
Achieving Speedups in Distributed Symbolic
Reachability Analysis through Asynchronous

Computation

Orna Grumberg, Tamir Heyman, Nili Ifergan, and Assaf Schuster?

Computer Science Department, Technion, Haifa, Israel

Contact author: Nili Ifergan
Computer Science Department, Technion, Haifa 32000, Israel

inili@cs.technion.ac.il
Phone: 972-4-8294929

Abstract. This paper presents a novel BDD-based distributed algorithm for reach-
ability analysis which is completely asynchronous. Previous BDD-based dis-
tributed schemes are synchronous: they consist of interleaved rounds of compu-
tation and communication, in which the fastest machine (or one which is lightly
loaded) must wait for the slowest one at the end of each round.
We make two major contributions. First, the algorithm performs image computa-
tion and message transfer concurrently, employing non-blocking protocols in sev-
eral layers of the communication and the computation infrastructures. As a result,
regardless of the scale and type of the underlying platform, the maximal amount
of resources can be utilized efficiently. Second, the algorithm incorporates an
adaptive mechanism which splits the workload, taking into account the availabil-
ity of free computational power. In this way, the computation can progress more
quickly because, when more CPUs are available to join the computation, less
work is assigned to each of them. Less load implies additional important benefits,
such as better locality of reference, less overhead in compaction activities (such
as reorder), and faster and better workload splitting.
We implemented the new approach by extending a symbolic model checker from
Intel. The effectiveness of the resulting scheme is demonstrated on a number of
large industrial designs as well as public benchmark circuits, all known to be
hard for reachability analysis. Our results show that the asynchronous algorithm
enables efficient utilization of higher levels of parallelism. High speedups are
reported, up to an order of magnitude, for computing reachability for models
with higher memory requirements than was previously possible.

? This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant number
111/01)



1 Introduction

This work presents a novel BDD-based asynchronous distributed algorithm for reach-
ability analysis. Our research focuses on obtaining high speedups while computing
reachability for models with high memory requirements. We achieve this goal by de-
signing an asynchronous algorithm which incorporates mechanisms to increase process
utilization. The effectiveness of the algorithm is demonstrated on a number of large
circuits, which show significant performance improvement.

Reachability analysis is a main component of model checking [10]. Most temporal
safety properties can easily be checked by reachability analysis [2]. Furthermore, live-
ness property checking can be efficiently translated into safety property checking [3].

Despite recent improvements in model checking techniques, the so-called state ex-
plosion problem remains their main obstacle. In the case of industrial-scale models,
time becomes a crucial issue as well. Existing BDD-based algorithms are typically lim-
ited by memory resources, while SAT-based algorithms are limited by time resources.
Despite recent attempts to use SAT-based algorithms for full verification (pure SAT in
[23, 8, 21, 16] and SAT with BDDs in [19, 17, 18]), it is still widely acknowledged that
the strength of SAT-based algorithms lies primarily in falsification, while BDD-based
model checking continues to be the de facto standard for verifying properties (see sur-
veys in [28] and [4]). The goal of this work is verification of large systems. Therefore,
we based our techniques on BDDs.

The use of distributed processing to increase the speedup and capacity of model
checking has recently begun to generate interest [5, 29, 22, 1, 27, 20, 15, 30, 24]. Dis-
tributed techniques that achieve these goals do so by exploiting the cumulative com-
putational power and memory of a cluster of computers. In general, distributed model
checking algorithms can be classified into two categories: explicit state representation
based [29, 22, 1, 27] and symbolic (BDD-based) state representation based [20, 15]. Ex-
plicit algorithms use the fact that each state is manipulated separately in an attempt to
divide the work evenly among processes; given a state, a hash-function identifies the
process to which the state was assigned. The use of hash-functions is not applicable in
symbolic algorithms which manipulatesetsof states, represented as BDDs. In contrast
to sets of explicit states, there is no direct correlation between the size of a BDD and
the number of states it represents. Instead, the workload can be balanced by partition-
ing a BDD into two smaller BDDs (each representing a subset of the states) which are
subsequently given to two different processes.

The symbolic work-efficient distributed synchronous algorithm presented in [15]
is the algorithm that is closest to ours. In [15], as well as in our algorithm, processes
(called workers) join and leave the computation dynamically. Each workerownsa part
of the state space and is responsible for finding the reachable states in it. A worker
splits its workload when its memory overflows, in which case it passes some of its
owned states to a free worker.

Unlike the algorithm proposed in this work, the one in [15] works in synchronized
iterations. At any iteration, each of the workers applies image computation and then
waits for the others to complete the current iteration. Only then do all workers send the
non-owned states discovered by them to their corresponding owners.

1



The method in [15] has several drawbacks. First, the synchronized iterations re-
sult in unnecessary and sometimes lengthy idle time for “fast” processes. Second, the
synchronization phase is time-consuming, especially when the number of processes is
high. Consequently, processes split as infrequently as possible in an attempt to reduce
the overhead caused by synchronization. This leads to the third drawback: processes
underutilize the given computational power, since available free processes are not used
until there is absolutely no other choice but to join them in. These drawbacks make the
algorithm insufficiently adaptive to the checked system and the underlying parallel en-
vironment. Furthermore, the combined effect of these drawbacks worsens with two fac-
tors: the size of the parallel environment and the presence of heterogeneous resources in
it (as are commonly found today in non-dedicated grid and large-scale systems). These
drawbacks limit the scalability of the algorithm and make it slow down substantially.

In order to exploit the full power of the parallel machinery and achieve scalability,
it was necessary to design a new algorithm which is asynchronous in nature. We had to
change the overall scheme to allow concurrency of computation and communication, to
provide non-blocking protocols in several layers of the communication and the compu-
tation infrastructures, and to develop an asynchronous distributed termination detection
scheme for a dynamic system in which processes join and leave the computation. In
contrast to the approach presented in [15], the new algorithm does not synchronize the
iterations among processes. Each process carries on the image computations at its own
pace. The sending and receiving of states is carried out “in the background,” with no co-
ordination whatsoever. In this way, image computation and non-owned state exchange
becomeconcurrentoperations.

Our algorithm is aimed at obtaining high speedup while fully utilizing the available
computational power. To this end, when the number of free processes is relatively high
the splitting rate is increased. This mechanism imposesadaptive early splittingto split
a process even if its memory does not overflow. This approach ensures that free compu-
tational power will be utilized in full. In addition to using more processes, splitting the
workload before memory overflows means that processes will handle smaller BDDs.
This turned out to be a critical contribution to the speedup achieved by the new ap-
proach because a smaller BDD is easier to manipulate (improved locality of reference,
faster image computation, faster and less frequent reorders, faster slicing, etc.).

In the asynchronous approach, when a process completes an iteration it carries on
to the next one without waiting for the others. Consequently, splitting the workload
with new processes is an efficient method for speeding up the computation since the
overhead in adding more workers is negligible. However, this approach poses a huge
challenge from the viewpoint of parallel software engineering. Given that the state space
partition varies dynamically and that the communication is asynchronous, messages
containing states may reach the wrong processes. By the time a message containing
states is sent and received, the designated process may cease to own some or all of
these states due to change of ownerships. Our algorithm overcomes this problem by
incorporating adistributed forwarding mechanismthat avoids synchronization but still
assures that these states will eventually reach their owners. In addition, we developed
a new method for opening messages containing packed BDDs which saves local buffer

2



space and avoids redundant work: the mechanism ensures that only the relevant part of
the BDD in the message is opened at every process visited by the message.

Distributed termination detection presents another challenge: although a certain pro-
cess may reach a fixpoint, there may be states owned by this process that were discov-
ered (or, are yet to be discovered) by others and are on their way to this process (in the
form of BDDs packed in messages). The two-phase Dijkstra [11, 12] termination detec-
tion algorithm is an efficient solution in such cases. However, we had to face yet another
algorithmic complication that was not addressed by Dijkstra: the number of processes in
the computation can vary dynamically and cannot be estimated or bounded in advance.
We found no solution to this problem in the distributed computing literature. Thus, we
had to develop the solution ourselves as an extension of the Dijkstra algorithm.

Related Work

Other papers suggest reducing the space requirements for sequential symbolic reach-
ability analysis by partitioning the work into several tasks [25, 7, 13]. However, these
schemes use a single machine to sequentially handle one task at a time, while the other
tasks are kept in external memory. These algorithms, as well as the distributed sym-
bolic algorithms [20, 15], are based on strict phases of computation and synchroniza-
tion, which are carried out until a global fixpoint is reached. As a result, these schemes
cannot scale well, and cannot take advantage of contemporary large-scale distributed
platforms, such as huge clusters, grid batch systems and peer-to-peer networks, which
are commonly non dedicated and highly heterogeneous.

The rest of the paper is organized as follows. In Section 2 we discuss the distributed
approach. Section 3 describes sending and forwarding of BDD messages. In Section 4
we detail the algorithm performed by processes. Section 5 describes the asynchronous
termination detection algorithm. Section 6 describes the operation of the coordinators.
Experimental results are given in Section 7. Finally, we conclude in Section 8 with a
summary and directions for future research.

2 The Distributed Asynchronous Approach
We begin by describing the sequential symbolic (BDD-based) reachability algorithm.
The pseudo-code is given in Figure 1. The set of reachable states is computed sequen-
tially by applying Breadth-First Search(BFS) starting from the set of initial statesS0.
The search is preformed by means ofimage computationwhich, given a set of states,
computes a set containing their successors. In general, two sets of states have to be
maintained during reachability analysis:

1) The set of reachable states discovered so far, calledR. This set becomes the set
of reachable states when the exploration ends.

2) The set of reached but not yet developed states, calledN . These states are
developed in each iteration by applying image computation onN .

The distributed reachability algorithm relies on the notion of Boolean function slic-
ing [26]. The state space is partitioned intoslices, where each slice isownedby one
process. A set,w1 . . . wk, of Boolean functions calledwindow functionsdefines for
each process the slice it owns. The set of window functions is complete and disjoint,
that is,∨k

i=1wi = 1 and ∀i 6= j : wi ∧ wj = 0, respectively. States that do not belong
to the slice owned by a process are callednon-ownedstates for this process.

3



Reachability(S0)
1) R = N = S0
2) while (N 6= φ)
3) N = Image(N)
4) N = N \ R
5) R = R ∪N
6) returnR

Fig. 1. Sequential Reachability Analysis

As noted earlier, reachability analysis is usually carried out by means of a BFS ex-
ploration of the state space. Both the sequential algorithm (Figure 1) and the distributed
synchronous algorithm (see [20, 15]) use this technique: in iterationi, image computa-
tion is applied to the set of states,N , which are reachable ini steps (and no fewer than
i steps) from the set of initial states. Thus, when iterationi is finished, all the states
which are reachable in at mosti + 1 steps have already been discovered. While in a
sequential search the states inN are developed by a single process, in a distributed
search the states inN are developed by a number of processes, according to the state
space partition. In the latter, the processes synchronize on a barrier at the end of each
iteration, i.e., wait until all processes complete the current iteration. Only then do the
processes exchange their recently discovered non-owned states and continue to the next
iteration.

However, reachability analysis need not be performed in such a manner. Note that
reachability analysis would be correct even if, in iterationi, not all the states which are
reachable ini steps are developed, as long as they will be developed in a future iteration.
Thus, when a process completes iterationi, it does not have to wait until the other
processes complete it. It can continue in the image computation on the newly discovered
states and receive owned states discovered by other processes at a later time. This is
one of the key ideas behind the asynchronous approach employed in the computational
level.

Like [20, 15], our algorithm uses two types of processes: workers and coordinators.
The distributed platform consists of a non-dedicated pool of workers. Workers can join
and leave the computation dynamically. Workers participating in the computation are
calledactive. Otherwise, they are calledfree. Each active workerownsa slice of the
state space and is responsible for discovering the reachable states within its slice. The
algorithm is initialized with one active worker that runs a symbolic reachability algo-
rithm, starting from the set of initial states. During its run, workers are allocated and
freed. Each worker works iteratively. At each iteration, the worker computes an image
and exchanges non-owned states, until a global fixpoint is reached and termination is
detected. During image computation, the worker computes the new set of states that
can be reached in one step from its owned part ofN . The new computed set contains
owned as well as non-owned states. During the exchange operation, the worker asyn-
chronously sends the non-owned states to their corresponding owners. The novelty of
our algorithm is that the iterations are not synchronized among workers. In addition,
image computation and state exchange become concurrent.

Image computation and the receiving of owned states from other workers are criti-
cal points in which memory overflow may occur. In both cases, the computation stops
and the worker splits its ownership into two slices. One slice is left with the over-
flowed worker and one given to a free worker. While distributed synchronous algo-
rithms use splitting only when memory overflows, our approach also uses splitting to

4



attain speedups. Theadaptive early splittingmechanism splits a worker according to
progress of its computation and availability of free workers in the pool. Besides utilizing
free workers, this mechanism aims at increasing the asynchrony of the computation by
splitting workers whose progress in the computation is not fast enough. An additional
mechanism merges ownerships of several workers with low memory requirements to
one worker, where the others return to the pool of free workers.

The concurrency between image computation and state exchange is made possible
by the asynchronous sending and receiving of states. Non-owned states are transformed
into BDD messages. BDD messages are sent “in the background,” by the operating sys-
tem. Note that asynchronous communication is usually implemented in a manner which
allows minimum CPU intervention. As a result, a worker that sends a BDD message to
a colleague is not blocked until the BDD message is actually sent or received. Simi-
larly, a worker need not immediately process a BDD message that it receives. Received
BDD messages are accumulated in a buffer calledInBuff. The worker can retrieve them
whenever it chooses. The worker retrieves BDD messages fromInBuff during image
computation, transforms them to BDDs, and stores them in a set calledOpenBuffuntil
the current image operation is completed. To summarize, a worker has to maintain three
sets of states,N, R, andOpenBuff, as well as one buffer,InBuff, during the distributed
asynchronous reachability analysis.

In addition, our algorithm uses three coordinators: theexch coord , which holds
the current set of owned windows and is notified on every split or merge. Theexch coord
is also responsible for termination detection; thepool mgr, which keeps track of free
workers; and thesmall coord , which merges the work of underutilized workers.
Following is an explanation of how we handle BDD messages. The algorithm itself will
be explained in detail in Sections 4, 5 and 6.

3 Forwarding and Sending of BDD Messages

Workers often exchange non-owned states during reachability analysis. BDDs are trans-
lated into and from messages as described in [15]. A BDD message represents the con-
tent and pointers of each BDD node as an element in an array. This method reduces the
original BDD by 50%. Thus, BDD messages are transferred across the net efficiently.
Moreover, recall that there is no exchange phase in which the processes send BDD
messages all at once; messages are sent and received asynchronously during the com-
putation. In addition, received BDD messages are opened during image computation
and pending messages do not accumulate. As a result, the communication overhead
is negligible and the memory required to store BDD messages that are waiting to be
sent or opened is relatively small. These observations held in all the experiments we
conducted.

As noted earlier, messages of non-owned states may reach the wrong worker (some
or all of the states in the BDD message do not belong to the worker). Our algorithm thus
incorporates adistributed forwarding mechanismthat avoids synchronization but still
ensures that these states will eventually reach their owners. In addition, the mechanism
enables forwarding BDD messages without transforming them to a BDD form (which
may be a time consuming operation). To this end, we attach a window to each BDD
message. We refer to a BDD message as a pair〈T, w〉, whereT is the BDD in an array

5



form andw is the attached window. Before workerPi sends workerPj a BDD message,
it receives from theexch coord the windoww′j whichPj owned when it last updated
the exch coord . This is the windowPi assumesPj owns. As illustrated in Figure
2(a), whenPi sends a message toPj it attaches the windoww′j it assumesPj owns. If
Pj is required to forward this message to workerPk with an assumed windoww′k, it
will change the window tow′j ∧ w′k before doing so (see Figure 2(b)).

w’    jT  

(a)

w’    w’j k∧T  

(b)

Fig. 2. (a)Pi sendsPj a BDD message with an assumed windoww′j (b) Pj forwards a BDD mes-
sage toPk with an assumed windoww′k

The OpenBuffer procedure, described in Figure 3, retrieves BDD messages from
InBuff. Recall that those messages are received asynchronously intoInBuff by the op-
erating system. When a worker retrieves BDD messages fromInBuff, it requests and
receives from theexch coord the list of window functions owned by the workers.
Next, it asynchronously forwards each BDD message to each worker whose window’s
intersection with the message window is non-empty. Then it opens the BDD message.

In this work we developed a new method for opening BDD messages which saves
local buffer space and avoids redundant work: only the relevant part of the BDD in the
message is opened at every process visited by the message. The new method, called
selective opening, extracts from a BDD message only those states that are under a given
window (the window of the message intersected with the window of the worker), with-
out transforming the entire message to BDD form. The worker holds the owned states
extracted from the BDD message inOpenBuff.

Though the selective opening method only extracts the required states, the operation
may fail due to memory overflow. In this case, the worker splits its ownership and
thereby reduces its workload. Note that, despite the split, the BDD messages pending in
InBuff do not require special handling; the next time the worker calls the OpenBuffer
procedure and retrieves a pending BDD message, it forwards it according to the updated
state partition given by theexch coord and extracts the owned states according to its
new window.

4 The Worker Algorithm
A high level description of the algorithm performed by a worker with IDmy id is
shown in Figure 3. We will first describe each procedure in general and then in detail.

During the BoundedImage procedure, a worker computes the set of states that can
be reached in one step fromN , and stores the result inN . During the computation, the
worker also calls the OpenBuffer procedure and extracts owned states intoOpenBuff.
N andR will be updated with those states only in the Exchange procedure. If memory
overflows during image computation or during the opening of a buffer, the worker splits
its windoww and updatesN, R andOpenBuffaccording to the new window. The same
holds true if early splitting occurs.

During the Exchange procedure the worker sends out the non-owned states (N \w)
to their assumed owners and updatesN, R with new states accumulated inOpenBuff
(new states are states that do not appear inR).

6



If only a small amount of work remains, i.e.,N andR are very small, the worker
applies the CollectSmall procedure. The CollectSmall procedure merges the work of
several workers into one task by merging their windows. As a result, one worker is
assigned the unified ownership (merges as owner) and the rest become ”free” (w = ®,
merge as non-owners) and return to the pool of free workers.

procedureOpen Buffer(w, OpenBuff ) procedureBounded Image(R, w, N, OpenBuff )
{〈T, w′〉} ← BDD messages fromInBuff Completed = FALSE
{〈Pj , wj〉} ← receive windows from exchcoor whileCompleted = FALSE
foreach(〈T, w′〉) BoundedImageStep(R, w, N, Max, Failed, Completed)

foreach((j 6= my id) ∧ (w′ ∩ wj 6= ®)) if ((Failed = TRUE)∨(Early Split() = TRUE))
send〈T, w′ ∩ wj〉 to Pj Split(R, w, N, OpenBuff)

Res=SelectiveOpening(T, w′ ∩ w, Failed) OpenBuffer(w, OpenBuff)
if Failed = TRUE

return BDD message toInBuff
Split(R, w, N, OpenBuff)

elseOpenBuff = OpenBuff ∪ Res functionTerminate()
if (N = ® ∧ InBuff = ® ∧ ‘all async’ sends are complete’)

procedureReachTask (R, w, N, OpenBuff) if (TerminationStatus = ‘no term′)
loop forever TerminationStatus = ‘want term′

BoundedImage(R, w, N, OpenBuff) sendexch coord 〈TerminationStatus, my id〉
Exchange(OpenBuff ) returnFALSE
if (Terminate() =TRUE) else if (TerminationStatus = ‘want term′)

returnR TerminationStatus = ‘regret term′

Collect Small(R, w, N) 〈action〉 ← receive fromexch coord if any
if (w = ®) if (action = ‘regret termination query′)

send〈‘to pool′, my id〉 to pool mgr send〈‘regret status′, TeminationStatus, my id〉
return to pool (keep forwarding BDD messages) if (action = ‘reset term′)

TerminationStatus = ‘no term′

procedureExchange(OpenBuff ) if (action = ‘terminate′)
{〈Pj , wj〉} ← receive windows from exchcoor TerminationStatus = ‘terminate′

foreach(j 6= my id) returnTRUE
send〈N ∩ wj , wj〉 to Pj returnFALSE
N = N \ wj

N = N ∪OpenBuff
N = N \ R ; R = R ∪N
OpenBuff = ®

Fig. 3. Pseudo-code for a worker in the asynchronous distributed reachability computation

After performing CollectSmall, the worker checks whether its window is empty
and it needs to join the pool of free workers. The window of a worker can be empty if
it merged as non-owner in the CollectSmall procedure, or if it joined the computation
with an empty window (this will be discussed later).

A worker is calledfreed if it participated in the computation once and then joined
the pool of free workers. Freed workers may still receive misrouted BDD messages
and thus need to forward them. For example, before workerPi is freed, another worker
may send it a message containing states that were owned byPi. Should this message
reachPi after it was freed,Pi must then forward the message to the current owner(s)
of these states. Methods for avoiding this situation will be discussed later. Note that
if freed workers are required to forward BDD messages, they must participate in the
termination algorithm. Following is a detailed description of each procedure.

TheBounded Image Procedureis described in Figure 3. The image is computed by
means of BoundedImageStep operations, which are repeated until the computation is
complete. This algorithm uses apartitioned transition relation. Each partition defines
the transition for one variable. The conjunction of all partitions gives the transition of

7



all variables. Each BoundedImageStep applies one more partition and adds it to the
intermediate result. The BoundedImageStep procedure receives as an argument the
maximal amount of memory that it may use. If it exceeds this limit, the procedure stops
andFailed becomes true.

The technique for computing an image using a partitioned transition relation was
suggested by Burch et al.[6] and used for the synchronous distributed algorithm in [15].
Using bounded steps to compute the image allows memory consumption to be moni-
tored and the computation stopped if there is memory overflow. Also explained in [15]
is how the partitioned transition relation helps to avoid repeating an overflowed com-
putation from the beginning: each worker resumes the computation of its part of the
image from the point at which it stopped and does not repeat the bounded steps that
were completed in the overflowed worker.

Our asynchronous algorithm exploits the partitioned computation even further. Dur-
ing image computation, between each bounded step, we retrieve pending BDD mes-
sages fromInBuff, forward them if necessary, and extract owned states intoOpenBuff.
By doing so, we free the system buffer which contained the messages and produce
asynchronous send operations, if forwarding is needed. Note thatR andN are updated
with OpenBuffonly after the current image computation is completed. In addition, dur-
ing image computation, the worker can perform early split according to the progress
of its computation and availability of free workers in the pool. We chose to implement
the EarlySplit function by checking whether the amount of free workers in the pool is
above a certain threshold and whether the worker has not split for a while.

The Exchange Procedureis described in Figure 3. First, the worker requests and re-
ceives from theexch coord the list of window functions owned by the other workers.
Then it uses this list to asynchronously send recently discovered non-owned states to
the other workers. Afterwards, it updatesN,R with states accumulated inOpenBuff
and recalculatesN, R.

Collect Small Procedure. 1 An underutilized worker, i.e., one with smallN andR,
informs thesmall coord of their size. Thesmall coord gives the worker one of
the following commands: exit the procedure (in case it has no other worker to merge
with or it is not small enough), merge as owner, or merge as non-owner. In case the
worker’s ownership changed, it informs theexch coord of its new window. Note
that workers with largeR sets can not be merged since the memory required to store
the unitedR set may not fit in the memory of a single machine.

A worker which merges as non-owner is freed. As mentioned before, freed workers
keep forwarding BDD messages. However, this can be avoided. A freed worker can
stop forwarding BDD messages if all the other workers have already requested and
received a set of windows that does not include this freed worker. This ensures that no
new messages will be sent to it. In addition, to ensure that all the already sent BDD
messages have arrived, we can either bound the arrival time of a BDD message or run a
termination-like algorithm. The termination algorithm will be discussed later.

1 The pseudo-code for the CollectSmall procedure is not given in this paper due to space limi-
tations.

8



Split Procedure. 2 This procedure starts by asking thepool mgr for a free worker.
We use aSlice procedure, which when given a BDD, computes a set of two windows
that partition the BDD into two parts. This slicing algorithm was suggested in [20].

Two pairs of window functions are computed using the Slice procedure, one for
N and one forR andOpenBuff. The two pairs are computed in an attempt to balance
both the current image computation (by slicingN ) and the memory requirements (by
slicingR andOpenBuff). Note that the new windows the workers will own are the ones
obtained by slicingR andOpenBuff. If R andOpenBuffare relatively small, onlyN
is sliced. Thus, the overflowing worker’s ownership remains unchanged and the new
worker will have an empty window. Such a worker is called ahelper. A helper simply
assists the overflowed worker with a single image computation. Once the computation
is complete, the helper sends the states it produced to their owners and joins the pool
of free workers in the ReachTask procedure. In our experiments, we observed that
the creation of helpers is a common occurrence. After computing the partitions, the
splitting worker sends the other worker its new window and its part ofR,OpenBuffand
N . It also updates theexch coord with the new windows.

5 Asynchronous Termination Detection
Our termination detection algorithm is an extension of the two-phase Dijkstra [11, 12]
termination detection algorithm. Dijkstra’s algorithm assumes a fixed number of pro-
cesses and synchronous communication. In our extension, the communication is asyn-
chronous and processes may join and leave the computation.

The presented termination detection algorithm has two phases: the first phase dur-
ing which theexch coord receiveswant term requests from all the active and freed
workers, and the second phase, during which theexch coord queries all the workers
that participated in the previous phase as to whether they regret the termination. After
receiving all responses, it decides whether to terminate or reset termination and notifies
the workers of its decision. The part of theexch coord in the termination detection
is discussed in Section 6.

Each worker detects termination locally and notifies theexch coord when it
wants to terminate. Upon receiving a regret query, the worker answers as to whether
it regrets its request. The next message the worker will receive from theexch coord
will command it to terminate or reset termination. Note that the communication de-
scribed above is asynchronous and thus does not block the workers.

The pseudo-code for the Terminate function performed by a worker is given in
Figure 3. The termination status of a worker can be one of the following:no term, if it
does not want to terminate;want term, if it wants to terminate;regret term, if its status
waswant term when it discovered that it still has work to do;terminate, if it should
terminate. The initial termination status isno term.

Upon entering the Terminate function the worker checks whether all of the follow-
ing three conditions hold: It does not have any new states to develop (N = ®); it does
not have any pending BDD messages inInBuff; all its asynchronous send operations
have been completed. We will clarify the last condition. If a worker receives a BDD
message, the sender will not consider the send operation complete until it receives an
acknowledgement from this worker. Without acknowledgement, there could be a BDD

2 The pseudo-code for the Split procedure is not given in this paper due to space limitations.

9



message that was sent but not yet received, and no worker would know of its existence.
Note that the acknowledgement is sent and received asynchronously.

If the termination status isno term and all conditions hold, the termination status
is changed towant term. The worker will notify theexch coord that it wants to
terminate and exit the function (with return value false). If the termination status is
want termand one of the conditions does not hold, it may have more work to do. Thus,
the termination status is changed toregret term. If the worker has a pending command
from theexch coord , it acts accordingly. It can be prompted to send its termination
status, or else to set it to eitherno termor terminate.

6 The Coordinators
The exchcoord. Figure 4 describes the pseudo-code for the algorithm performed by
theexch coord . Theexch coord maintains a set of window functionsWs, where
Ws[Pi] holds the window owned byPi. Theexch coord also maintains two lists: a
list of active workers,ActiveWL, and a list of freed workers,FreedWL. Theexch coord
receives notifications from workers and acts accordingly; when workers split or perform
Collect Small, it updatesWs, as well as theActiveWLandFreedWLlists.

functionExch Coord() functionTerminationDetection(cmd)
Ws[0] = one Initialization:
ActiveWL = {0}; FreedWL = ® CancelTerm = FALSE
Loop-forever RegretQueryL = ®
〈cmd〉 = receive fromanyworker TPhase = ‘no term′

if cmd = 〈‘collect small′, Pid, wid, Pi〉 if cmd = 〈‘want term′, Pi〉
Ws[Pid] = wid if TPhase = ‘no term′

ActiveWL = ActiveWL \ Pi WantTermL = ActiveWL ∪ FreedWL
FreedWL = FreedWL ∪ Pi TPhase = ‘want term′

send〈‘release′〉 to Pi and toPid if TPhase = ‘regret term′ (Pi is a split colleague)
if cmd = 〈‘split′, Pid, NewWs = {(pi, wi)}〉 send〈‘regret termination query′〉 to Pi

foreach(pi, wi) ∈ NewWs RegretQueryL = RegretQueryL ∪ {Pi}
Ws[pi] = wi MoveToRegretPhaseIfNeeded(Pi)
ActiveWL = ActiveWL ∪ Pi if cmd = 〈‘regret status′, stat, Pi〉
FreedWL = FreedWL \ Pi CancelTerm = CancelTerm ∨ (stat = regret)

send〈‘release′〉 to Pid ResetOrTermL = ResetOrTermL ∪ {Pi}
TerminationDetection(cmd) ResetOrTerminateIfNeeded(Pi)

if (cmd = 〈‘split′, Pid, {(Pi, wi)}〉 ∧
procedureMoveToRegretPhaseIfNeeded(Pi) TPhase 6= ‘no term′)

WantTermL = WantTermL \ {Pi} CancelTerm = TRUE
if (WantTermL = ® ∧ TPhase = ‘want term′) if TPhase = ‘want term′

TPhase = ‘regret phase′ WantTermL = WantTermL ∪ {Pi|Pi ∈ {(Pi, wi)}}
∀Pj ∈ RegretQueryL : if (cmd = 〈‘collect small′, Pid, wid, Pi〉 ∧
send〈‘regret termination query′〉 to Pj TPhase 6= ‘no term′)

CancelTerm = TRUE
procedureResetOrTerminateIfNeeded(Pi)

RegretTermL = RegretTermL \ {Pi}
if (RegretTermL = ® ∧ CancelTerm = FALSE)
∀Pj ∈ ResetOrTermL : send〈‘terminate′〉 to Pj

if (RegretTermL = ® ∧ CancelTerm = TRUE)
∀Pj ∈ ResetOrTermL : send〈‘reset term′〉 to Pj

ResetOrTermL = ®; CancelTerm = FALSE
TPhase = ‘no term′

Fig. 4.The pseudo-code for theexch coord

Theexch coord detects termination according to the TerminationDetection pro-
cedure. TheTPhasevariable indicates the termination phase and can have one of the fol-
lowing values:no term, which means that no termination request has yet been received;
want term, where theexch coord collects termination requests;regret term, where

10



the exch coord collects regret termination responses.The initial value ofTPhaseis
no term. In addition, theexch coord holds the following three lists: theWantTermL
list, which is used in thewant term phase and contains all the active and freed work-
ers that havenot sent a termination request; theRegretQueryLlist, which is used in
theregret termphase and contains all the workers that havenot sent a regret response;
and theResetOrTermLlist, which contains all the workers that will be notified of the
termination decision when theregret termends.

The phase changes are triggered by commands received from the workers. The
exch coord can receive one of four commands and proceed accordingly. Thewant term
phase begins upon receiving awant term request. Then theWantTermLis assigned the
value of all active and freed workers. During this phase, theexch coord receives
want term requests from all the workers in this list. Each worker that sends a request
is removed from theWantTermLlist and added to theRegretQueryL. When theWant-
TermLlist becomes empty, theregret termphase begins. All the workers in theRegret-
QueryLare sent a regret query. During this phase, those workers send a response to
the query (their regret status). Each worker that sends a response is removed from the
list and added to theResetOrTermL. Only when theRegretQueryLbecomes empty are
the workers in theResetOrTermLsent the decision as to whether or not to terminate.
Theexch coord decides not to terminate if one of the workers regretted the termina-
tion or if split or merge occurred. In the latter case, theexch coord also updates the
appropriate lists.
The small coord. The smallcoord collects as many underutilized workers as possible.
It receives merge requests from small (underutilized) workers. The smallcoord stops
a small worker for a predefined time; if timeout occurs and no other small worker has
arrived in the meantime, it releases the worker. If a small worker arrives while another
is waiting, it matches the two for merging.
The pool mgr. The poolmgr keeps track of free workers. During initialization it marks
all workers as free, except for one. When a worker becomes free, it returns to the
pool. When a worker splits, it sends thepool mgr a request for a free worker. The
pool mgr sends in reply theID of a free worker, which is then removed from the
pool. If thepool mgr is asked for a worker and there is no free worker in the pool, it
stops the execution globally and announces ”workers overflow.”

7 Experimental Results

We implemented our algorithm on top of Division [14], a generic platform for the study
of distributed symbolic model checking which requires an external model checker. We
used FORECAST [13] for this purpose. FORECAST is an industrial strength high-
performance implementation of a BDD-based model checker developed at Intel, Haifa.

This section describes our experimental results on certain large benchmarks that are
known to be hard for reachability analysis. Most publicly available circuits are small
or medium sized and can be computed sequentially. Therefore, we focused mostly on
industrial-scale examples. We conducted experiments on two of the largest ISCAS89
benchmarks (s1269, s3330). Additional large-size examples are industrial designs taken
from Intel. Our parallel testbed included a maximum of 56 PC machines, 2.4GHz
Xeon processor with 4GB memory. The communication between the nodes was via
LAM MPI over fast Ethernet. We used daemon-based communication, which allows

11



true asynchronous message passing (i.e., the sending of messages progresses while the
user’s program is executing).

Our results are compared to FORECAST and to the work-efficient distributed syn-
chronous implementation in [15]. The work-efficient implementation originally used
NuSMV [9] as an external BDD-based model checker. For comparability, we replaced it
with FORECAST. The work-efficient implementation which uses FORECAST will be
referred to as FORECAST-D (Distributed FORECAST), and our prototype as FORECAST-
AD (Asynchronous FORECAST-D).

Speedup 

(AD Vs. D)

s1269 55 9 9 45 50 12 15 6 3.3

s330 172 8 8 141 85 6 52 14 1.64

D_1 178 36 36 91 100 8 70 10 1.43

D_5 310 68 68 1112 897 5 150 18 5.98

D_6 328 94 94 81 101 5 76 3 1.3

Head_1_1 300 98 ovf(44) - 9180 10 900 15 10.2

Head_2_0 276 85 ovf(44) - 2784 4 390 55 7.14

Head_2_1 274 85 ovf(55) - 1500 8 460 50 3.26

I1 138 139 ovf(102) - 7178 18 2760 36 2.6

Circuit 
Name

# Vars # Steps
 Time(m)

            Forecast               Forecast-D  Forecast-AD

 # Workers Max. Step  Time(m)  # Workers  Time(m)

Fig. 5. A comparison between FORECAST, FORECAST-D and FORECAST-AD. If FORECAST was unable to complete
an image step, we reported the overflowing step in parentheses. FORECAST-D and FORECAST-AD reached a fixpoint on
all circuits. Column 10 shows the speedup when comparing FORECAST-AD and FORECAST-D run times.

Figure 5 clearly shows a significant speedup on all examples, up to an order of mag-
nitude. When comparing FORECAST-D to FORECAST-AD, we were able to obtain a
speedup even when the number of workers decreased. For instance, in the s1269 circuit,
we obtained a speedup of 3.3 even though the number of workers decreased by a factor
of 2. It can also be seen that the early splitting mechanism in FORECAST-AD enables
using more workers than in FORECAST-D. Using more workers clearly increases ef-
ficiency: for example in the Head1 1 circuit, FORECAST-AD uses 1.5 times more
workers, but the speedup is of an order of magnitude.

We analyzed worker utilization when using the early splitting mechanism. Figure 6
provides utilization graphs for the Head2 0 circuit, with this mechanism enabled and
disabled. The Head2 0 is a large circuit, difficult for reachability analysis. As can be
seen in Figure 5, FORECAST is unable to reach a fixpoint on this circuit and overflows
at step 44, while FORECAST-D requires over 46 hours to reach a fixpoint. Figure 6(a)
clearly shows that when the early splitting mechanism is disabled, the workers are idle
for much of the time. For instance, between 850 and 1100 minutes, onlyP7 is working.
This situation occurs when workers do not have any new states to develop and wait to
receive new owned states. In this case, only whenP7 finds non-owned states and sends
them to their corresponding owners are those workers utilized again. It is evident in
Figure 6(b) that early splitting can significantly reduce such a phenomenon. As can be
seen, the phenomenon still exists, but on a much smaller scale, for instance between
360 and 380 minutes. In addition, when using early splitting, we are able to use more
machines more quickly. In Figure 6(a) it takes 1600 minutes for 10 machines to come
into use, whereas in Figure 6(b) this takes 70 minutes.

12



0

2

4

6

8

10

12

0 200 400 600 800 1000 1200 1400 1600 1800

# 
W

or
ke

rs

Time (minutes from start)

XY Curve

Non-working Area

(a) Without Early Splitting

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

# 
W

or
ke

rs

Time (minutes from start)

XY Curve

Non-working Area

(b) With Early Splitting

Fig. 6. FORECASTAD worker utilization with and without the early splitting mechanism in the Head2 0 circuit. In each
graph, the Y axis represents the worker’s ID. The X axis represents the time(in minutes) from the beginning of the distributed
computation. For each worker, each point indicates that it computed an image at that time; a sequence of points represents a
time segment in which a worker computed an image; a sequence in which points do not appear represents a time segment in
which a worker is idle (it does not have any new states to develop). An asterisk on the time line of a worker represents the
point when it split. The XY curve connects times at which workers join the computation. This curve separates theworking
from thenon-workingarea. Note that the scales of the two graphs (both X axis and Y axis) are different.

Figure 6 also illustrates that when the number of workers increases, the relative size
of the non-working area (the area above the XY curve) increases significantly. In the
working area (the area below the XY curve), workers are dedicated to the distributed
computation, whereas in the non-working area, workers are in the pool and can be
used for other computations. Thus theeffectivenessof the mechanism, i.e, the relation
between the speedup and the increase in the number of workers, should actually be
measured with respect to the relative size of the working area. Figure 7 presents the
speedup obtained on several circuits, when using the early splitting mechanism.

Circuit # Vars

Name Speedup 

 Time(m)  # Workers  Time(m)  # Workers (A Vs. B)

s330 172 120 8 52 14 2.3

D_5 310 617 14 150 18 4.1

Head_1_1 300 1140 4 900 15 1.3

Head_2_0 276 1793 11 390 55 4.6

Head_2_1 274 1200 5 460 50 2.6

 Forecast-AD

No Early Splitting (A) Early Splitting  (B)

Fig. 7. The early splitting effect in FORECAST-AD. The ”Speedup” column reports the speedup obtained when using the
early splitting mechanism.

As can be seen in Figure 8, there is an almost linear correlation between the increase
in computational power and the reduction in runtime on the Head2 0 circuit. As the
number of workers increases, the effectiveness decreases slightly. This can be explained
by the fact that the relative size of the non-working area becomes larger as the number
of workers increases (since we are not able to utilize free workers fast enough).
8 Conclusions and Future Work
This paper presents a novel algorithm for distributed symbolic reachability analysis
which is asynchronous in nature. We employed non-blocking protocols in several lay-
ers of the communication and the computation infrastructures: asynchronous sending

13



0

500

1000

1500

2000

10 15 20 25 30 35 40 45 50 55

T
ot

al
 T

im
e 

(m
in

ut
es

)

# Workers

Fig. 8. The speedup obtained when increasing the number of workers on the Head2 0 circuit (in FORECAST-AD). The X
axis represents the time required to reach a fixpoint. The Y axis represents the maximal number of workers that participated
in the computation. An asterisk on the(x, y) coordinate indicates that when the threshold of free workers is set tox, the
reachability analysis ended aftery minutes.

and receiving of BDD messages (concurrency between image computation and state ex-
change), opening of messages between bounded image steps, a non-blocking distributed
forwarding mechanism, non-synchronized iterations, and an asynchronous termination
detection algorithm for a dynamic number of processes. Our dynamic approach tries
to utilize contemporary non-dedicated large-scale computing platforms, such as Intel’s
Netbatch high-performance grid system, which controls all (tens of thousands) Intel
servers around the world.

The experimental results show that our algorithm is able to compute reachability for
models with high memory requirements while obtaining high speedups and utilizing the
available computational power to its full extent.

Additional research should be conducted on better adaption of the reorder mecha-
nism to a distributed environment. One of the benefits of the distributed approach which
we exploit is that each worker can perform reorder independently of other workers and
thus find the best order for the BDD it holds. We did not elaborate on this matter since
it is not the focus of the paper. Our adaptive early splitting approach not only better
utilizes free workers but also results in processes handling smaller-sized BDDs, which
are easier to manipulate. In particular, the reorders in small BDDs are faster and less
frequent. Nevertheless, the BDD package still spent a considerable time on reordering.
We intend to explore the use of splitting as an alternative method for reordering.

References

1. J. Barnat, L. Brim, and J. Stribrna. Distributed LTL model-checking in SPIN. InProceedings
of the 8th international SPIN workshop on Model checking of software, pages 200–216.
Springer-Verlag, 2001.

2. I. Beer, S. Ben-David, and A. Landver. On-The-Fly Model Checking of RCTL Formulas. In
CAV, pages 184–194, 1998.

3. A. Biere, C. Artho, and V. Schuppan. Liveness Checking as Safety Checking. InProceedings
of the 7th International ERCIM Workshop, FMICS02, July 2002.

4. A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zue.Bounded Model Checking.
Advances in Computers. Volume 58, Academic Press, 2003.

5. V. A. Braberman, A. Olivero, and F. Schapachnik. Issues in distributed timed model check-
ing: Building Zeus.STTT, 7(1):4–18, 2005.

6. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model Checking with Partitioned
Transition Relations. InProceedings of Internation Conference on Very Large Integration,
pages 45–58, 1991.

14



7. G. Cabodi, P. Camurati, and S. Quer. Improved Reachability Analysis of Large FSM. In
Proceedings of the IEEE International Conference on CAD, pages 354–360, 1996.

8. Pankaj Chauhan, Edmund M. Clarke, and Daniel Kroening. Using SAT based Image Com-
putation for Reachability Analysis. Technical report, Carnegie Mellon University, School of
Computer Science, 2003.

9. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri.NUSMV: a new Symbolic Model
Verifier. In CAV’99, pages 495–499.

10. E. M. Clarke, O. Grumberg, and D. Peled.Model checking. MIT Press, 1999.
11. E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren. Derivation of a Termination

Detection Algorithm for Distributed Computations.Information Processing Letters, pages
217–219, 1983.

12. E. W. Dijkstra and C.S. Scholten. Termination Detection for Diffusing Computations.Infor-
mation Processing Letters, pages 1–4, 1980.

13. R. Fraer, G. Kamhi, Z. Barukh, M.Y. Vardi, and L. Fix. Prioritized Traversal: Efficient
Reachability Analysis for Verification and Falsification. InCAV’00, volume 1855 ofLNCS.

14. O. Grumberg, A. Heyman, T. Heyman, and A. Schuster. Division System: A General Plat-
form for Distributed Symbolic Model Checking Research, 2003.

15. O. Grumberg, T. Heyman, and A. Schuster. A Work-Efficient Distributed Algorithm for
Reachability Analysis. InCAV, LNCS, 2003.

16. O. Grumberg, A. Schuster, and A. Yadgar. Memory Efficient All-Solutions SAT Solver and
its Application for Reachability Analysis. InFMCAD’04.

17. A. Gupta, A. Gupta, Z. Yang, and P. Ashar. Dynamic Detection and Removal of Inactive
Clauses in SAT with Application in Image Computation. InDAC, pages 536–541. ACM
Press, 2001.

18. A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik. Partition-Based Decision Heuristics for
Image Computation using SAT and BDDs. InICCAD, pages 286–292. IEEE Press, 2001.

19. Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta. SAT-Based Image Computa-
tion with Application in Reachability Analysis. InFMCAD, volume 1954 ofLNCS, 2000.

20. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. A Scalable Parallel Algorithm for
Reachability Analysis of Very Large Circuits.Formal Methods in System Design, pages 317
– 338, 2002.

21. H. Kang and I. Park. SAT-based Unbounded Symbolic Model Checking. InDAC, 2003.
22. F. Lerda and R. Sisto. Distributed-Memory Model Checking with SPIN. InProceedings of

the 5th and 6th International SPIN Workshops on Theoretical and Practical Aspects of SPIN
Model Checking, pages 22–39. Springer-Verlag, 1999.

23. K. L. McMillan. Applying SAT Methods in Unbounded Symbolic Model Checking. In
CAV’00.

24. K. Milvang-Jensen and A. J. Hu. BDDNOW: A Parallel BDD Package. InFMCAD ’98,
LNCS, Palo Alto, California, USA, November 1998.

25. A. Narayan, A. Isles, J. Jain, R. Brayton, and A. L. Sangiovanni-Vincentelli. Reachability
Analysis Using Partitioned-ROBDDs. InProceedings of the IEEE International Conference
on Computer Aided Design, pages 388–393, 1997.

26. A. A. Narayan, J. Jawahar, M. Fujita, and A. Sangiovanni-Vincenteli. Partitioned-ROBDDs.
In CAV, pages 547–554, 1996.

27. D. M. Nicol and G. Ciardo. Automated Parallelization of Discrete State-Space Generation.
J. Parallel Distrib. Comput., 47(2):153–167, 1997.

28. M. R. Prasad, A. Biere, and A. Gupta. A Survey of Recent Advances in SAT-Based Verifi-
cation. To appear in STTT, 2005.

29. U. Stern and D. L. Dill. Parallelizing the Murϕ Verifier. In CAV, pages 256–278, 1997.
30. T. Stornetta and F. Brewer. Implementation of an Efficient Parallel BDD Package. In33rd

Design Automation Conference, 1996.

15


