dnf(ps), where @1, p2
have at most k operators. The induction hypothesis holds for ¢1, 2. Thus
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dnf(p;) = V; @1, where ¢1; are minterms. dnf(ps) = Vj p2j, where a;
are minterms. Thus dnf(p) =V, ¢1; V'V, ¢2;. By associativity of V opera-
tors, this can be represented as a single \/ over all participating minterms.
This V is of the desired form.

Case 2 : The topmost operator is A. Assume ¢ = @1 A 5.

In this case dnf(yp) = dnf(p; A p2) = @(dnf(p;),dnf(ps)) where @1, @9
have at most k£ operators. The induction hypothesis holds for ¢1, . Thus
dnf(p1) = V; ¢1i, where ¢1; are minterms. dnf(p2) =V, p2;, where @o;
are minterms. By the definition of the ® operator, dnf(y) =V, ;(p1i Ap2;).
An A of two minterms is also a minterm. Thus the resulting expression is
again of the desired form.

O

Lemma 11.1.2 [dnf of dnf form]
If ¢ is in dnf form, then dnf(p) = .

Proof:
The proof is by induction on the number of V and A operators.
Base: Zero V and A operators.

Because there are no V and A operators, ¢ is elementary, i.e., ¢ € el(1)).
Thus dnf(p) = ¢.

Step: Assume the correctness for ¢ with k operators, and prove the cor-
rectness for k + 1 operators.

Case 1: The topmost operator is V. ¢ = ¢1 V po. Since ¢ is in dnf form,
1 =V, i and p2 =V, p;, where @;, p; are minterms. Thus ¢; and ¢y are
in dnf form. By the induction hypothesis, dnf(p;) = 1 and dnf(ps) = ps.
dnf (i1 V p2) = dnf(p1) Vdnf(p:) = o1 V2 = .

Case 2: The topmost operator is A. ¢ = @1 A po. Since @ is in dnf form,
it must consist of a single minterm. Thus, each of ¢, s is also a single
minterm and therefore in dnf form. Therefore, by the induction hypothesis,
dnf(p1) = ¢1 and dnf(pz) = p2. dnf(p; Agz) = ®(dnf(p1), dnf(pz)) =
®(p1,92) = @1 Ay = . The last equality is a consequence of the defini-
tion of ®, which, when applied to two single minterms, results in a single
minterm. O
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Corollary 11.1.3 (dnf reactivation property) dnf(p) = dnf(dnf(y))

Lemma 11.1.4

Let ¢1,p2 be in dnf form, i.e., 1 = ;i and p3 = \; p;, where p;, p;
are minterms. Then dnf(p1 A p2) =V, ;(pi A pj).

Proof:

dnf (¢ A ¢3) = by dnf definition:

®(dnf(p1), dnf(p2)) = @(dnf(V; @), dnf(V; ¢;)) =
by dnf reactivation property Corollary 11.1.3:

by ® definition:

=V, (pi Apj). O

Corollary 11.1.5 dnf(p; A ¢2) = dnf(dnf (1) A dnf(p2))

Lemma 11.1.6
Consistent(a V ) = Consistent(a) V Consistent ().

Proof:

The proof is by showing that any minterm from the left-hand side ex-
ists on the right-hand side, and vice versa. Consider a minterm c; from
Consistent(aV ). «; must originate from either a or 8, and «; is consistent.
We can conclude that « is a minterm of Consistent(a) or Consistent(f)
respectively.

On the other hand, consider a minterm «; from Consistent(a)VConsistent(f).
«; is consistent and must come from Consistent(a) or from Consistent(f)
or from both. We thus know that «; is a minterm of a or 3, and also of
a V B. Since «; is consistent, it is also a minterm of Consistent(aV ). O

Lemma 11.1.7
Let a; be a minterm, and assume o« = Split(cy;). Then « is locally consistent
iff a; = Consistent(cay).

This property results from the definitions of consistent and locally consis-
tent.

Lemma 11.1.8
Assume \/; Bj = Consistent(\/, ag). Then for every j there is a k such
that B; = ay.
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Proof:
This property is immediate by the definition of the Consistent operation,
since the operation only removes some of its minterms. O

Lemma 11.1.9
Assume a € Split(Consistent(\/; ;). Then there is m such that o =
Split(am) and « is locally consistent.

This again is based on the fact that the Consistent operation only eliminates
minterms. This property can be immediately derived by the definition of
Split and Lemma 11.1.8.

Lemma 11.1.10
Assume o = Split(ayy,),B8 = Split(Br), am, Bn are minterms, and o U (8 is
locally consistent. Then oy, A By is consistent.

Proof:

The proof is by contradiction. Assume the minterm «,, A 3, is not consis-
tent. Then it contains an atomic proposition p and its negation. If p and
—p both come from either o, or from f,, then either o or 8 are not locally
consistent. This contradicts the fact that « U § is locally consistent.

If p comes from ayy,, and —p comes from G, (or vice versa), then p € a and
—p € B, thus contradicting the fact that a U g is locally consistent. O

Lemma 11.1.11
If ap, Brn are minterms, then Split(cu, A Br) = Split(au,) U Split(6y).

This results from the definition of Split.

Lemma 11.1.12  Jaw Reactivation property/
aw(aw(p)) = aw(yp).

Proof:

The proof is by induction on the number of operators in ¢.

Base : ¢ € el(1)). This is immediate from the definition.

Induction step : Assume the property is valid for formulas with & operators.
We show that it is valid for k£ + 1.

* =1V
aw(aw(p)) = aw(aw(pr V ¢2)) =
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By aw definition

= aw(aw(p1) V aw(ps)) =

By aw definition

= aw(aw(p1)) V aw(aw(p2)) =

Since 1,2 have at most k operators, the induction hypothesis can
be used:

= aw(p1) V aw(ps) = aw(pr V v2) = aw(p)

* p=p1N\p2
Similar to the case of V.

o v = Alp1 W]
By aw definition
aw(aw(p)) = aw(aw(pz) V (aw(pr) AN AX Alpi Wes])) =
By definition of aw for V and A :
= aw(aw(pg)) V (aw(aw(pr)) A aw(AX Alp1 Wesl)) =
By the definition of aw(AX):
= aw(aw(pz)) V (aw(aw(pr)) A AX Alpr Wepa]) =
Since 1, 2 have at most k operators the induction hypothesis can be
used :
= aw(p2) V (aw(p1) A AX Alpi Wips]) =
By the definition of aw(AW):
= aw(Afp1 W2])

Lemma 11.1.13
cover(aw(yp)) = cover(p)

This results from the definition of cover and the aw Reactivation property
Lemma 11.1.12.

Lemma 11.1.14
aw(Alp1Wps]) = aw(p2 V (o1 A AX Alp1 Wa))).

This results from the definition of cw and the reactivation of aw.

11.2 cover Properties

For a single formula ¢, cover({¢}) produces a set of states. Recall that each
of the states is a set of elementary formulas and corresponds to a minterm.
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cover({p}) describes the different ways to satisfy . ¢ is satisfied iff some
state in cover({p}) is satisfied. Each state is locally consistent, meaning
that it contains neither an atomic proposition p nor its negation.

Definition 11.2.1 (X,.,)

Let A,B € 22 he sets of sets of elementary formulas. We define
A Xoon B={A;UBj|A; € A, Bj € B, and A; U B; is locally consistent }.

Lemma 11.2.1
cover({p1 V pa}) = cover({p1}) U cover({p2})

Proof:
By the definition of conj for a set of size one, we get

conj({o1 V pa}) = conj({e1}) V conj({p2}).
We apply the aw operator, and get

aw(conj({p1 V p2})) = aw(conj({pi}) V conj({p2})).

By the definition of aw,

aw(conj({p1 V p2})) = aw(conj({e1})) V aw(conj({p2})))-
Denote ¢} = aw(conj({y1})) and ¢ = aw(conj({p2})).
Recall that aw(conj({p1 V p2})) = @} V ©h.

Consider ¢} V ¢). By the definition of dnf,

dnf(p) V ¢5) = dnf(p}) V dnf(ph).

By applying Consistent to both sides we get

Consistent(dnf (] V ph)) = Consistent(dnf(y]) V dnf(ph))

By Lemma 11.1.6 we get

Consistent(dnf (¢} V ¢h)) = Consistent(dnf(y])) V Consistent(dnf(¢h)).
We now apply the Split operator on both sides:
Split(Consistent(dnf(p] V ©)))) =

= Split(Consistent(dnf(¢))) V Consistent(dnf(ph)))

and by Split definition we get :

Split(Consistent(dnf(p] V ©h))) =

= Split(Consistent(dnf(¢}))) U Split(Consistent(dnf(s)))).
This implies that cover({yp1 V p2}) = cover({¢1}) U cover({ps}) O

Lemma 11.2.2
cover({p1 A pa}) = cover({p1}) Xeon cover({p2})

Proof:
By the definition of conj for a set of size one, we get
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conj({o1 A pa}) = conj({e1}) A conj({p2}).
We apply the aw operator and get

aw(conj({p1 A pa})) = aw(conj({ei}) A conj({p2})).
By the definition of the aw operator,

aw(conj({p1 A pa})) = aw(conj({p1})) A aw(conj({p2})))-
We apply dnf on both sides:

dnf (aw(conj({e1 A p2}))) = dnf(aw(conj({¢1})) A aw(conj({p2})))-
According to the dnf property, (Corollary 11.1.5),

dnf (aw(conj({¢1Ap2}))) = dnf(dnf(aw(conj({p:1}))) A dnf(aw(conj({p2}))))-
We now define \/; a; = dnf(aw(conj({y1}))) such that each «; is a minterm.
Similarly, \/; 8; = dnf(aw(conj({¢2}))). According to dnf property, Lemma 11.1.4,
we get

dnf(aw(conj({pr A p2}))) = dnf(V, @i AV, B5) = Vi (s A fy)

We now prove that
Split(Consistent(V; j a; A B;)) = Split(Consistent(V; i) Xeon
Split(Consistent(V; B;))

The proof is by mutual inclusion.

Consider an element from the right-hand side. According to the definition
of Xcon, this element is a union of two elements,

a U g € Split(Consistent(\/; ai)) Xcon Split(Consistent(\; B5)),

such that o € Split(Consistent(\/; ;) and B € Split(Consistent(V; B;)).
Furthermore, o U 3 is locally consistent. We can conclude that both « and
B are locally consistent.

a € Split(Consistent(\/; a;)). Thus, there exists m such that o = Split(auy,),
and « is locally consistent. Thus «;, is consistent. Similarly, there exists n
such that 8 = Split(3,), B is locally consistent, and thus /3, is consistent.

Consider the minterm a,, AB,. Since aUpf is locally consistent, then accord-

ing to Lemma 11.1.10, a;, Ay, is consistent. Note also that Split(Consistent(am,A
Br)) = Split(am, A Bn). By the definition of Split, we can conclude that
Split(cm A Bn) € Split(Consistent(V; ; a; A Bj)).

On the other hand, Split(ay, A Bn) = Split(a,) U Split(5,) = a U 5. Thus

a U (B is an element of the left-hand side.

We now show inclusion in the other direction.
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Assume v € Split(Consistent(V; ; a; A B;)). Since Consistent only elimi-
nates minterms, and by the definition of Split, there exists some m and some
n such that v = Split(am, A By). Furthermore, since ay,, A (B, is consistent,
then -y is locally consistent.

We define o = Split(ay,) and 8 = Split(B,). Since «a,, and f, are
minterms of elementary formulas, we have v = a U 8.

Since a U 8 is locally consistent, we conclude that « and £ are also locally
consistent.

We show that o € Split(Consistent(\/; «;)) and
B € Split(Consistent(\; B;)).

Recall that «,, is a minterm in \/;; and that f, is a minterm in
V;B;j. We again apply the fact that i, is consistent, the definition of
Split, and the fact that oy, is a minterm in \/; @;. We can then claim that
a € Split(Consistent(\; «;)), and similarly, 8 € Split(Consistent(V; 8;)).
We add the fact that o U § is locally consistent, and conclude that
v € Split(Consistent(V; o)) Xcon Split(Consistent(\; B;))-

From the two inclusions we conclude that
cover({p1 A pa}) = cover({y1}) Xcon cover({ps}). O

Lemma 11.2.3
cover({A[p1Wa]}) =
cover({pa}) U (cover({p1}) Xcon cover({AX Alp1 Wps]}))

Proof:

cover({Alp Wpa]}) =

= Split(Consistent(dnf(aw(conj({Alp1 Wp2]}))))) =

A set of size one:

= Split(Consistent(dnf(aw(A[p1 Wpa])))) =

From ow definition :

= Split(Consistent(dnf(aw(p2) V (aw(p1) N AX Alp1 Ws])))) =

Again, a set of size one :

= Split(Consistent(dnf(aw(conj({aw(p2)V(aw(p1 ) NAX Alp1 Wes))}))))) =

Which is the definition of :

= cover({aw(ip2) V (aw(p1) N AX Alp1 Ws])}) =
According to V property, Lemma 11.2.1:

= cover({aw(p2)}) U cover({aw(p1) N AX Alp1Wsl}) =
According to A property, Lemma 11.2.2:
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= cover({aw(p2)}) U (cover({aw(p1)}) Xeon cover({AX Alp1 Ws]})) O

Lemma 11.2.4
cover({w1 A pa A ... A pg}) = cover({v1, P2, ...y Ok })-

Proof:

Lemma 11.2.4 results from the definition of conj :
cover({p1, P2, ..., pr}) =
Split(Consistent(dnf(aw(conj ({1, 92, -, 0k}))))) =

By conj definition :

= Split(Consistent(dnf(aw(conj({v1 Ap2 A ... Apr}))))) =
= cover({p1 Ao A ... Npr}) O

Lemma 11.2.5
For any formula ¢, and every s € cover({y}), s is locally consistent.

Proof:

This is straightforward from the definition of cover and the fact that every
element of Split(Consistent(B)) is locally consistent. O

This Lemma implies that any tableau state is locally consistent.

11.3 Properties of the Reduced Tableau

Fix a structure M' =< §',Sj, R, L' >, and an ACTL formula .

Definition 11.3.1 (H)
We define a relation H C ' x 2¢4¥) py :
H={(s,s)[Vp€s: s =}

Lemma 11.3.1 [cover lemma]
Given a state s' in a model M', and an ACTL property ¢ such that s' = ¢,
then there is s € cover({¢}) and H(s',s).

Proof:

The proof is by induction on the structure of ¢.

Base: ¢ = p;, an elementary formula.

By the definition of cover, cover({¢;}) = {{ypi}}. We choose s to be the
only member in cover({¢;}). We have @; € s, which is the only elementary
formula in s. We are also given that s’ = ;. By the definition of H we see
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that H(s',s).
Induction step: Assume correctness for a formula with k& operators, and
show correctness for a formula with k£ 4+ 1 operators.

L ¢ =1V

For ¢1 and @9, the induction hypothesis holds. s’ = ¢ implies that
either ' = 1 or s’ = ps.

Assume without loss of generality that the first case is true, and let
s be the state from cover({¢1}) such that H(s',s). By the induc-
tion hypothesis, such a state exists. Lemma 11.2.5 implies that any
tableau state is locally consistent. In both cases there exists a state
s € cover({¢1}) U cover({p2}). By Lemma 11.2.1, cover({yp}) =

cover({¢1}) U cover({p2}).
Therefore there exists s € cover({¢1 V ¢2}) and H(s', s).

2. o =1 N
s’ E ¢ implies that ' = ¢1 and s’ | 2. Let s; be a state from
cover({yp1}) such that H(s',s1). Such a state exists by the induction
hypothesis. Similarly, let so € cover({yp2}) and H(s',s2). We choose
s to be s; U s9.

We now show that H(s',s). Consider p; € s. If ¢; € s;, then by
H(s',s1) we have s’ = ¢;. If ¢; € so, then by H(s',s2) we have
s' = ¢j. Thus, for every p; € s: s’ = ¢;, and so H(s',s).

We now show that s is locally consistent. From Lemma 11.2.5 we
know that both s; and sy are locally consistent. Assume by way of
contradiction that s is not locally consistent. In this case there exists
some atomic proposition ¢; (or its negation), ¢; € s; and —p; € s9.
Since H(s',s1) and H(s', s2), we have s’ |= ¢; and s’ |= —;, a contra-
diction.

By Lemma 11.2.2 cover({¢}) = cover({¢1}) Xcon cover({p2}).
Since s is in cover({¢1}), s2 is in cover({y2}), and s is locally con-
sistent, s € cover({¢1 A @2}).

3. ¢ = Alp1Wesl.
For 1 and (9, the induction hypothesis holds. s’ = Alp; W ps] implies
that s’ |= o (first case) or s’ | @1 and s’ = AX A[p1 W ps] (second
case).
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In the first case, let s be a state from cover({p2}) such that H(s', s).
By Lemma 11.2.3, cover({A[p1 W pa]}) =

cover({p2}) U (cover({y1}) Xcon cover({ AX Alpi Wgs]})). Therefore,
s € cover({Alp1Ws]}) and H(s',s).

In the second case, let s; be a state from cover({¢;}) such that
H(s',s1). Now let s = s1 U {AX A[p1 W po]}.

Consider ¢; € s. By H(s',s1) we know that ¢; € s; implies s’ |= ¢;.
In addition, s’ = {AX A[p1Ws]}. Thus, H(s',s). Moreover, since
s1 is locally consistent, so is s, and adding AX A[p W o] does not
change this.

We note that cover({AX Alp1 Wpa]}) = {AX A[p1 Wpa]}.

Since s = s1U{AX A[p1 W 2]}, and s is locally consistent, we conclude
that s € cover({¢1}) Xcon cover({AX Alp1Ws]}) and H(s',s).

In both cases

s € cover({p2}) U (cover({y1}) Xecon cover({AX Alp1 W ps]})), which
results in s € cover({Alp1Wpo]}) and H(s', s).

Lemma 11.3.2  /min_cover lemma]
Given a state s' in a model M', and an ACTL property ¢ such that s' = ¢,
then there is a state s € min_cover({yp}) and H(s',s).

Proof:
By Lemma 11.3.1 there is s, € cover({y}) and H(s',s.). We need to show
that there is a state sy € elb(cover({¢}) and H(s', sme). By the defini-
tion of H, Vo € s, : s’ = ¢. By the definition of elb, there is a state
Sme € elb(cover({p}) such that s,,. C s.. By the above, H(s', s;c). O

The following two theorems imply one direction of the first property of
a tableau for ACTL formulas, as defined in definition 3.0.3:
M E¢ = M <371(¢).

Theorem 11.3.3  [Simulation of Tableau]
For every structure M', M' |= 1, H is a simulation relation (according to
definition 10.3.3) between M' and 7(1)).
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Proof:

M’ |= ¢ implies that for every initial state s{, of M', s{ = 1. Therefore,
by Lemma 11.3.2, we have that for every initial state s, € S’ there exists a
state sp € min_cover({y}) such that H(s{,s¢). By the definition of 7(1)),
state sg is an initial state of 7(¢)).

We show that s and sy agree with regard to their labels. First we show
that —p € L,(sg) — p & Lpp(sy). Since H(s), o), then by definition
11.3.1, =p € L(s¢) results s = —p. Thus, by the definition of satisfaction,
p & Ly (sp). Similarly, p € Lr(sg) — —p & L (sp)-

We now show that if H(s',s) and Ry (s’,s]), then there exists s; such
that H(s},s1) and R.(s, s1).

Let {AXp1,AX pa,...,AXpr} be the set of all elementary formulas in s
of the form AX¢. By the definition of H we know that s’ = AXy; for
i=1,2, .k

Let s} be some successor of state s’. Then s} | ¢, where o = o1 ApaA...Apg.
Lemma 11.3.2 implies that there exists a state s; € min_cover({p}) such
that H (s}, s1).

By the construction of 7(1), imps(s) = {¢1,¥2, ..., pr}. Thus, the set of
successors of s is the set elb(cover({y1, p2...¢x})) which, by Lemma 11.2.4,
is equal to elb(cover({w1 ApaA...Apg})). This means that s; is a successor
of s, or, in other words, R,(s,s1). O

Theorem 11.3.4  [Pruning theorem]

Let H C S" x S be a simulation relation, and let R C S" x S’ be a total
relation. We define S = S\{s| no infinite path is leaving s }. Then H|y, & =
H.

Proof:

Let Si. be the set of states in S for which the longest path leaving them is of
length k. Let S; = S\S;. We prove by induction over k that Hlg.q =H
Base: k=0.

Consider the set of states Sy = S\{s|no edges leaving s}. Let s’ € S'. Since
R’ is total, every s’ has some successor s|. Let s be a tableau state such
that H(s',s). Then by the simulation relation, s has a successor as well.
Therefore s € SA(). Thus H|S'x§0 =H
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Induction step: Assume H|S,><§k = H for any value up to k, and prove
H|S’><S’k+1 =

Consider a state t € Sk.1, and consider an outgoing edge (¢,t1). Clearly
t1 € Sk. Otherwise we would have a path longer than £+ 1. From the induc-
tion hypothesis we know that there is no state ¢’ € S” such that (#,¢1) € H,
thus no successor of s in H. By the definition of simulation relation we know
that for every state s’ € S’ there is a state s such that H(s',s). We also
know that there is an edge (s',s}) € R/, since R’ is total, and so, s must
also have a successor s1, such that H(s},s1). We therefore conclude that
s & Sky1. Thus H|S’><§k+1 =H. O

Next, we prove the other tableau property, namely 7(¢) =3 1.

Lemma 11.3.5 [tableau state satisfaction]
Given a tableau structure 7(1p), let @ be an ACTL formula such that el(¢) C
el(1). For every tableau state t € Sy, if there is s € cover({¢}) such that

s Ct, then (), t E3 .

Proof:

The proof is by induction on the structure of .

Base: ¢ =g, g € AP,).

By the definition of cover, cover({g}) = {{g}}. Thus s = {g}. For every
tableau state ¢ such that s C ¢, we know that g € t. By the definition of
satisfaction we know that ¢ =3 g.

Induction step: Assume the correctness for formulas with & operators and
prove the correctness for formulas with k£ 4+ 1 operators.

1. ¢ = @1 V. Consider s € cover({p1 V ¢2}). By Lemma 11.2.1,
s € cover({¢1}) U cover({yp2}). Assume first that s € cover({¢1}).
Since 1 has at most k operators, the induction hypothesis holds. Thus
for every t € S;, s C t implies ¢ =3 1. Similarly, if s € cover({p2}),
then t =3 ¢o. By the definition of satisfaction, t =3 ¢1 V 9.

2. ¢ = p1 A po. Consider s € cover({p1 A p2}). By Lemma 11.2.2,
s € cover({p1})Xconcover({y2}), which means that s = s; U sg, for
s1 € cover({¢1}) and sy € cover({p2}). Since ¢1, p2 have at most
k operators, the induction hypothesis holds. Thus, for every t € S,
s1 C t results in ¢ =3 o1, and sy C ¢ results in ¢ =3 ¢o. For tableau
state ¢ such that s C ¢, we have both s; C ¢ and s3 C ¢, and by the
definition of satisfaction, t =3 @1 A ps.
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3. p=AX¢p

Consider s € cover({AX¢;}). By the definition of cover we get
s = {AXp1}. Consider any tableau state ¢, such that s C ¢t. Assume
that ¢ includes, in addition to AX ¢, the formulas AX )y, ..., AXyy.
Let ¢ be ¥ A ... Ay. By the tableau construction, the set of succes-
sors of t is Successors(t) = min_cover(imps(t)) C cover(imps(t)) =
cover({¢1,%1,...,¢r}). By Lemmas 11.2.2 and 11.2.4, Successors(t) C
cover({¢1 A p}) = cover({p1})Xconcover({t}). Thus, for every suc-
cessor t1 of t, t1 = s1Usa, where s; € cover({¢1}) and sy € cover({1}).
By the induction hypothesis, s; C #; implies ¢; 3 1. Consequently,
tl=s AXopr.

4. o = Alp1 W]
Consider s € cover({A[p1 W p2]}) and a tableau state ¢ such that s C ¢.
According to Lemma 11.2.3,
s € cover({y2}) U (cover({y1}) Xcon cover({AX Alp1 Ws]})).
We prove this case by negation. Assume that ¢ =3 A[p1Wps]. Then
there exists a path m = s¢s1..., starting at ¢, such that
Jisi 3 o1 AV) < i : s; [~3 @2]. Let i be the smallest such index
of all paths leaving ¢. Since 1, 2 have at most k operators, the in-
duction hypothesis holds. Therefore, since s; [~3 @1, then there is no
si € cover({y1}) such that s, C s;. Similarly, Vj <4 : s; 3 @2 and
therefore there is no s} € cover({2}) such that s; C s;.
From the above we can conclude that Vs] C s; s) & cover({A[p1 W] }).

Given the above i, we show by induction on j that for each state
sj along 7, if j <4 then the following holds for s;:

L. AXA[p1W o] € s5.

2. There exists s’ C s; such that s € cover({p1}).

Proof: In the case that ¢ = 0 the conditions hold in an empty manner.
Assume i > 0.

Base: 7 = 0. Let t be the first state in the path, and recall that
s C t. By assumption, ¢ [£3 A[p1 W o], thus t [£3 ¢o. For any s’ C ¢
s' & cover({p2}). We therefore conclude that

s € cover({¢1}) Xcon cover({AX Alp1 W p2]}), which implies that

AX Alp1 W o] € t and there exists s’ C s such that s’ € cover({¢1}).
Because s’ C s = s’ C t, the second condition holds as well.
Induction step: Assume the conditions hold for s;. We show that
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they hold for s;41.

If 5 + 1 > ¢ then the conditions hold trivially. Assume j + 1 < 3.
According to the induction hypothesis, AX A[p1 W o] € s;. Since sj41
is a successor of s;, then from the tableau construction there is s, ;| C
sj+1 such that si ; € cover({A[piWgs]}). Since j + 1 < i, we have

sj+1 & cover({p2}). Thus sj11 € cover({p1}) Xecon cover({AX Alpr Wal}),

which implies AX A[p1 W o] € sj+1 and there exists 3;'+1 C sj4+1 such
that s7,, € cover({¢1}).
This completes the inductive proof.

We have shown that for all 0 < j < i AXA[p1 W] € s;. This
is true in particular for s; 1. Therefore, by the construction of the
tableau for the successor s;, there exists s, C s;, such that s, €
cover({A[p1Wpa]}), a contradiction.

Theorem 11.3.6  [Satisfaction Theorem]
For every ACTL formula 1, (1) =3 1.

Proof:
By the construction of the tableau, every initial state sg is in min_cover({1}) C
cover({1}). According to Lemma 11.3.5 for every tableau state ¢t € S;, if
there is s € cover({y}) such that s C ¢, then 7(¢),t =3 1. Thus for every
initial state sq, s =3 1, which means that 7() =3 ¢. O

We can now complete the proof of the first tableau property.

Lemma 11.3.7
Given M' <3 7(). If s’ <3 s, then Vo € ACTL [1(¢),s 3 ¢ = M',s' |=
@]

Proof:

The proof is by induction on the structure of ¢. It follows the proof of a
similar Lemma for the case of two-value simulation in [14]. The only differ-
ence is the base of the induction, which relates to the labeling of states.

Induction base: ¢ € APy,
Consider ¢ = p and s =3 p. According to the definition of satisfaction 10.3.1,
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p € L:(s). According to definition of three-value simulation 10.3.3, p €
Ly (s") and therefore M', s' = p.

Similarly, if ¢ = —p and s =3 —p. According to the definition of satis-
faction, —p € L;(s). According to the definition of three-value simulation,
p & Ly (s') and therefore M', s" = —p.

The induction step is similar to a corresponding Lemma in [14]. O

Theorem 11.3.8 [First tableau property/
For every structure M', M' = < M' <3 7(1).

Proof:

By Theorem 11.3.3 and 11.3.4 we conclude that M' = ¢ = M’ <3 7().
To see the other direction, note that by Theorem 11.3.6 7(¢) =3 1. Thus,
according to Lemma 11.3.7, if M’ <3 7(¢)) then M’ |E=14. O
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Chapter 12

Three-Value Comparison
Criteria Over the Reduced
Tableau

The comparison criteria defined in Chapter 4 assume a two-value labeling
tableau. We can apply these criteria to the three-value labeling reduced
tableau and still get meaningful evidence. However, each state in the reduced
tableau may represent many combinations of atomic propositions. In this
case, the two-value comparison criteria refer to propositions that do not
appear in a state as “don’t care.” The criteria will be empty if all but the
“don’t cares” are implemented.

The completeness obtained when the comparison criteria are empty for
the reduced tableau is called practical completeness.

It is possible to achieve full completeness in the presence of the three-
value reduced tableau. In order to do so we define new comparison criteria
over the reduced tableau. These criteria are called three-value comparison
criteria. They guarantee that for any tableau state in which some proposi-
tions are not specified there are corresponding implementation states with
all possible values for these propositions.

We start by defining the Induced labeling function of the reduced tableau,
which is the set of all possible labeling combinations associated with a state.

Given a three-value reduced tableau 7 =< S;, Sor, R;, L; > over AP,
we first define all the maximal consistent sets over AP,,, and then intersect
them with the labeling function L, (s).
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Definition 12.0.2 (Consistent_AP)
Consistent AP =
{C C AP,,|Vp € AP holds (pe CA-pgC)V(pgCAN—-peC) }.

Definition 12.0.3 (L;,4(s)) [Induced Labeling function]
Lind(s) ={l € Consistent_AP|l N L,(s) = L.(s)}.

We can define now the comparison criteria over a three-value reduced tableau:

1. UnImplementedStates =
{s; € Sy | either Vs; € S;, (s4,51) & ReachSIM or
Al € Lina(st) Vsi € Sy, (si,81) € ReachSTM — 1 # Li(s;)}.

This criterion defines either a reduced tableau state that is not im-
plemented or a tableau state that does not have a corresponding im-
plementation state for each induced labeling combination.

2. UnImplementedTransitions = {(s¢, s};) € Ri|3ss, sk € S,
[(si,st) € ReachSIM, (s}, s;) € ReachSIM and (s;,s)) & R; |}

This definition is identical for the two-value tableau and for the three-
value reduced tableau. It defines a tableau transition that does not
have a corresponding implementation transition.

3. UnImplementedStartStates =
{51 € Sot | either Vs; € Sp;, (84,51) & ReachSIM or
dl e Lmd(st) Vs; € So;, (Si, St) € ReachSIM — 1 75 Li(SZ’)}

This criterion is similar to UnImplementedStates, except that it re-
lates only to initial states.

4. ManyToOnes = {s; € Sy |3s1i,s2; € Si [ (15, 8¢) € ReachSIM, (s9;,8;) €
ReachSTM and s1; # s9; A Li(s1i) = Li(s2i)] }-

This criterion defines two implementation states mapped to the same
state in the reduced tableau. Since we don’t want to get false evidence
for any “don’t care” in a state, we also require that the labeling of the
two states sy1;, s9; be identical.
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Chapter 13

Reduced Tableau
Applications

As mentioned before the reasons for using a reduced tableau are:

1. Smaller structure than traditional tableau.
This will exemplified be by an example in section 13.2.

2. Removing false evidences.

When constructing extra tableau states or transitions we may get
false indications of unimplemented states or transitions. Extra tableau
states may be generated if the power set of all elementary states in the
given formula is constracted, for instance, as done in [14]. Another
example is the existance of redundant states in the reduced tableau
(referred to as Little Brothers), where the behavior of the extra state
is included in the behavior of another state, both having a common
predecessor.

3. Comparing only to meaningful information (practical completeness).
Following are the steps needed to determine practical completeness.

4. Identifying redundancies in the specification formula.
This issue will be defined and examplified in section 13.3.

13.1 Practical Completeness Methodology

We now present the algorithm for checking the coverage of a model and its
specification, with respect to practical completeness and completeness.
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Given a structure M and a property ¥ our method consists of the following
steps:

1. Apply model checking to verify that M |= .

2. Build the reduced tableau 7(1)) for 1.

3. Compute SIM of (M, 7(1))) according to the definition of <j.
4. Compute ReachSIM of (M,7(1))) from SIM of (M, 1())).

5. For each of the two value comparison criteria, evaluate if its corre-
sponding set is empty. If not, present an evidence for its failure.

6. Otherwise, if all two value comparison sets are empty we have prac-
tical completeness.

7. For each of the three value comparison criteria, evaluate if its corre-
sponding set is empty. If not, present an evidence for its failure.

8. If all three value comparison criteria are empty our implementation is
complete with respect to the specification.

Figure 13.1: Determining Completeness and Practical Completeness

13.2 Reduced Tableau Example

We have constructed the reduced tableau for the specification formula
from the arbiter example of Chapter 5. We received a structure with 20
states. A traditional tableau structure, as in [14] would have a state space
of 215 states for 9. Figure 13.2 depicts the tableau received for 1.

The semantics of the tableau drawing is taken from the StateChart spec-
ification semantics. The large round cornered boxes are meta-states. Each
meta-state includes several states. An edge going to a meta-state should be
interpreted as an edge to each state in the meta-state. Similary, labeling of
a meta-state (the state values not in an internal box) should be applied to
each state in the meta-state.
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13.3 Identifying Redundancies in the Specification

Chapter 4 defines criteria that characterize when a specification is rich
enough (i.e., complete). We would like also to determine whether a complete
specification contains redundancies, i.e., sub formulas that can be removed
or be rewritten without destroying the completeness of the specification.
This additional checking is a method for detecting sub formulas which are
vacous.

Given the reduced tableau, we suggest a new criterion, called One To
Many, that identifies implementation states that are mapped (by ReachSIM)
to multiple tableau states. Finding such states means that there is a smaller
structure that corresponds to an equivalent specification formula. The cri-
terion OneToMany is defined by:

Definition 13.3.1 (OneToMany)
OneToMany = {s; € S;|3s1t, sar € S¢[(si, $1¢) € ReachSIM A
(84, 89t) € ReachSIM A s1p # sot]}-
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13.4 One To Many Example

The following example demonstrates the One to Many criterion. It identifies
a redundant sub formula, which does not add to the completeness of the
specification formula. Consider the following specification formula :

z:bOne2M¢my =

=ack0 A —ackl A

Al(—-req0 V —reql V ack0 V ackl)W
(req0 A reql A —ackO A —ackl A AXack0)] A - ¥0

AG(
(mack0 V —ackl) A - ¥1
(=req0 A —reql A AX(—ack0 A —ackl) Y )
req0 A =reql A AXack0 Vv -3
—req0 A reql A ackl A AXackl \% — 4
req0 A reql A ackO A AXackl Vv - 5
req0 A reql A ackl A AXack0 \% - g
reql A ackl A AX(ack0 A —ackl) Vv — Qredundant
req0 A reql A —ackO A —ackl N AX(
ackO A A[(—req0 V —reql V ack0 V ackl)W
(req0 A reql A —ackO A —ackl A AXackl)] V
ackl N A[(—req0 V —reql V ack0Q V ackl)W
(req0 A reql A —ackO A —ackl A AXack0)]) ))  — o7

Our method reported that for ¥one2nrany criteria 1-4 are met. In addi-

tion, it reported that the One To Many criterion is not met. As an evidence
it provides the implementation state s; such that L;(s;) = {req0, reql, —ack0, ack1}.
This state is mapped to s1; and so; of the reduced tableau for which Ly(s14) =
{req0,reql, —ack0, ackl} and Li(so;) = {reql, —ack0, ackl}.
We may note that ¢requndan: sub formulas agree with g for states la-
beled with {req0,reql}, and not agree with ¢4 for states labeled with
{—req0,reql}. Since it comes as a disjunct, it does not limit the reach-
able simulation, and does not add allowed behavior. Deleting sub formula
Oredundant l€aves a specification formula such that criteria 1-4 are met and
the One to Many criterion is also met.
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Figure 13.2: Reduced Tableau of Full Specification
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Chapter 14

Concluding Remarks and
Future work

14.1 Extensions to Our Work

The major part of this work has been presented in [20]. In a related
work, [21], there is a simple approach for checking completeness, using
a model checker. The use of a model checker replaces the computation of
the ReachSIM preorder. The model checker compares the given model with
a tableau model such that when both models receive the same inputs, they
should produce the same outputs. This approach, however, is useful only
when the tableau is deterministic. The ACTL language can be restricted
to make the tableau deterministic by limiting the disjunctions in the speci-
fication language. Examples are the language RCTL in [1] and the ACTL
subset used in [18]. Chockler et al. [5] characterizes the requirements for a
deterministic tableau.

The framework reported here, including the reduced tableau construc-
tion, the symbolic algorithms and the criteria analysis, has been imple-
mented and coded as an extension to the symbolic model checker SMV [27].
The details of the additional code may be found as a separate report [13]
describing the code outline and the data structure used. Grouchnikov [13]
detected various equivalences of propositional formulas, combining states
that are syntactically different but semantically identical, into a single state.
Grouchnikov’s prototype [13] has been used to test the various aspects of
this coverage work, including the arbiter example from section 5.
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14.2 Future Work

In this paper we presented a novel approach for evaluating the quality of the
model checking process. The method we described can give an engineer the
confidence that the model is indeed “bug-free” and reduce the development
time.

We are aware that the work we have done is not complete. There are a
few technical issues that still have to be addressed:

1. State explosion: The state explosion problem is even more acute
than with model checking because we have to perform symbolic com-
putations while M and 7(1)) are both in memory. This implies that
the circuits to which we can apply the method at present are smaller
than those that we can model check. Therefore, we cannot provide
a solution for large models at this time. However, we believe that
optimizations in this area will eventually be introduced, as they were
for model checking. We are investigating the possibility of running our
method separately on small properties and then combining the results.

Another solution to the state explosion is to compute the criteria ”on-
the-fly” together with the computation of ReachSIM and to discover
violations before ReachSIM is fully computed.

A third solution is to use the algorithm in [18] as a preliminary step,
and try to expand it to fully support our methodology. The definition
of an Unimplemented State is closely related to the notion of evidence
in [18]. On the other hand, our Unimplemented Transition criterion
provides path evidences, while path coverage is not addressed by the
methodology of [18]. Furthermore, our method can indicate complete
agreement between the specification and the implementation. This
may indicate that the verification process can be stopped.

2. Irrelevant information: As in the area of traditional simulation cov-
erage, measurement of quality produces a lot of irrelevant information.
A major problem is that specifications tend to be incomplete by na-
ture. Therefore, we do not necessarily want to obtain a bisimulation
relation between the specification and the implementation. Adopt-
ing practical completeness together with abstraction gives a partial
solution to this problem. There is a need for methodology on how
to write specification properties that effectively utilize the notion of
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“don’t care” and the abstraction feature. In general, it will eventually
be necessary to devise techniques to filter the results so that only the
interesting evidence is reported.

In addition, we are also investigating whether the reduced tableau
described in Section 9 is optimal in the sense that it does not contain
any redundancies.

. Expressivity: Our specification language is currently restricted to
ACTL safety formulas. It is straightforward to extend our method to
full ACTL. This will require, however, the addition of fairness con-
straints to the tableau structure and to use the fair simulation pre-
order [14]. Unfortunately, there is no efficient algorithm to implement
fair simulation [16]. Thus, it is currently impractical to use full ACTL.
It is necessary to find logics that are both reasonable in terms of their
expressivity and practical in terms of tableau construction and com-
parison criteria.
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Appendix A

The compose C code

#include "bdd.h”
extern bdd_ptr current_vars;
bdd_ptr compose(a,b)
bdd_ptr a,b;
{
int alevel,blevel;
/* Check the trivial cases (the base of the recursion) : */
if (a==O0ONE) return forsome(current_vars,b);
/*if a is the OBDD ONE, we have to return ezist x variables in OBDD b
This is done by forsome with an OBDD that has all the even variables */
if (b==ONE) return f_shift(forsome(current_vars,a));
/*if b is the OBDD ONE, we have to return exist out the x
variables in OBDD a This is done by forsome with an OBDD that has
all the even variables
ter exist out we have to f_shift the y variables to have even
Af ' h f_shift th jabl h
variables */
if ((a==ZERO) | (b==ZERO)) return ZERO;
any one of the "and” operation s 0 the result 1s
*If f the ”"and” jon is 0 th Itis 0 *
ompose it for two non trivia S :
* O it f wial OBDD’s : *
/* Get the levels of the OBDDs */
alevel = GETLEVEL(a) ;
blevel = GETLEVEL(D) ;
/* Compare the levels of the two OBDD’s */
if (alevel==blevel) {
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if (ISCCURRENT_VAR(alevel)) {
/* x from a(z,y) and from b(z,u)
If a level is equal to b level we have the same variable
If a is CURRENT, we have to exist it out of a and b
we can compose them directly as belonging to the same level
recursively
or_bdd() is used as replacement of forsome()
¥
/
return or_bdd(compose(a->left,b->left),
compose(a->right,b->right));
}

else {
/*y from a(z,y) and u from b(z,u) */
/* If a level is equal to b level but the variable is of kind NEXT,
we don’t have the same variable. The variable on a is from group vy,
the variable on b is from u
We have to compose them recursively by splitting a (which has to sit
in the even place in the result) , but without existing it out
we should find if we have this OBDD already, if not, compose it. */
return find_bdd(NEXT_TO_CURRENT (alevel),

compose(a->left,b),
compose(a->right,b));

/* The result OBDD has to be a current variable. (u variable is NEXT
in the result OBDD)
and the a portion of the result OBDD is a CURRENT (y variable).
We do it by changing the level from blevel to NEXT_TO_-CURRENT (alevel)
and going “down” on a only, resulting in an OBDD of level CURRENT,
and the recursion will fix everything magically. */

} /* a=b, NEXT */

} /* alevel == blevel */
if (alevel>blevel) {

/* alevel value is higher, split on values of b variable */

if (IS.CURRENT_VAR(blevel)) {
/* We have = variable (even) from b(z,u),
exist it out and go down one level */
return or_bdd(compose(a,b->left),compose(a,b->right));

}
else {
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/* We have u variable (odd) from b(z,u), no need to exist it out.
Calculate by going down one level and returning OBDD of odd level */
return find_bdd(blevel,compose(a,b->left),compose(a,b->right));
} /*a>b, NEXT(b) */
yooofa>b Y/
else { /Ya< b */
/* blevel value is higher, split on values of a variable */
if (IS.CCURRENT_VAR (alevel)) {
/* We have z variable (even) from a(z,y) ,
exist it out and go down one level */
return or_bdd(compose(a->left,b),compose(a->right,b));
}
else { /* NEXT_VAR */
/* We have y variable (odd) from a(z,y), no need to exist it out.
Calculate by going down one level and returning OBDD of even level */
return find_bdd(NEXT_TO_CURRENT (alevel),compose(a->left,b),
compose(a->right,b));
Y /*a<b, NEXT(a) */
b/ a<h, Y/
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Appendix B

The compose_odd C code

#include "bdd.h”
extern bdd_ptr next_vars;
bdd_ptr compose_odd(a,b)
bdd_ptr a,b;
{
int alevel,blevel;
if (a==O0ONE) return r_shift(forsome(next_vars,b));
if (b==ONE) return forsome(next_vars,a);
/* If any one of the "and” operation is 0 the result is 0 */
if ((a==ZERO) | (b==ZERO)) return ZERO;
/* Compose it for two non trivial BDD’s : */
/* Get the levels of the bdds */
alevel = GETLEVEL(a) ;
blevel = GETLEVEL(b) ;
/* Compare the levels of the two bdd’s */
if (alevel==blevel) {
if (IS_.NEXT_VAR(alevel)) {
return or_bdd(compose_odd(a->left,b->left),
compose_odd(a->right,b->right));
}

else {
return find_bdd(alevel,
compose_odd(a->left,b),
compose_odd(a->right,b));
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} /* CURRENT */
} /* alevel == blevel */
if (alevel>blevel) {
if (IS.NEXT_VAR(blevel)) {
return or_bdd(compose_odd(a,b->left),compose_odd(a,b->right));
}
else {
return find_bdd(CURRENT_TO_NEXT (blevel),
compose_odd(a,b->left),
compose_odd(a,b->right));
}

}
else {

if (IS.NEXT_VAR(alevel)) {
return or_bdd(compose_odd(a->left,b),
compose_odd(a->right,b));
}
else { /* CURRENT */
return find_bdd(alevel,
compose_odd(a->left,b),
compose_odd(a->right,b));
}
}
}
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