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Abstract

Model checking is a successful approach for verifying hardware and software systems. Despite
its success, the technique suffers from the state explosion problem which arises due to the
huge state space of real-life systems. The size of the model induces high memory and time
requirements that may make model checking not applicable to large systems.

One solution to face the state explosion problem is the use of compositional verification,
that aims to decompose the verification of a large system into the more manageable verification
of its components. To account for dependencies between the components, assume-guarantee
reasoning defines rules that break-up the global verification of a system into local verification of
individual components, using assumptions about the rest of the program.

In recent years, compositional techniques have gained significant successes following a
breakthrough in the ability to automate assume-guarantee reasoning. However, automation is
still restricted to simple acyclic assume-guarantee rules.

In this work, we focus on automating circular assume-guarantee reasoning in which the
verification of individual components mutually depends on each other. We use a sound and
complete circular assume-guarantee rule and we describe how to automatically build the assump-
tions needed for using the rule. Our algorithm accumulates joint constraints on the assumptions
based on (spurious) counterexamples obtained from checking the premises of the rule, and uses
a SAT solver to synthesize minimal assumptions that satisfy these constraints. To the best of our
knowledge, our work is the first to fully automate circular assume-guarantee reasoning.

We implemented our approach and compared it with an established learning-based method
that uses an acyclic rule. In all cases, the assumptions generated for the circular rule were
significantly smaller, leading to smaller verification problems. Further, on larger examples, we

obtained a significant speedup as well.
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Chapter 1

Introduction

This work proposes an automated, sound and complete circular compositional verification
technique to address the most central scalability problem in model checking, namely the state-
explosion.

Model checking [CGP99] is a widely accepted technique for automatically checking that
software systems conform with given properties. Despite its successes, the technique still
suffers from the state explosion problem, which refers to the worst-case exponential growth of a
program’s state space with the number of variables and concurrent components. Compositional
techniques have shown promise in addressing this problem, by breaking-up the global verifica-
tion of a program into local, more manageable, verification of its individual components. The
environment for each component, consisting of the other program’s components, is replaced
by a “small” assumption, making each verification task easier. This style of reasoning is often
referred to as Assume-Guarantee (AG) reasoning [MC81, Pnu85].

Progress has been made on automating compositional reasoning using learning and abstraction-
refinement techniques for iterative building of the necessary assumptions [CGP03, PGB 08,
BPGOS]. Other learning-based approaches for automating assumption generation have been
proposed as well, e.g. [CCST05, AMNOS5, CCF* 10, CFCT09].

This work has been done mostly in the context of applying a simple compositional assume-
guarantee rule, where assumptions and properties are related in an acyclic manner. For example,
in a two component program, suppose component //; guarantees property P under assumption
A on its environment. Further suppose that Ms unconditionally guarantees A. Then it follows
that the composition M || My also satisfies P.

However there is another important category of rules that have not been studied for au-
tomation. These rules typically involve circular reasoning and use inductive arguments, over
time, formulas to be checked, or both, e.g. [MC81, McM98, McM99a, NT00], which makes
automation challenging.

Circular Assume-Guarantee rules have been successful in scaling model checking, and have
often been more effective than non-circular rules [McM98, McM99a, McM99b, Rus01]. Further,
they could naturally exploit the inherent circular dependency exhibited by the verified systems.

However, their applicability has been hindered by the manual effort involved in defining the



assumptions.

In this work we propose a novel circular compositional verification technique that is fully
automated. The technique uses the following assume-guarantee circular rule CIRC-AG, for
proving that M || My = P, based on assumptions g; and go. The rule CIRC-AG is both sound

and complete. Components, properties and assumptions are Labeled Transition Systems (LTSs).

(Premise 1) M = ga> g1

(Premise 2) My = g1 > go

(Premise 3)  ¢gi1llg2 E P
M||M; = P

Similar rules have been studied before [McM99a, NT00, GPQ14].

Premises 1 and 2 of the rule are based on induction over time and have the form M = A> P,
which means that for every trace o of size k, if o is in the language of M, and its prefix of size
k — 11is in the language of A then o is also in the language of P.

Intuitively, premises 1 and 2 prove, in a compositional and inductive manner, that every trace
in the language of M ||M> is also included in the language of g ||g2. Premise 3 ensures that
every trace in the language of g1||g2 is also included in the language of P, thus the consequence
of the rule is obtained. Completeness of the rule stems from the fact that M, and M> (restricted
to appropriate alphabets) can be used for g; and go in a successful application of the rule.

The above explanation implies that in a successful application of CIRC-AG, g¢;]|g2 over-
approximates M ||Ms. This means that g; overapproximates the part of M restricted to the
“intersection” with My. Similarly, go overapproximates the part of My restricted to the “inter-
section” with M. In contrast, for the acyclic rule mentioned earlier, the assumption A has to
overapproximate M as a whole. Therefore, CIRC-AG can potentially result in substantially
smaller assumptions.

We prove soundness and completeness of our CIRC-AG rule, and then turn to its automation.
As a first step we suggest an algorithm for checking statements of the form M = A P,
this algorithm is needed for checking the first two premises. The third premise is checked by
standard language inclusion between LTSs (with possibly different alphabets).

To automate Rule CIRC-AG, we develop the Automated Circular Reasoning (ACR) algo-
rithm. ACR works iteratively, with the goal to automate the assumption generation. It runs
two algorithms. Algorithm APPLYAG automatically checks whether given assumptions g; and
go satisfy the premises of the proof rule. If a counterexample is obtained for at least one of
the premises, but it cannot be extended into a counterexample for M || My |= P, the algorithm
produces constraints that determine how the assumptions should be refined in order to avoid the
same counterexample in subsequent iterations. The other algorithm, GENASSMP, uses a SAT
solver to synthesize assumptions g; and go that satisfy all the constraints produced by the former
algorithm. These algorithms are repeated until assumptions g; and gs that are suitable for the
proof rule are generated, or until a real counterexample is found. ACR always terminates and
returns either “M;|| My = P” or “M; || My = P”, in which case it also finds a counterexample:

a trace in M || My which is not in P.



For Rule CIRC-AG to be useful in practice, the assumptions g; and g2 must be as small
as possible, and clearly smaller than the components M; and Ms they represent. To achieve
this, we prove that, at every iteration the generated set of constraints C' is the weakest possible
in the sense that every (g1, g2) which satisfy the rule also satisfy C. Thus, we have no loss of
optional assumptions. In addition, the synthesizing algorithm GENASSMP works iteratively
with increasing bounds on the total number of states in g; and g2 (i.e., |g1| + |g2|). Only if the
set of constraints is not satisfiable for a given bound, the bound is increased. Thus, g; and g, are
guaranteed to be the smallest (in total number of states) assumptions that satisfy the premises
of the rule. Indeed, our experimental results confirm the usefulness of this approach: In all
examples |g1| + |g2| is smaller than the size of the single assumption produced by an established
learning-based method based on an acyclic rule.

Generating assumptions for the circular rule poses unusual challenges. This is because the
two assumptions strongly depend on each other and should be generated in a tightly related
manner. To achieve this, our constraints can express the fact that a certain trace must or must
not be included in the language of an assumption g;. More importantly, we can express boolean
combinations of constraints.

To see why this is needed, consider for example a counterexample for premise 1. Such a
counterexample consists of a trace o and a letter a such that oa is in My, o is in g2 but oa is not
in g;. In order to eliminate this counterexample we need to either remove o from g, or add ca
to g1. This is done by adding the constraint “the trace o must not be in g; or the trace oca must
be in go”. The SAT encoding of this constraint makes sure that at least one of its disjuncts is
satisfied. Therefor the trace oa will be no longer a counterexample for premise 1 in subsequent
iterations.

We implemented our algorithm and compared it with an established learning-based method
that uses the acyclic rule ASYM-AG [CGP03]. Our experiments indicate that the assumptions
generated using the circular rule can be much smaller, leading to smaller verification problems,

both in the number of explored states and the analysis time.

1.1 Related Work

We discuss here some of the most closely related work.

Assume-guarantee reasoning. In the assume-guarantee paradigm a formula is a triple <
A > M < P >, where M is a component, P is a property, and A is an assumption about
M’s environment. The formula is true if whenever M is part of a system satisfying A, then
the system must also guarantees P. Assume guarantee reasoning can be applied through several
rules. The simplest such rule, called ASYM-AG. It checks if a system composed of components
M, and My satisfies a property P by checking that M7 under assumption A satisfies P and that

any system containing Mo as a component satisfies A. The rule can be formulated as follows:

Rule ASYM-AG:



(Premise 1) < A>M; <P >
(Premise 2) < true > My < A >
M ||My = P
In this rule, A denotes an assumption about the environment of M. For the use of the rule
ASYM-AG to be justified the assumption must be more abstracted than My but still reflect Ma’s

behavior. Several frameworks have been proposed to support this style of reasoning using the
rule ASYM-AG. However, their practical impact has been limited because they require non-
trivial human input in defining assumptions that are strong enough to eliminate false violations,

but that also respect appropriately the remaining system.

Learning Assumptions. Progress has been made on automating assumption generation for
the rule ASYM-AG using learning and abstraction refinement techniques. [CGPO03] proposed
a framework that fully automates assume-guarantee model checking of safety properties for
finite LTSs. They use the learning algorithm L* [Ang87], to compute the assumption. [GPBO0S5]
extended the framework of [CGPO03] to support a set of symmetric assume-guarantee rules that
are sound and complete. In both [CGP03] and [GPBO5] the learning-based frameworks are
guaranteed to terminate, either stating that the property holds for the system or returning a
counterexample if the property is violated.

It has been shown in [CK99] that compositional techniques are particularly effective for
well-structured systems that have small interfaces between components. The alphabets of the
assumption automata in both [CGP03] and [GPBO05] include all the actions in the component
interface. In a case study presented in [PGO6] it has been observed that a smaller alphabet
can be sufficient to prove the property. In this case, using smaller alphabet, assume-guarantee
reasoning achieved order of magnitude improvement over non-compositional model checking.

Motivated by the success of a smaller alphabet in learning, [GGPO7] and [CS07] proposed
automatic process of discovering a smaller alphabet that is sufficient to prove the property.
Smaller alphabets mean smaller interfaces, which may lead to smaller assumptions, and hence to
smaller verification problems. The process in [GGPO7] starts with a small subset of the alphabet
and refines it by adding actions to it as necessary until the required property is either shown to
hold or shown to be violated by the system. Actions to be added are discovered by an analysis
of spurious counterexamples obtained from model checking the components. [CSO7] proposed
minimizing the assumption alphabet by collecting all the spurious counterexamples encountered
so far and finding a minimal eliminating alphabet for them. This is done by reducing the problem
to Pseudo-Boolean constraints and solving them using SAT engines for linear constraints over
boolean variables. To reduce the assumption even further [BPGOS8] proposed to combine
interface alphabet refinement with orthogonal well-known technique, CEGAR (Counterexample
Guided Abstraction Refinement) [CGJT03]. Using CEGAR, assumptions in [BPG08] basically
start from small automata and split states iteratively based on spurious counterexamples that
result from the abstraction being too coarse.

The frameworks in [GPB05,PGB*08, GGP07,CS07, BPG08] use the L* [Ang87] automata

learning algorithm to iteratively compute assumptions in the form of deterministic finite-state



automata. Other learning-based approaches for automating assumption generation have been
suggested as well. The work in [CCF™10] considered a symbolic representation of assumptions
and models via Boolean functions. Accordingly they used the CDNF [Bsh95, CW12] learning
algorithm of Boolean function in order to learn appropriate assumptions. Another learning-based
approach proposed in [CFC*09] used an algorithm for learning a minimal separating automaton
as an assumption for rule ASYM-AG. This work uses the observation from [GMFOS] that on
the one hand an assumption A for the rule ASYM-AG includes all traces of M7, and on the
other hand, it is disjoint from all traces of M5 that violate P. The work in [GMFO08] finds the
separating automaton using a SAT solver while [CFCT09] finds it by reducing the problem to
the minimization problem of incompletely specified finite state machine.

Our search for minimal assumptions using SAT with an increasing bound is inspired
by [GMFO08]. However there, a single (separating) assumption is generated for the ASYM-AG

rule, while we generate two, mutually dependent assumptions for the CIRC-AG rule.

Circular Rules. Compositional proofs regarding systems of many components often involve
apparently circular arguments. That is, the correctness of component M must be assumed
when verifying component M5, and vice versa. Circular Rules were shown as valuable tools in
the verification of real-world systems in a number of case studies [McM98, HQR98, HQRO0O0,
Hoa69, TB97].

Several works [McM99a, NT00] have proposed sound compositional rules for systems
with many components that require circular reasoning principles in which properties of other
components need to be assumed in proving properties of individual components. An example of

a circular rule [McM99a] is given below.

Rule CIRC-1:

(Premise 1) M = g2 < g1
(Premise 2) Ms = g1 < g2
M||Ms = P

The rule CIRC-1 is not sound if we interpret < as logical implication. The apparent circular-
ity in rule CIRC-1 can be resolved by defining < with induction over time, in which case the rule
becomes sound. However, it has been shown in [NTOO] that it is incomplete. [NTOO] studied
the incompleteness of rule CIRC-1 and indicates that the reason for CIRC-1 incompleteness
is the absence of auxiliary assumptions. This work also suggested a generalization of the rule

CIRC-1 which is both sound and complete where h; and ho are auxiliary assumptions:

Rule CIRC-2:

(Premise 1) M = (ha A g2) < ((ha = g1) A h1)
(Premise 2) My = (hi Ag1) < ((h1 = g2) A ha)
My|[M; = G(g1 A g2)




Interestingly, [NTOO] also shows how proofs derived using the rule CIRC-2 can be translated
into proofs using the non-circular rule ASYM-AG. This suggests that circular reasoning is
redundant, at least in the case of this rule. However, while circularity is avoided, [NT00] shows
that the translation of such proofs is still defined with the < operator. That is, inductive reasoning
is still needed.

Most of the work on circular assume-guarantee reasoning has been concerned with soundness
only. Completeness has rarely been an issue, except for work on assume-guarantee proof
systems for deductive verification, see [IRABH"00]. In the context of compositional model
checking, [NT00] was the first work to investigate completeness of circular assume-guarantee
rules. It showed a number of circular rules to be incomplete and proposed generalizations which
ensure completeness, at the expense of introducing auxiliary variables.

In contrast, [Mai03] introduced the terms backward reasoning and forward reasoning.
Backward reasoning corresponds to AG rules in which we match the verification goal against
the conclusion of a proof rule and from the premises we can infer what subgoals needed
to be established. Example of such sound and complete rule can be found in [NTOO]. In
forward reasoning, we exploit prior knowledge about components that guarantee properties
based on other properties to infer that the system guarantees a conjunction of properties. For
example the rule presented in [McM99a] is a forward reasoning rule. The terms backward
completeness and forward completeness refer to completeness of backward reasoning AG rules
and to completeness of forward reasoning AG rules, respectively. The main result in [Mai03] is
that forward reasoning AG rules cannot be sound and complete.

The work in [LDD*13] addresses synthesizing automatically circular compositional proofs
based on logical abduction. A key difference is that they refer to a decomposition of a sequential

program, while we consider concurrent systems.

1.2 Organization

The rest of this thesis is organized as follows. In the next chapter we give the necessary
background for model checking of LTSs. In Chapter 3 we define the Inductive Properties and
formally establish the soundness and completeness of the circular rule CIRC-AG. In Chapter
4 we show how to check Inductive Properties, present the ACR algorithm that automates the
application of rule CIRC-AG and define Membership Constraints that are essential part of
the ACR algorithm. In Chapters 5 and 6 we then describe in detail the algorithms ApplyAG
and GenAssmp, respectively. These two algorithms are the main building blocks of the ACR
algorithm. In Chapter 7 we prove the correctness of the ACR algorithm and show that it produces
minimal assumptions. We provide an experimental evaluation of the proposed algorithm in

Chapter 8. Finally, we discuss some conclusions and future work in Chapter 9.
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Chapter 2

Preliminaries

In this chapter we provide the necessary background for our work. We introduce labeled
transition systems together with their associated operators, and also present how properties are
expressed and checked in this context.

Let Act be the universal set of observable actions and let 7 denote a local action, unobserv-

able to a component’s environment.

Definition 2.1. A Labeled Transition System (LTS) M is a quadruple M = (Q,aM,d,qo)

where:
e () is a finite set of states.
e oM C Act is a finite set of observable actions called the alphabet of M.
e ) CQx (aM U{r}) x Q is a transition relation.

® o € () is the initial state.

An LTS M = (Q,aM,d, qo) is nondeterministic if it contains a 7 transition or if there exist
(q,a,q"),(q,a,q") € 6 such that ¢ # ¢”. Otherwise, M is deterministic (denoted as DLTS).
We write §(q, a) =L if there is no ¢’ such that (¢, a,q’) € ¢. For a DLTS, we write §(¢,a) = ¢
to denote that (¢, a,q’) € 4.

Paths and Traces A trace o is a sequence of observable actions. For a trace o, We use o;
to denote the prefix of o of length i. A path in an LTS M = (Q,aM, 0, qp) is a sequence
P =qo,a0,q1,01 -+ ,an—1, qy Of alternating states and observable or unobservable actions of
M, such that for every k € {0,...,n — 1} we have (qx, ak, qx+1) € 0. The trace of p, denoted
o(p) is the sequence byb; - - - by of actions along p, obtained by removing from ag - - - a,,—1 all
occurrences of 7. The set of all traces of paths in M is called the language of M, denoted
L(M). A trace o is accepted by M if o € L(M). Note that L(M) is prefix-closed and that the
empty trace, denoted by e, is accepted by any LTS.

11
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Figure 2.1: LTSs describing the In and Out components and the Order property. aln =
{in, send, ack}, aOut = {out, send, ack} and aOrder = {send, ack}.

Note. A non-deterministic LTS can be converted to a deterministic LTS that accepts the
same language. However the deterministic LTS might have exponentially more states than the

non-deterministic LTS.

Projections For > C Act, we use oly to denote the trace obtained by removing from o all
occurrences of actions a ¢ Y. My is defined to be the LTS over alphabet X obtained by
renaming to 7 all the transitions labeled with actions that are not in X. Note that L(M |x) =
{ols | o€ LMY,

Parallel Composition Given two LTSs M; and M> over alphabet o.M and oMy, respectively,
their interface alphabet oI consists of their common alphabet. That is, ol = aM; N aMs. The
parallel composition operator || is a commutative and associative operator that combines the
behavior of two components by synchronizing on the actions in their interface and interleaving
the remaining actions.

Let My = (Q1, aMy, 01, qo,) and My = (Q2, aMy, 02, qo, ) be two LTSs. Then M || M, is
an LTS M = (Q, aM, 0, qp), where Q = Q1 X Q2, 90 = (qo,, q0,), M = aM; U aM>, and
0 is defined as follows where a € aM U {7}:

e if (q1,a,q)) € 01 fora & aMy, then ((¢1,q2), a, (¢}, q2)) € ¢ for every g2 € Qa,
e if (q2,a,q}) € 62 fora & aMy, then ((q1,q2), a, (q1,¢5)) € 0 forevery ¢1 € Q1, and
e if (q1,a,q}) € 61 and (g2, a,qh) € da for a # 7, then ((q1, ¢2), a, (¢}, ¢5)) € 6.

Lemma 2.2. [CGP03] For every t € (aM; U aMs)*, t € L(M;||Ms) if and only if tlanr, €
L(My) and t}om, € L(Ms).

Example 1. Consider the example in Figure 2.1. This is a variation of the example of [CGP03]
modified to illustrate circular dependencies. LTSs In and Out have interface alphabet { send, ack}.
Their composition In||Out is an LTS where the transition from state 0 to 1 in component In
(labeled with ack) never takes place, since there is no corresponding matching transition in
component Out. Similarly the transition from state 2 to 3 in component Out (labeled with send)

never takes place. As a result, In||Out simply repeats the trace (in, send, out, ack).

12



Properties and Satisfiability A safery property is defined as an LTS P, whose language L(P)
defines the set of acceptable behaviors over the alphabet o P of P. An LTS M over aM O aP
satisfies P, denoted M |= P, if Vo € L(M).0lop € L(P). To check a safety property P, its
LTS is transformed into a deterministic LTS, which is also completed by adding an error state
7 and adding transitions from every state g in the deterministic LTS into 7 for all the missing
outgoing actions of ¢; the resulting LTS is called an error LTS, denoted by P,,... Checking that
M = P is done by checking that 7 is not reachable in M||P,,,.

A trace o € aM* is a counterexample for M = P if o € L(M) butol.p & L(P).

The Order LTS from Figure 2.1 depicts a safety property satisfied by In||Out. Order
is defined over alphabet {send, ack}. Note that neither In, nor Out, satisfy this property
individually. For example, the trace (in, send, ack, ack) of In is a counterexample for In |=
Order.

13
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Chapter 3

Circular Assume-Guarantee

Reasoning

In this chapter we formally establish the soundness and completeness of the circular rule CIRC-
AG introduced in Chapter 1. We start by defining inductive properties. CIRC-AG uses formulas
of the form M = A > P, where M is a component, P is a property, and A is an assumption
about M’s environment. To ensure soundness of the circular rule the assume-guarantee formula
is defined using induction over the length of finite traces.

Soundness states that if there exist LTS assumptions g; and g5 that satisfy all premises of
CIRC-AG, then M;||M> = P. Completeness states that if M;||My = P holds we can always
find g1 and g2 such that the premises of the rule hold.

3.1 Inductive Properties

Definition 3.1 (The > operator). Let M, A and P be LTSs over aM, A and P respectively,
such that aP C aM. We say that M = A P holds if Vk > 1 Vo € (aM U aA)* of length k
such that oo € L(M), if 0x_1laa € L(A) then olop € L(P).

Intuitively, the formula states that if a trace in M satisfies the assumption A up to step k& — 1,
it should guarantee P up to step k. As an example consider the LTSs In from Figure 2.1 and
g1 and g2 from Figure 3.1. Then In = g2 > g1. On the other hand, In [~ g1 > g2 since the
trace 0 = (in, send, ack,ack) € L(In) is such that o;_1lag, = (send,ack) € L(g1), but

0lag, = (send, ack,ack) & L(g2). o is therefore a counterexample for In = g1 > go.

Definition 3.2 (Counterexample for M = A P). A trace 0 € (oM U aA)* of length k is a
counterexample for M |= A P if olan € L(M) and 0—1laa € L(A) but olap & L(P).

3.2 Soundness and Completeness of Rule CIRC-AG

To establish the soundness of rule CIRC-AG we have the following requirements. M7, M> and
P are LTSs where aP C aM; U aMs. Moreover, g1, g2 are LTSs, used as assumptions in the

15



rule, such that aM; NaP C ag; and aMs NaP C ags.
The following lemma is used in the proof of soundness of the rule, but it also provides
some insight as to how g; and g3 should be constructed. We will use this insight, and insight

from Lemma 3.4, in our algorithm.

Lemma 3.3. Let g1 and g2 be LTS assumptions successfully used in CIRC-AG. Then M || M, =
g1llg2-

Proof. Let g; and go be assumptions successfully used in the CIRC-AG rule. Assume, by
contradiction, that M ||Ma ~ g1]|g2. Then, let 0 € (aM; U aMs)* be a shortest trace such
that o € L(M;||Ma) but o0l (ag,uag.) & L(91]l92), €. 0lag, & L(g1) or olag, & L(g2) (by
Lemma 2.2). Without loss of generality assume that (1) 0lag, & L(g1). Note that o # € since
€ € L(A) for every LTS A. In addition o € L(M;||M>) implies in particular that (2) olonr, €
L(My). Since o is the shortest trace refuting the relation, o|5|—1}(ag1uag2) € L(91l/g2), and
in particular, (3) 0|5|—1}ag, € L(g2). Let 0’ be 0l (anrUag Uags)- Note that the last letter of
o has to be in agy U avgs (otherwise, 0,1 is a shorter trace such that o\, € L(M;||Ms)
but 05 —1d(agiUags) = Th(agiuags) & L(g1]]92)). Therefore, o’ is also nonempty. Moreover, o
"g/|71. By (2) we get that o’/ | o1,
is a trace of M7, whose prefix U(U,‘_liagz = Olg|—1}ags 18 in L(g2) (by (3)), but by (1),
0'lagi = 0lag, is notin L(gy). This contradicts the fact that My = g2 > g1. O

and o’ share their last action and Olo|-14(aMiUagiUags) = O

Note that M;||M2 = ¢1]|g2 implies that M ||Ms = ¢1 and M;||Ma = g2. Therefore,
Lemma 3.3 states that in a successful application of CIRC-AG, g; overapproximates the part of
M restricted to the composition (or if we ignore the different alphabets — intersection) with the

other component, as opposed to overapproximating M; as a whole.

Lemma 3.4. Let g1 and go be LTS assumptions successfully used in CIRC-AG, such that
aM; N aP C ag;. Then M||g2 = P and Msl||g1 = P.

Proof. To prove that M;||g2 = P, let g1 and g2 be LTS assumptions successfully used in
CIRC-AG. Assume, by way of contradiction, that M ||g2 [~ P. Then, there is a trace 0 €
L(M]|g2) such that 0lop ¢ L(P). By Lemma 2.2 we have that (1) olan, € L(M;)
and 0lag, € L(g2). Since go is an LTS (and hence prefix-closed), o5|—1}ag, € L(g2) as
well. By premise 1, My = g2 > g1. It follows that (2) 0lag, € L(g1). By (1) and (2) and
by Lemma 2.2 we get that 0)ag,uag. € L(g1||g2). However, since olop ¢ L(P) (Where
aP C ag; U ags), we conclude that g1||g2 [~ P, in contradiction to premise 3.

The proof of Ma||g1 = P is similar to the proof of M ||g2 = P. O

The next lemma is used in the completeness proof of CIRC-AG. It shows that under certain
restrictions on arg and ago, it is possible to verify and falsify properties of the composition of
M and M, by considering their projections on gy and ago. These restrictions guide us in the

choice of the alphabets of the assumptions, ag; and ags, used by our algorithm.
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Lemma 3.5. Let My, Mo, P be LTSs over aMy,aMs,aP respectively. Let agy 2 ol U
(aMiNaP) and aga O ol U(aMaoNaP). Then M || My = P ifand only if Milag, || Malag, =
p.!

Proof. (<=:) We prove the implication from Mi]ag, ||M2lag, = P to Mi||Ms |= P. Sup-
pose Milag ||Maolag, = P. Let agy = agi N aM; and agh = ags N aMy. Clearly,
Milag = MQOL% and Malag, = Malag,. Therefore also Milqg HMgiagé = P. To show
that M, ||Ms = P, consider a trace o € L(M;||Ms). We show that ol,p € L(P).

Let o' = 0l(agiuag,)- Then o' € L((Mi||M2)dag/uag,)- Further, since ag; C alM
and agy C oMy, we have that L((M1]|Ma)lagiuag,) S L(Milag,||M2lag,). Therefore,
o' € L(Milag,[|Malag,), hence o'op € L(P). In addition, since aP C ag) U ag; (since
agy 2 aM; N aP and agi O aMsy N aP) it follows that ol,p = o'|,p and therefore
olap € L(P).

(=) Suppose M ||M> = P. We show that M |ag, ||M2lag, = P. Let agy = agiNaM;
and agh = aga N aMs. As before, Milag, = Milog and Malag, = Mal,g,. Therefore it
suffices to show that M1,y |[Malsg, = P. Consider a trace 0 € L(Milag, ||[Malag,) (e
o € (ag} Uagh)*). We show that o,p € L(P).

Recall that agf C aM; and agh C alMs. Further, since agj N aMy = ol and also
agy NaMy = al, we have that L(Midag || Malag) = L((Mi]|M2)daguag,)- Therefore,
o € L((M1|[M2)dag;uag,)- This means that there exists o' € (aM; U aM2)* such that
o' € L(M|[M2) and 0" | oy Uag, = - Since Mi[|Ms |= P, it follows that 0’| p € L(P). As
before, P C ag) U agh. Therefore, 0’| op = 0lap and we conclude that o} ,p € L(P). O

Theorem 3.6. The Rule CIRC-AG is sound and complete.

Proof. We start by proving the soundness of the rule CIRC-AG and then turn to proving its

completeness:

e Soundness: We show that if there exist LTS assumptions g; and go that satisfy all
premises of CIRC-AG, then M;||M> = P. Assume by way of contradiction that the
premises of the CIRC-AG rule hold for some g; and go but M ||Ms [~ P. Consider a
counterexample trace o € (M U aMs)* for My||My = P, i.e. o is a trace of M||M»
that violates the property P. In other words o),p ¢ L(P). By Lemma 3.3, we know that
M||Ms = g1]|g2. Therefore, 0lag,uags € L(91]|g2). In addition, P C g1 U ago.
It follows that 0’ = 0 (4g,Uag,) Satisfies the following conditions: ¢’ € L(g1|g2) and
o'lap = 0lap & L(P). But premise 3 states that such ¢’ does not exist. Hence we get a

contradiction.

e Completeness: We show that M || M2 |= P implies that there exist assumptions g1, g2
over the alphabets ag; = aM1N(aMyUaP) and agy = aMan(aMiUaP) respectively

"For the implication from M1 |ag, || M2)ag, = P to M1|| M2 = P it suffices to require that cugs O aM7 NP
and age O aMs NaP.
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{ack,send}

ack

) OO0, A
send 0 send c send a

Oe30, locksend) w
g1 g2 A

Figure 3.1: LTSs describing the assumptions g; and go generated by ACR for verifying
In||Out = Order from Figure 2.1 using the rule CIRC-AG , and the assumption A gen-
erated with L* for verifying In||Out = Order from Figure 2.1 using the rule ASYM-AG.
agr = age = aA = {send,ack}. g1 and g9 satisfy the three premises of the rule CIRC-AG.
Therefore, we can conclude that In||Out = Order.

that satisfy the premises of the rule. To do so, we consider g1 = Mjlag, and g2 =
M5 g, Clearly premise 1 and 2 are satisfied by these g1 and go since M; = A M;l g,
for any A. It remains to show that premise 3 holds, i.e. g1||g2 = P. Since M;||M2 = P
and ag; 2 ol U (aM; N aP), the latter follows from Lemma 3.5. d

The completeness proof also shows that for a successful application of the rule it suffices to

consider assumptions ¢; and g over ag; = aMiN(aMyUaP) and age = aMoN(aMiUaP).

Example 2. Consider our running example (Figure 2.1), and consider the assumptions g; and
g2 depicted in Figure 3.1, over alphabet ag; = aln N (aOut U aOrder) and ags = aOut N
(aIn U aOrder). In both cases ag; = {send, ack}. As stated above, In |= g2 > g1. Similarly,
Out [= g1 > go. Moreover, g1||g2 = Order. It follows that In||Out = Order can be verified
using CIRC-AG with g; and go as assumptions.

18



Chapter 4

Automatic Reasoning with CIRC-AG

In this chapter we describe our ACR iterative algorithm to automate the application of rule CIRC-
AG by automating the assumption generation. We also introduce an algorithm for checking
inductive properties that is used for checking the first two premises of rule CIRC-AG. Finally, we
formally define membership constraints that are used in our algorithm for refining the generated

assumptions.

4.1 Checking Inductive Properties

We first introduce a simple algorithm CHECKINDUCTIVEPROPERTY (see Algorithm 4.1) that
checks if an inductive property of the form M = A > P, where P C aM, holds. If the
property does not hold, it returns a counterexample. To do so, we consider the LTS M || A|| Py
We label its states by (parameterized) propositions err,, where a € aP. (s, 54, Sp) is labeled
by err, if sp; has an outgoing transition in M labeled by a, but the corresponding transition
(labelled by a) leads to 7 in P,,,.. We then check if a state g labeled by err, is reachable in
M]||A||P.yr. If so, then the algorithm returns the trace of a path from ¢ to ¢ extended with
action a as a counterexample. Intuitively, such a path to ¢ represents a trace in M that satisfies

A (because it is a trace in M||A) such that if we extend it by a we get a trace in M violating P.

4.2 ACR Algorithm Overview

In this section we present an iterative algorithm to automate the application of the rule CIRC-AG
by automating the assumption generation. Previous work used approximate iterative techniques
based on automata learning or abstraction refinement to automate the assumption generation in
the context of acyclic rules [CGP03,PGB*08, BPG08, CCST05, AMNO5, CCF10, CFC*09].
A different approach [GMFO08] used a SAT solver over a set of constraints encoding how the
assumptions should be updated to find minimal assumptions; the method was shown to work
well in practice, in the context of the same acyclic rule. We follow the latter approach here and
we adapt it to reasoning for cyclic rules and checking inductive assume-guarantee properties. As

mentioned, this is challenging due to the mutual dependencies between the two assumptions that
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Algorithm 4.1 Checking if M = A P

1: procedure CHECKINDUCTIVEPROPERTY (M, A, P)
2: L=(Q,aL,é,q)
3: L + M||A||Per
4: for each (sy7, s4,sp) in @ do
true a € aP Aoy (sy,a) ZL Nop(sp,a) =7
> erra(sar, 4, 5p) = { false otherwise | 7 | )
6: end for
7: if (exist ¢ € Q and a € P s.t. ¢ is reachable from qg in L and err,(q) = true) then
8 Let p be a path leading from gy to ¢ in L
9 return “o(p)a is a counterexample for M = A> P~

10: else

11: return “M = A> P”
12: end if

13: end procedure

we need to generate. We achieve this by constraining the assumptions with boolean combinations
of requirements that certain traces must or must not be included in the language of the updated
assumptions.

Algorithm 4.2 describes the overall flow of our Automated Circular Reasoning (ACR)
algorithm for checking M; || M |= P using the rule CIRC-AG.

We fix the alphabet over which the assumptions g; and g» are computed to be ag; =
aM; N (aMy U aP) and agy = aMy N (aM; U aP). By the completeness proof of the rule,
this suffices.

ACR maintains a set C' of membership constraints on g; and go. At each iteration it
calls GENASSMP (described in Chapter 6) to synthesize, using a SAT solver, new minimal
assumptions g1 and go that satisfy all the constraints in C. GENASSMP also receives as input a
parameter k£ which provides a lower bound on the total number of states in the assumptions we
look for. k has the property that any pair of LTSs whose total number of states is smaller than
k does not satisfy the set of constraints C'. The algorithm then invokes APPLYAG (described
in Chapter 5) to check the three premises of rule CIRC-AG using the obtained assumptions g;
and go. APPLYAG may return a conclusive result: either “M;||Ms = P” or “M; || My [~ P,
in which case ACR terminates. If no conclusive result is obtained, it means that g; and g3 do
not satisfy the premises of the rule. Further, the counterexamples demonstrating the falsification
of the premises are not suitable for concluding M || My £ P, i.e. they are spurious. In this case
APPLYAG returns “continue” together with new membership constraints that determine how the
assumptions should be refined. The new constraints are added to C. Note that since the set C'
of constraints is monotonically increasing, any new pair (g}, g5) that satisfies it also satisfies
previous sets of constraints. The previous set was satisfied by assumptions whose total size is
|g1]+ | g2| but not smaller. Thus, we should start our search for new (¢}, g5) from k = |g1|+ |g2|

number of states. k is updated accordingly (line 6).

Example 3. The assumptions g; and go from Figure 3.1 used to verify In||Out = Order with
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Algorithm 4.2 Main algorithm for automating rule CIRC-AG for checking M;||Ms |= P

1. procedure ACR(M;, Ms, P)

2 Initialize: C =0,k =2

3 repeat

4: (91,92) =GENASSMP(C, k)

5: (C,, Result) :APPLYAG(Ml, Ms, P, g1, gg)
6: C=CUClk=|nl+lg

7 until (Result # “continue”)

8 return Result

9: end procedure

CIRC-AG were obtained by ACR in the 7th iteration. The LTS A from Figure 3.1 describes
the assumption obtained with the algorithm of [CGP03], which is based on the acyclic rule
ASYM-AG and uses L* for assumption generation. Notice that both g; and g2 are smaller
than A (and our experiments show that they can be much smaller in practice). The reason
is that, after a successful application of CIRC-AG, ¢||g2 overapproximates M;||Ma. This
means that each g; overapproximates the part of M; restricted to the composition with the
other component. For example g; does not include the traces leading to state 1 from /n since
they do not participate in the composition. Similarly go does not include the traces leading to
state 3 in Out. In contrast, for the acyclic rule, the assumption A has to overapproximate Ms
(Out) as a whole. Therefore, CIRC-AG can result in substantially smaller assumptions, as also

demonstrated by our experiments.

4.3 Membership Constraints

Membership constraints are used by our algorithm to gather information about traces that
need to be in L(g;) or must not be in L(g;), for i = 1,2. Thus they allow us to encode
dependencies between the languages of the two assumptions L(g;) and L(g2). Recall that
agr = aMy N (aMy U aP) and agy = aMs N (M7 U aP). The constraints are defined by

formulas with a special syntax and semantics, as defined below.

Definition 4.1 (Syntax). The set of membership constraints over (agy, ags) is defined induc-

tively as follows:

e For 01 € (ag1)* and o2 € (ag2)* the following are atomic membership constraints:
+(Ulv 1); _(017 1)9 +(02a 2)9 _(UQa 2)

e if ¢; and ¢y are membership constraints, then (¢ A ¢2) and (¢1 V ¢2) are membership

constraints.

Intuitively +(o;, ¢) for i=1,2 constrains L(g;) to contain ¢;. Similarly —(o;, ) for i=1,2 con-
strains L(g;) not to contain o;.
Given a membership constraint formula ¢, Strings(c, i) is the set of prefixes of all o €

(vg;)* such that +(o,4) or —(o, 1) is an atomic formula in c.
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Definition 4.2 (Semantics). Let ¢ be a membership constraint over («gi, ags), and let A; and
Ay be two LTSs. The satisfaction of ¢ by (A1, A2), denoted (A;, As) = cis defined inductively.
(A1, A2) | cif and only if «A; = ag; and ady = ago, and in addition:

e if c is an atomic formula of the form + (o, ¢) then o € L(A;).

e if ¢ is an atomic formula of the form — (o, i) then o & L(A4;).

e if cis of the form (c1 A ¢2) then (A, A2) = c1 and (Aq, A2) = ¢ .
e if cis of the form (c1 V ¢2) then (A1, A2) |= c1 or (A1, A2) = ca.

For a set C' of membership constraints over («gy, ags), we say that A; and As satisfy C'if
and only if for every ¢ € C, (41, 42) = c.

For example, a membership constraint of the form +(o1,1) V — (o2, 2) requires that o1 €
L(g1) or o2 ¢ L(g2) (or both). As will be shown in section 5.2 our algorithm produces
membership constraints formulas over aug; = aMq N (aMy U aP) and agy = aMs N (aM; U
aP).
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Chapter 5

APPLYAG Algorithm

This chapter is devoted to the description of APPLYAG. Given assumptions gi,g2, APPLYAG
(see Algorithm 5.1) applies assume-guarantee reasoning by checking the three premises of
rule CIRC-AG using g; and go. In the algorithm we check premises 1, 2, 3 in this order but
in fact the order of the checks does not matter and the checks can be done in parallel. If all
three premises are satisfied, then, since the rule is sound, it follows that M ||Ms = P holds
(and this is returned to the user). Otherwise, at least one of the premises does not hold. Hence
a counterexample o for (at least) one of the premises is found. APPLYAG then checks if the
counterexample indicates a real violation for M;||M; |= P, as described below. If this is the
case, then APPLYAG returns M || My = P. Otherwise APPLYAG uses the counterexample to
compute a set of new membership constraints C' and returns “continue” (note that in the first

two cases an empty constraint set is returned).

Notation. For readability, in the pseudo-code of APPLYAG (and UPDATECONSTRAINTS)
we use o) € L(A) and 0| ¢ L(A) as a shorthand for 0,4 € L(A) and 0loa & L(A),
respectively.

5.1 Checking Validity of a Counterexample

Given a counterexample o for one of the premises of the CIRC-AG rule, APPLYAG checks if o
can be extended into a trace in L(M;||Mz) which does not satisfy P. This check is performed
either by APPLYAG directly (if premise 3 fails: in lines 9-16 of APPLYAG) or by algorithm
UPDATECONSTRAINTS (if one of the first two premises fails). In essence, a counterexample o
isreal if 0lag, € L(Milag,), 0lag € L(Malag,) and olop & L(P). This is also stated by
the following lemma, which follows from Lemma 2.2 and Lemma 3.5.

Lemma 5.1 [fo)ag, € L(Milag): 0bags € L(Malag,) andolap & L(P), then M || My -

P. Moreover, o can be extended into a counterexample for M ||Ms |= P.

Proof. The first two checks ensure that 0| ag,uag, € L(Milag, ||M2dag, ). and since agi, aga 2
al this ensures that 0)ag,uag, € L((M1]|M2)lagiuag,)- Since aP C agy U ags, the third
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check ensures that (0| ag,uags )daP = 0lap & L(P). Therefore 0| ag,uags, i a counterexample
for Milag, || M2lag, = P, and by Lemma 3.5, 0} ag,uag. can be extended into a counterexam-
ple for M ||M; = P. 0

For example, in line 10 of Algorithm 5.1, 0 € (ag1 U ags)* is a counterexample for
premise 3, hence ol.p ¢ L(P). It therefore suffices to check if 0lng, € L(Milag,) and
0lag, € L(Malag,) in order to conclude that a real counterexample exists (line 11). Similarly,
in Algorithm 5.2, oa € (aM; U ag;)* is a counterexample for premise 7 for ¢ € {1, 2}, hence
oalanm; € L(M;), and since ag; C M, also oalag, € L(Milag,). Inline 3, the algorithm
then checks if, in addition, calag, € L(Mjlag,) and calep & L(P). If these conditions hold

then by Lemma 5.1 the counterexample is real (line 5).

5.2 Computation of New Membership Constraints based on Coun-

terexamples

When the counterexample found for one of the premises does not produce a real counterexample
for M;|| My = P, then APPLYAG (or UPDATECONSTRAINTS) analyzes the counterexample
and computes new membership constraints to refine the assumptions. In essence, these con-
straints encode whether the counterexample trace (or a restriction of it) should be added to or
removed from the languages of the two assumptions such that future checks will not produce
the same counterexample again.

If premise 3 does not hold, i.e. g1||g2 = P and the reported counterexample o is found not to
be real then it should be removed from L(g; ) or from L(g2) (in this way the trace will no longer
be present in the composition g;||go for the assumptions computed in subsequent iterations).
Therefore in line 14, APPLYAG adds the corresponding constraint (—(olag,,1) V —(0lags,2))
to C.

If either premise 1 or 2 does not hold, i.e. M; [~ g; > g;, then the analysis of the coun-
terexample o;a; (for i=1 or 2) and the addition of constraints (if needed) are performed by
UPDATECONSTRAINTS (see Algorithm 5.2). Specifically, in this case o;a; should be added
to L(g;) or its prefix o; should be removed from L(g;) (where j # ). In both cases, this
ensures that checking M; F~ g; > g; in subsequent iterations will no longer produce the same
counterexample (see Definition 3.1).

We add this constraint in line 18 of Algorithm 5.2, where C'is updated with (—(0lag;,7) V
+(0alag,, ). Although this simple refinement would work for all cases, note that Algorithm 5.2,
uses a more involved refinement. The reason is that we exploit the properties stated in Lemma 3.3
and Lemma 3.4, to detect more elaborate constraints; using the lemma and analyzing both o
and oa allows us to accelerate the refinement process.

For example, in line 25, the subconstraint +(calag,,7) is conjoined with —(calag,,j)-
This is because Lemma 3.3 establishes that M;||g; |= P is a necessary condition for a successful
application of CIRC-AG. Therefore since calag, € L(M;lag) and calap ¢ L(P), then

0alag; mustnotbe in L(g;). Explanations of other cases appear as comments in the pseudocode.
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Algorithm 5.1 Applying CIRC-AG with g; and g9, and constraint updating.

1: procedure APPLYAG(M;, Ms, P, g1, g2)

2 if M, b&ggbgl then

3 Let 01a; be a counterexample for My [~ g2 > g1

4 return UPDATECONSTRAINTS(1, 2, My, Mo, P,o1a1)
5: else if Mo 175 g1 > g2 then
6
7
8
9

Let 02a5 be a counterexample for My [~ g1 > go

return UPDATECONSTRAINTS(2, 1, My, M7, P, 02a2)
else if g1||g2 = P then

Let o be a counterexample for g1||g2 = P

10: if (o] € L(M1 + Oégl) && o |e L(M2 + Oégg)) then
11 return ((), “M || My £~ P”)

12: else o & L(Milag ||Madag,), ol & L(P)

13: // Remove o from g; or remove o from go

14 C = {(~(0bagi 1) V ~(0dags, 2))}

15: return (C, “continue”)

16: end if

17: else

18: return ((), “M; || My = P”)

19: end if

20: end procedure

{ack,send} send
g§6) géb‘)

Figure 5.1: LTSs produced in the 6th iteration of ACR.

Example 4. Consider the LTSs from Figure 5.1, produced in the 6th iteration of ACR. When
trying to apply CIRC-AG with these assumptions, APPLYAG obtains the trace (send, out, send)
as a counterexample for Out = g§6) > g£6) (premise 2).

Since (send,out,send)lag, ¢ L(Inlag, ), the counterexample turns out to be spuri-
ous, and after checking the additional conditions in UPDATECONSTRAINTS, —((send), 1) V
(+((send, send),2) N —((send, send), 1)) is produced in line 25 as a membership constraint

in order to eliminate it in the following iterations.

In the following we state the progress obtained by assumption refinement, based on spurious

counterexamples.

Lemma 5.2. Let o be a spurious counterexample obtained for premise i € {1,2,3} of CIRC-
AG with respect to assumptions g1, go and let C be the updated set of constraints. Then any
pair of LTSs gy and ¢ such that (g}, ¢5) |= C will no longer exhibit o as a counterexample for
premise 1 of CIRC-AG.
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Algorithm 5.2 Computation of constraints based on a counterexample for M; |= g; > g;.

1: // oa is a counterexample for M; |= g; > g;, i.e. oal € L(M;),0l € L(g;),0al & L(g:)
2: procedure UPDATECONSTRAINTS(¢, J, M;, M;, P, oa)
if cal € L(M;jlag,) and oal ¢ L(P) then

4
5
6:
7
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:

19:
20:
21:
22:
23:
24:
25:

26:

Il oal € L(Milag,||Mjlag;) and cal & L(P)
return (0, “M;||M; [~ P”)

if oal € L(Mjlag,) and 0al € L(P) then

/1 Add oa to both g; and g; to ensure M lag, ||Ma2lag, = 91//g2 (Lemma 3.3)
C = {+(0alag;, 1), +(0—a‘L069j7j)}

ifoal ¢ L(Mjlag,) and 0] € L(Mjlag,) and o) & L(P) then

/o) € L(Milog||Mjlag,) and o) & L(P)
return (0, M;||M; {~ P)

if cal & L(Mjlag,) and 0] € L(M;jlag,) and 0] € L(P) then

Il o € L(Milag, ||M2lag,), thus o cannot be removed from g; ( Lemma 3.3)
/I Add oa to g;.

C= {—i—(UCL\Lagi, l)}

if cal & L(Mjlag,) and 0| & L(M;lag,) and cal € L(P) then

// Remove o from g; or add oa to g;

C = {(~(0lag;,§) V +(0alag,i)}

if oal ¢ L(Mjlag,) and 0| & L(Mjlag,) and cal ¢ L(P) and o ¢ L(P) then

// Remove o from g; (Because of Lemma 3.4)

C= {_(Uiagjaj)}

ifoal ¢ L(Mjlag;) and 0] & L(Mjlag,;) and 0al ¢ L(P) and o € L(P) then

// Remove o from g; or (add oa to g; and remove it from g;)
// In the latter case removal of oa from g; is due to Lemma 3.4

C= {(_(Uiagjaj) \ (+(0a¢a9wi) A _(Uaiagmj)))}

return (C, “continue”)
27: end procedure

Proof. Let o be a spurious counterexample that has been produced by checking premise ¢ of
rule CIRC-AG:

e i€ {1,2}: When o = ¢’a is a spurious counterexample for premise i where i € {1, 2}

then one of the following constraints is added by Algorithm 5.2 to the updated set of

constraints C";

¢ =+(0'alag;, 1) N +(0'alag;, j) in Algorithm 5.2, line 8.

¢ =+(0'alag,, 1) in Algorithm 5.2, line 15.

c=—(0"}ag;,J) in Algorithm 5.2, line 21.

c=—(0"}ag;,J) V +(0'alag,, ) in Algorithm 5.2, line 18.

c=—(0'}ag;,J) V (+(0'alag;, 1) A —(0'alay,, j)) in Algorithm 5.2, line 25.

Since (g7, ¢g5) satisfies C' it implies that (¢, g5) satisfies c as well. It is easy to see that

since ¢ is one of the above constraints, adding it to C' guarantees that ¢’a can no longer
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be a counterexample for premise ¢ with the assumptions ¢/, g5.

e ¢ = 3: o is a spurious counterexample that has been produced from checking premise 3 in
CIRC-AG. Thus, the constraint ¢ = —(0lag,, 1)V —(0lag,, 2) is added by Algorithm 5.1
to the updated set of constraints C' (Algorithm 5.1, Line 14). Since (¢}, g5) satisfies C' it
follows that (g7, g5) satisfies c as well. It implies that 0., is notin L(g]) or olag, is
not in L(g}) therefore, o can not be a counterexample for premise 3 when applying the
CIRC-AG rule with the assumptions (g}, g5). O

Corollary 5.3. Any pair of LTSs gy and g} such that (¢}, q5) | C is different from every
previous pair of LTSs considered by the algorithm.

The following two lemmas state that the added membership constraints do not over-constrain
the assumptions. They ensure that the “desired” assumptions that enable to verify (Lemma 5.4)

or falsify (Lemma 5.5) the property are always within reach.

Lemma 5.4. Suppose Mi||Ms = P and let g1 and g3 be LTSs that satisfy the premises of rule
CIRC-AG. Then (g1, g2) satisfy every set of constraints C produced by APPLYAG.

Proof. To prove the lemma, we need to show that every g1, go that satisfy the premises of rule
CIRC-AG satisfy all the forms of constraints that are being produced by both Algorithm 5.1 and
Algorithm 5.2.

Algorithm 5.1: in line 14, the constraint is of the form ¢ = (—(0lag,,1) V —(0lag.,2)). By
reaching line 14, it follows that o, p is not in L(P). We prove by way of contradiction

that (g1, g2) = c. Suppose that (g1, g2) % c then 0l (qg,Uag,) is in L(g1]|g2) but olqp is
not in L(P). Hence, we have a contradiction to the fact that g;||g2 = P.

Algorithm 5.2: For every (7, j) in {(1,2),(2,1)} :

e inline 8 we add the following two constraints +(0alag,, ) and +(calag,, j). When
Algorithm 5.2 reaches line 8, we know that cal € L(Milag, ||M2lag,). Therefore,
by Lemma 3.3 we get that oa) € L(g;) and oal € L(g;). Hence, it follows that
(91, 92) | +(0alag;, ) and (91, 92) = +(0alag; 7).

e in line 15 we add the following constraint +(calag,,%). When Algorithm 5.2
reaches line 15, we know that (1) cal € L(M;), ol € L(M;) and 0| € L(Mjlay;).
Assume by way of contradiction that (g1, 92) ¥ +(0alag,,?), it follows that
oal & L(g;). By (1) we get that oalan, is a trace of M;, whose prefix olay;
isin L(g;) (by (1) and Lemma 3.3), but 0al,g, is not in L(g;). This contradicts the
fact that the premise M; = g; < g; holds.

e in line 18 we add a constraint of the form ¢ = (—(0lag;,J) V +(0alay;,1)). We
know that calqnys, is a trace of M;. Assume by way of contradiction that (g1, g2)
does not satisfy c, then we get that o'l is in L(g;) and calag, is not in L(g;).
This contradicts the fact that the premise M; = g; > g; holds.
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e in line 21 we add a constraint of the form ¢ = —(0lay;,j). When Algorithm 5.2
reaches line 21 we know that (1) olqany, is in L(M;) but olap is not in L(P).
Assume by way of contradiction that (g1, g2) does not satisfy ¢ then we get that
(2) 0lag, isin L(g;). By (1) and (2) we get that o is in L(M;||g;), which contra-
dicts Lemma 3.4 that states M;||g; = P.

e in line 25 we add a constraint of the form ¢ = (—(0lag;,7) V (+(0alag,,i) A
—(0alag;,7))). Assume by way of contradiction that (g1, g2) does not satisfy c, it
follows that (1) 0y, is in L(g;) and calag, is notin L(g;) or calag, isin L(g;).
We know that oalqny, is in L(M;) and that calqp is notin L(P). g1 and g satisfy
premise (i) of rule CIRC-AG then by (1) we get the oalqg, is in L(g;), it implies that
oalag; isin L(g;) (Again by 1). Therefore oa is in L(g1||g2) and this contradicts
the fact the g; and go satisfy premise (3) of rule CIRC-AG. ]

Lemma 5.5. Let g1 = Milag, and go = Malag,. Then (g1, g2) satisfy every set of constraints
C produced by APPLYAG.

Proof. To prove the lemma we need to show that (M1lag,,M2lag,) satisfies all the forms of
constraints that are being produced by Algorithm 5.1 and Algorithm 5.2.

First note that M;].g, and Mg, satisfy premises 1 and 2 of CIRC-AG. Furthermore,
M||My = Milag, ||M2lag,. Therefore, similarly to the proof of Lemma 5.4, we get that
Milag, and Malag, satisfy all constraints produced in Algorithm 5.2, lines 8, 15 and 18
(These constraints do not require the assumptions to satisfy the third premise of rule CIRC-
AG). It remains to show that M7 ].4, and M|, satisfy the constraints that are produced in
Algorithm 5.1, line: 14 and Algorithm 5.2, lines: 21, 25.

Algorithm 5.1: in line 14, we add a constraint of the form ¢ = (—(0lag,, 1) V —(0ldag.,2)).
If M;||M3 }= P then by Lemma 5.4 and by Lemma 3.5 we get that (Milag,, Milag,)
satisfies c. Otherwise M || My = P, suppose that (Milag,, Milag,) does not satisfy c,
it follows that (0| € L(Milag,) and o) € L(M2lag,)). It implies that the condition in

line 10 holds and this contradicts the fact that ¢ has been added as a constraint.
Algorithm 5.2: For every (i, j) in {(1,2),(2,1)} :

e in line 21, we add the constraint of the form ¢ = —(0lag,,j). Suppose that
(M1lag, s Malag,) does not satisfy c, it follows that 0] € L(M;lag,), which
means that the condition in line 19 does not hold. This contradicts the fact that ¢ has

been added as a constraint.

e in line 25, we add a constraint of the form ¢ = (—(0lag,,J) V (+(0alag,, i) A
—(oalag;,7))). Suppose that (M1 lag,, M2lag,) does not satisfy c then it follows
that 0)qg, is in L(Mjlag, ). Thus, the condition in line 22 does not hold and this
contradicts the fact that c has been added as a constraint.

O
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Chapter 6

GENASSMP Algorithm

In this chapter, we describe how we generate assumptions that satisfy the constraints that we
collect in Algorithm 5.1. Given a set of membership constraints C', and a lower bound & on the
total number of states in |g1| + |g2|, GENASSMP (see Algorithm 6.1) computes assumptions g;
and g that satisfy C'. Similarly to previous work [GMFO08] we build assumptions as deterministic
LTSs (even though APPLYAG is not restricted to deterministic LTSs). Technically, for each
value of k starting from the given k, GENASSMP encodes the structural requirements of the
desired DLTSs g1 and g5 with |g1| + |g2| < k, as well as the membership constraints, as a SAT
instance SatEncy(C) (line 3). It then searches for a satisfying assignment and obtains DLTSs
g1 and go based on this assignment (lines 4-8). Since k is increased (line 10) only when the SAT

instance is unsatisfiable, minimal DLTSs that satisfy C' are obtained.

Algorithm 6.1 Computation of assumptions g; and go that satisfy a given set of constraints

1. procedure GENASSMP(C,k)

2 while 1 do

3 if SatEncy(C) is satisfiable then

4: Let 1) be a satisfying assignment for Sat Ency(C')
5: Let A = A, (’(/J)

6: Let Ay = AQ(’QZJ)

7 Extend d 4, and d 4, to total functions

8 return (LTS(A1), LTS(As2))

9

: end if
10: letk=k+1
11: end while

12: end procedure

6.1 Problem Encoding

We use the following encoding of the problem of finding whether there are DLTSs g; and go
with £ states in total such that (gi, g2) = C.

29



Variables used for encoding the LTSs structure Let & be a number (representing the total
number of states in g; and g2) and Let n = [logy(k + 2)]. We use boolean vectors of length n
to encode the states of g; and g2, where for each of them we add a special “error” state. Hence,
in total we consider k + 2 states. For each 0 < m < k + 1 we use 2 to denote the n-bit vector
that represents the number m. We fix the vector 0 to represent the error state of g1, and the
vector k + 1 to represent the error state of go. We explicitly add the error states in order to
distinguish between traces that are rejected by the DLTS and traces for which the behavior is

unspecified. For every i € {1, 2}:

e Let S; include the prefixes of all traces over «rg; which are constrained in C' with respect
to 4. Thatis, S; = | J.co Strings(c, ).

e For every o € S;, we introduce a set of boolean variables Var(o,i) = {v{a ) |0 <
J <n —1}. We denote by ;) the vector (U?a,i) e v?a_s) of boolean variables. v, ;)

represents the state of g; reached when traversing o.

We define Vy, = (J,cg, Var(o,i). In addition to Vy, and V,,, we introduce a set Vgy; of

boolean variables which consist of the following variables:

e To guarantee that the LTSs we produce are indeed deterministic, we add a set of boolean
variables which are used to encode the (non error) transitions in the DLTSs. For this we
use k X |ag1 U aga| vectors of boolean variables, each of size n: Forevery 1 < m < k
and a € (ag1 U agz), we introduce a set of boolean variables Var(m,a) = {ufm’a) ]

n

0 <j <n— 1}. Wedenote by T, 4 the vector (u?m Q) u(rgla)) of boolean variables.

U(m,q) Tepresents the state (of either g1 or go) reached from state m after seeing action a.

e To guarantee that the states of the DLTSs are disjoint, we introduce another vector

0 nfl)

= (u’--u of boolean variables, used to represent the number [ such that all states

of gq are smaller than or equal to [ and all states of g are larger than [.

Variables used for encoding membership constraints For every disjunctive membership
constraint formula ¢ € C we introduce a boolean “selector” variable en, that determines
which of the disjuncts of ¢ must be satisfied (the other disjunct might be satisfied as well).
Technically, let En. be the following set of boolean variables En. = {en. | ¢ € C'}, and let
A = En.U{=en; | en. € En.} U {true}.

We define Ggfld, Ogi™ 51— 24 and G‘g‘fd, O™ = So — 24 such that for every o € S;,
Ggfd(a) and 6™ (o) are the smallest sets such that true € HZfd(e) and true € GZQdd(e), and for

every ¢ € C:
o if ¢ = (—(0lag;, 1) V —(0lag,,])) then enc € 057" (0 lag,) and —en. € 75 (0 lag; ).
o if c = +(0lag, %) then true € Ggidd(aiagi).
e if c = —(0lag,, 1) then true € 0,7 (0lag,)-
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e ifc=(—(0lag;,J) V +(0alag,, 1)) then enc € 6™ (0lag,) and —en. € G;idd(o'aiagi).

e ifc=(—(0lag;,J) V (+(0alag,, i) N —(0alag;,]))) then enc € 655 (0 lag, ), enc €
HSfd(aaiagi) and —enc € ;7" (0alag,).

Intuitively, if at least one of the literals in H‘J}fld(a) is satisfied then o must be added to the
language of g;, and similarly for 6™ (o) with removal. These sets are therefore interpreted as
disjunctions. Formally, let Bool(A) be the set of boolean formulas over A. For 67¢ : S; — 24
(where ac € {rem, add}), we define 03¢ : S; — Bool(A) as follows:

dic(o) - { Jue )=

V 055(o)  otherwise

Encoding LTS structure and membership constraints into SAT constraints. SatEncy(C)
is a set of constraints (with the meaning of conjunction) over the variables En.UV,, UV, UV,

defined as follows:
e Encoding the LTSs structures into SAT constraints:

1. For every trace 01 € S1 we add the constraint v(,, 1) < u, and for every trace

o2 € S2 we add the constraint & < U(,, ) (separating states of the DLTSs). We

also add a constraint 1 < 7 < k — 1 to restrict the range of .

2. For every o € Sz we add the following constraint U, ) < k + 1 (every trace is
mapped to a valid state in the DLTSs).

3. Forevery i € {1,2}, every trace o € S, every action a € ag; such that ca € S;,
and for every 1 < m < k, we add the following constraint: U(, ;) = M = U(gqi) =
U(m,q) (the DLTSs are deterministic).

4. For every trace ¢ € S7 and action a € ag, if ca € S then we add the following
constraint: U, 1) = 0= U(ga,1) = 0 (the error state of g; is a sink state; DLTSs are

prefix closed).

5. For every string o € S; and action a € ags, if ca € S then we add the following
constraint: U, 9) = k + 1 = U(gq,2) = k + 1 (the error state of g is a sink state;
DLTSs are prefix closed).

Remark I. Item 1 ensures that for every trace o1 € S; and for every trace o3 € So,
U(sy,1) 7 V(os,2)- Encoding the latter requires O(|S1| x [S2|) constraints, whereas item 1
defines only O(|S1|+|S2]) constraints, with the use of V... Similarly, item 3 ensures that
(U(o.i) = U(o,i) = V(oasi) = U(o’a,i))- Again, a direct encoding requires O(|ag;| x |S;|?)
constraints, whereas the indirect encoding used in item 3 defines only O(k x |ag;| % |S;|)

constraints (where typically k& << |S;]).

e Encoding the membership constraints formulas into SAT constraints:
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6. For every trace o € S; we add the constraint: égfm(a) = T(g1) =0
7. For every trace o € S we add the constraint: égsm(a) = Voo =k+1
8. For every trace o € S; we add the constraint: 5;?‘[(0) = Do) # 0
9. For every trace o € Sy we add the constraint: éggd(a) = V(o) # k+1

Note that the implications in constraints 6-9 guarantee that a trace is accepted by g; (leads
to a non-error state) whenever it is required to be added to g; (as encoded by Qgidd(aiagi)).
However, it may be accepted also in other cases, provided it is not required to be removed by

other constraints. The same holds for removal of traces from g;.

Optimized implementation. When & does not change, and only C increases, the SAT en-
coding is incremental, as we only add constraints (in particular, the change in constraints 6-9
is encoded using additional clauses). In order to support incremental SAT calls also when &
changes into £’ such that [log,(k + 2)] = [logy (k" + 2)], we turn all constraints that refer to
k + 1 or k — 1 to conditional, guarded by some Boolean variable. When & increases into k&’ we
then “cancel” the clauses that refer to k + 1 and k — 1 and replace them by clauses that refer
to k' + 1 or k' — 1, respectively. k + 1 is used in O(|Sz|) constraints. In our implementation,
in order to minimize the number of conditional constraints, we therefore use another vector
Umaz = (U2, - -+ u-1) of Boolean variables instead of k + 1 in all constraints, and add
a (single) conditional constraint W,q,; = k+1, guarded by another Boolean variable. The
desired values of the Boolean variables in the guards of the conditional constraints are sent as

assumptions to the SAT solver.

Lemma 6.1. SatEncy(C) is satisfiable if and only if there exist DLTSs g1 and g that satisfy
C such that |g1| + |g2| = k.

Proof. (=:) We defer the proof of the implication from the left to the right to section 6.2,
where we show how to construct LTSs from a satisfying assignment of SatEncy(C).

(<=:) Let g; and g2 be two DLTSs that satisfy C' such that |g;| + |g2| = k. We show that
SatEncy(C) is satisfiable. We extend g1 by a sink error state denoted 71, and similarly extend
go by a sink error state denoted 5.

Let ¢g, : Sg; = {0,..., (lor] — 1)} and ¢, : Sg, — {lg1],..., (lg1] + [g2] — 1)} be two
bijective functions over the (extended) states of g and go, respectively. We assume also that ¢,
maps 71 to 0 and ¢4, maps 7 to k£ + 1 (such functions can be easily constructed). Let ¢/ be the

following assignment:

e Ven. € En,:
(0l € L(g1)?70:1 ifc=—(0lag, 1)V —(0lag,2)
ol €L(g1)?70:1 ifc=—(0lag 1)V +(oalag,,2)
Ylene) =< ol € L(g2) 70:1 ifc=—(0lagy:2) V +(calag,1)
ol €L(g1)?70:1 ifc=—(0lag,1)V (+(oalag,2) N —(calag,1))
ol €L(g2)70:1 ifc=—(0lag,2)V (+(calag,1) N —(0alag,,2))



e Vsec S 1!1(@(5’1)) = ¢gl (5g1 (Sgl, 5))
o Vs e Sy 1!1(@(5’2)) = ¢92 (592 (nga 5))
e p(u) =g -1

$g1 (04, (g, (m), @) if m < [g1] — 1

o V1< m<k I¢(ﬁ(m,a)) = { ¢g2 (592 (¢;21 (m)7 a)), otherwise

Note that by the definition of ¢, 1(7,,1)) = 0 implies that ¢ is not in L(g1) and similarly
w(ﬁ(mg)) = k + 1 implies that o is not in L(g2). We now show that ¢ is satisfying assignment
for SatEncy(C) by showing that 1) satisfies all constraints that are in Sat Ency(C):

e Constraints numbers 1- 2 in Sat Ency,(C) are trivially satisfied by the definitions of 1, ¢4,
and ¢g,.

e Constraint number 3: For every i in {1,2}, every 1 < m < k, every o in S;, and for
every a in ag; such that oa € S, if ¥(V(,;) is equal to m it implies by the definition
of ¢ that 6y, (s§', ) = ¢, (m). Since &y, is deterministic it follows that (1) &y, (s, oa)
is equal to 59i(¢;¢1 (m),a). By (1) and by the definition of ¢ we get that ¥(V(54,4) is
equal to ¢, (04, (¢5,' (m), a)). On the other hand, by the definition of ¢y, and ¢ we know
that ¥ (U, q)) is equal to ¢g, (0, (¢;*(m), a)). Hence, we get that Y(V(5a,) is equal to

w(ﬂ(m,a))’

e Constraint number 4: For every o in Sy, 1(7(5,1)) = 0 implies that ¢g, (0, (s§',0)) = 0
therefore, &g, (s§',0) = m1, which means that (1) o is not in L(g;). For every a in
agy, oa isis notin L(g1) (By (1) and by the fact that 7y is an error sink state), which
implies that dy, (sf',ca) = m. By the definition of the assignment ¢ we get that

V(V(oa,1)) = ¢g:(0g, (53!, 0a)) = ¢y, (m1). Hence, we get that 1)(T(44,1)) is equal to 0.
e Constraint number 5: The proof is similar to the proof of constraint number 4.

e Constraint number 6: For every o in S7, égfm(a) equals 1 implies that one of following

three conditions hold:

- égfm(a) = true, which implies that there exists ¢ in C such that c = —(0lag,,1).
Since (g1, g2) satisfies C' we get that (g1, g2) satisfies ¢ as well. It implies that 0|,
is notin L(g1). Therefore, by the definitions of ¢ and ¢,, we get that ¥(v4,1)) is
equal to 0.

- égfm(a) =en. V by, (o) and ¢(en.) = 1 for some constraint ¢ and some boolean

function 6,, (o). Then, c is one of the following forms:
* c=—(0lagi, 1)V —(0lag,2).
* ¢c=—(0lags 1)V +(oalag,,2).
* ¢ = —(0lag,1) V (+(0alags, 2) A —(0alag,, 1)).

33



For all these forms of constraints, ¢ (en.) equals 1 implies by the definition of 1)
that o is not in L(gy). Thus, by (1) we get that 1(7, ;) is equal to 0.

- égfm(a) = —en. V 0y, (o) and 1)(en.) = 0 for some constraint ¢ and some boolean
function 6,, (o) where o = ¢’a. Then, ¢ must be of the following form:

¥ ¢=—=(0"Nag, 1) V (+(0')agy, 2) A =(0"0)ag,, 1))

For such a constraint ¢, by the definition of the assignment v, it follows that ¥)(en..)
equals 0 implies that o'}, is in L(g1). Therefore, since (g1, g2) satisfies c, it
follows that 0’alqag, is in L(g2) and o’alqg, is not in L(g;), which implies that

(T(,1)) = b1 (39, (55", ) = g, (m1) = 0.

To summarize, we have shown that for every o in 57, égfm(a) equals 1 implies that

w(ﬁ(ml)) equals 0. Hence, the assignment v satisfies constraint number 6.

Constraint number 7: The proof is similar to the proof of constraint number 6.

Constraint number 8: For every o in 57, é;fd(a) equals 1 implies that one of following two

conditions hold:

. égfd(a) = true. Therefore, there exists c in C' such that ¢ equals +(0]ag,,1). Since
(91, g2) satisfies C, it follows that (g1, g2) satisfies c. Thus, 0lqg, isin L(g1). Hence, by
the definition of ) and ¢4, we get that (7, 1)) is not equal to ¢, (1), which equals 0.

. égfd(a) = —en. V b,,(0) and ¥(en.) = 0 for some constraint ¢ and some boolean

function 6,, (o) where 0 = ¢’a. Then, ¢ is one of the following forms:

- c=—(0"lag,2) V+(d'alag ,1).
- c=—(0"lag2) V (+(0'alag, 1) A —(0'alag,,2)).
For all these forms of constraints, by the definition of the assignment 1, it follows
that ¢)(en.) equals 0 implies that o]g, is in L(g2). Therefore, since (g1, g2)
satisfies C' we get that 0alay, is in L(g1). Hence, we get that ¢)(7(,,1)) is not equal
to 0.
To summarize, we have shown that for every o in 51, égldd(a) equals 1 implies that o is
in L(g1), which implies that ¢)(v(,.1)) is not equal to 0.
e Constraint number 9: The proof is similar to the proof of constraint number 8 O

Due to Lemma 5.5 which ensures that (the nondeterministic) LTSs Mj a4, and Ma|qg,
satisfy C, we get the following corollary, which ensures termination of GENASSMP:

Corollary 6.2. At every iteration of ACR, there exists k < O(2/Mitasi| 4 2lM2lags|) yyhere
SatEncy(C) is satisfiable.

Proof. By Lemma 5.5 we know that (M1lag,, M2lag,) satisfy any set of constraints C. By
determinizing Milqg, and Ma|.g, we get DLTSs whose number of states are O(2Mitaail) and
O(2‘M2¢a92‘) respectively. Then by Lemma 6.1 we get that at any iteration of Algorithm 4.2
there exists k = O(2/Mitas| 4 2lM2lag |} for which Sat Ency(C) is SAT. O
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In fact, since satisfiability of SatEnci(C') is checked for increasing values of k, it is
ensured that the minimal % for which it is satisfiable is found. Therefore, minimal assumptions
that satisfy C are obtained. In particular, together with Lemma 5.4, this ensures that when
M;||Ms = P, then minimal assumptions for which CIRC-AG is applicable are eventually

obtained.

6.2 From SAT Assignment to LTS Assumptions

Given a satisfying assignment ¢ to SatEncy(C), lines 4-8 of Algorithm 6.1 uses the assignment
1) to generate assumptions g; and go that satisfy C, as described below.

First, in lines 5-6 we extract DLTSs A; (1)) and As(1)) extended with error states. A1 (1))
and Az (1)) can be thought of as error LTSs, except that they might be incomplete. As in an error
LTS, traces leading to an error state in A; (1)) are rejected. Traces that have no corresponding
path are unspecified (recall that such traces do not exist in an error LTS, which is complete, and
in a DLTS, in contrast, such traces are rejected). The latter represent traces that do not affect the

satisfaction of ', and can therefore either be accepted or rejected.

Definition 6.3. Let ¢ be a satisfying assignment for Sat Ency(C). We define A;(v) and Az (v))
derived from 1 in the following way: A;(v)) = (Qi, agi, 6i, ¢, m;) where:

e Qi ={mec{0,1}" | 3o € S; such that ¥ (v(,;)) = m}

m’ if o € S; such that 1#(@(0,@)) =mAoa€ SN 1/1(@(0(171)) =m
1 otherwise

[ (Mﬁ, a) = {

Note that §; is deterministic and it is well defined, since constraint 3 of Sat Ency(C') ensures
that if there exist o, 0’ € .S; such that ¢)(7(,.;)) = ¥ (7(, ;)) and both oa and ¢’a are in S;, then
also Y (U(a,5)) = ¥ (V(oa,))- Note further, that due to constraint 1, Q1 N Q2 = 0.

01 and 4§, are partial functions. In line 7 of Algorithm 6.1 we extend d; and 5 to be total
functions, transforming A (¢)) and As(v)) into (complete) error LTSs. As explained above, the
cases in which d; and 2 are undefined are cases that do not affect satisfaction of C'. Therefore,
any completion will result in DLTSs that satisfy C. In practice, we extend ¢; and J3 to be
total functions in the following way: If the transition from a given state ¢ € (J; on action a is
undefined in the transition relation, we add a self loop for the state g labeled by a, i.e., we define
4i(q, a) = q.

In order to obtain DLTSs, it remains to remove the error states. In line 8 of Algorithm 6.1,

for every i in {1,2} we compute LT'S(A;) defined as follows:
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Definition 6.4. Let A; = (Q;, ag;, 8, g5, m;) be defined as in Definition 6.3, with §; extended
as described above. Then LTS(4;) is the DLTS (Q; \ {m;}, agi, &., ¢}) where

5(g. a) = { 0i(q,a) if 6;(q,a) # m;

1 otherwise

The following technical lemma states that the DLTSs obtained from definition 6.4 agree
with 1) on traces in \S; that lead to a non-error state, and reject traces of S; that lead to an error

state.

Lemma 6.5. For everyi € {1,2} and for every trace o € S;, we have that:

5(gh,0) = { V(U (o) Y@ (0s)) # mi

1 otherwise

Proof. We prove the lemma by induction on the length of o.

Base case: |o0| = 0ie. o = e. Since true € Ggfd(e), based on constraint 8 and 9 of
Sat Ency,(C) we have that ¢(v(. ;) # ;. We therefore need to show that &;(¢), €) = ¥(Tc ;).
This holds since J;(qg, €) = g and since gy = (U, ;) (by the definition of gg in A;())).
Induction step: |o| > 1. Let o be o’a where a € ag;. Note that since S; contains all the
prefixes of o, we get that o’ € S; as well. Since both ¢’ € S; and 0 = ¢’a € S;, the definition
of ¢; in A;(1)) ensures that 6;(Y (Do 3)),a) = V(V(o/a,i)) = ¥(V(e,:)). We now distinguish
between the two possibilities:

® (V(e,) # mi: Recall that 6;(Y(V (o 3)), a) = P (V(e,)). Since ¥ (V(,5)) # mi, we have
that 6; (¢ (Vo 4)),a) = ¥(V(s)) as well (see Definition 6.4). Based on constraints 4
and 5 of SatEncy(C) we have that ¥(D(, ;) # i (since Y(V(44) # mi). Therefore,
by the induction hypothesis on o’ € S;, we have that &,(¢), o’) = 1(v(, ;). Finally,
since LT'S(A;) is deterministic and since 0/(q},0’) # L, we have that §}(g},0) =
5;(07(a5, ), a) = 8j(¥(T(or 1)), @) = P(T(gs), as required.

® (V(e,) = m;: Again, recall that §; (1 (Vo ), @) = P (V(g,3))s 18-, 05 (Y (Vo0 5)), @) = T
Therefore, by Definition 6.4, 5; (¢ (T, ;) ) a) = L. Now, since LT'S(A;) is deterministic,
we get that if &/ (g}, 0’) = L, then 8/(g}, o) = 6.(q},0’) = L, and if 0/(g}, 0’) # L then

03

§i(qh, o) = 8!(8i(qh, '), a) = L. Either way, 8:(¢}, o) = L, as required. O

Lemma 6.6. Let ¢ be a satisfying assignment for Sat Ency(C), let g = LTS(A1(v)) and
g2 = LTS(As(v))). Then g1 and go are DLTSs such that (1) (g1, g2) | C and (2) |g1| + |g2] <

Proof. In order to prove that (LT'S(A1(v)), LT S(A2(1))) satisfies C' we need to show that
(LTS((A1(¥)), LT S(A2(v))) satisfies every constraint cin C.. Forevery (7, j) in {(1,2), (2,1)},

a constraint ¢ in C' can have one of the following forms:
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e c = —(0lag;; 1))V—(0lag,,2) implies by the definitions of 07" (0]ag, ) and 075" (0 ag, )
that 1 (0,7 (0lag, ) is true or (05" (0lag,)) is true. Therefore by constraints num-
ber 6 and 7 we get that ¢(U(sy,, 1)) is equal to m or ¢ (V(,y,, 2)) is equal to m.
Hence, by Lemma 6.5 we get that 0], is not in L(LTS(A1(v))) or 0lag, is not in
L(LTS(A2(1))), which means that (LT'S(A;(v)), LTS(A2(v)))) satisfies c.

e ¢ = +(0lag,1) implies by the definition of Hgfld(aiagi), that w(ag;ld(a%gi)) is true.
Therefore by constraints number 8 and 9, we get that w(@(g Log; ,i)) is not equal to 7;. Thus,
by Lemma 6.5 it follows that o g, isin L(LT'S(A;(v))). Hence, (LT'S(A1(¢)), LT S(A2(v)))

satisfies c.

e c = —(0lag,, i) implies by definition of 7™ (0 lag,) that Y(077" (0lag,)) is true.
Therefore, by constraints number 6 and 7 we get that ¥ (v, iagi,i)) is equal to ;.
Hence, by Lemma 6.5 we get that 0|, is not in L(LT'S(A;(¢))), which implies that
(LTS(A1(v)), LTS(A2(v))) satisfies c.

o ¢ = —(0lag,,J)V+(0alag,, i) implies by the definitions of 7™ (0 |.ag; ) and Ggidd(aiagi),
that ¥ (0™ (0l ag,)) is true or @Z)(Ggidd(aaiagi)) is true. As a result, constraints num-
ber 6 to 9 imply that ¥(v, Yo, j)) is not equal to 7; or Y(V Vag; 1)) is not equal to ;.
Hence, by Lemma 6.5 we get that 0.4, is notin L(LT'S(A;(1)))) or that 0alayg, is in
L(LTS(A;(v))), which means that (LT'S(A1(v)), LTS(A2(v))) satisfies c.

e ¢ = —(0lag;,J)V(+(0alag,, ) N(0alag;, j)) implies by the definitions of 6™ (0lag,))
and GZfd(aiagi)) that ¢ (0™ (0 Lag; ) is true or both w(ﬂgfd(aaiagi) and (057" (calag,))
are true. Therefore, by constraints number 6 to 9 it follows that ¥(v, Yoy j)) is equal to
7; or both 1/1(5(@%91,,1‘)) is not equal to 7; and 1/1(5(0@‘19], )
Lemma 6.5 we get that 0'|.og, is notin L(LTS(A;(v)))) or oalag, isin L(LTS(A;(1)))
and 0alqg, is notin L(LTS(A;(v))), which means that (LT'S(A1(v)), LT'S(A2(v)))

satisfies c. OJ

is equal to ;. Hence, by

Now we show that |LT'S(A;(y))| + |LTS(A2(v)) < k: (i) We know that v satisfies
SatEncy(C'), therefore by constraints number 1 and 2 we get that for every v in Vy,, Vg,, ¥(v)
is less than or equals to & — 1. This implies that ()1 and )3 are subsets of {0--- k£ — 1}. (¢i) By
constraint number 1 we get that for every vy in V, and every vy in Vi, , ¢(v1) is not equal to
¥ (ve). It follows that Q1 and Q2 do not intersect. From (i) and (ii) we get that |Q1| + |Q2] < k.
Hence, |A1(¢)| + |[A2(¥)| < k O

Combined with Corollary 5.3, we also conclude that:

Corollary 6.7. The DLTSs g1 = LTS(A1(v)) and go = LTS(A2(v)) generated by Algo-

rithm 6.1 are different from all the pairs of DLTSs considered in previous iterations.

Example 5. Consider the 7th (and final) iteration of ACR on the example from section 5.2. Since

the assumptions from the 6th iteration (Figure 5.1) have a total of 3 states, the search performed
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by GENASSMP at the 7th iteration starts with £ = 3, and since no satisfying assignment is found
for SatEncs(C), k is increased to 4, yielding g1 and g2 with a total of 4 states (Figure 3.1). Note
that the (final) assumptions g and g generated by GENASSMP in the 7th iteration indeed satisfy
the membership constraint —((send), 1) V (+((send, send),2) A\ —((send, send),1)) € C
from the previous iteration (due to the right disjunct). In particular, they do not exhibit the

counterexample from Example 4.

To complete this chapter, we complete the proof of lemma 6.1:

Proof of lemma 6.1 (cont.). (=>:) By Lemma 6.6, there exist g; and go that satisfy C' such that
lg1| + |g2| < k. It remains to show that there exist g; and g5 such that & = |g1| + | g2| as needed
in lemma 6.1. In the case where |g1| + |g2| < k, to get g1 and go such that k = |g1| + |g2| we

add some unreachable states to g; or to go. ]

38



Chapter 7

Correctness, Termination and

Minimality

In this chapter we argue that our main algorithm ACR is correct, it terminates and produces

minimal assumptions.

Theorem 7.1 (Correctness and Termination). Given components My and Ms, and property P,
ACR terminates and returns “M||My = P” if P holds on M,||My and “M;||M2 = P”,

otherwise.

Proof. Partial Correctness: Algorithm 4.2 returns M; || Mz |= P if and only if Algorithm 5.1
returns M ||Ms = P. The latter returns M;||Ms = P if and only if g; and go satisfy all
the three premises of CIRC-AG. Thus, by the soundness of CIRC-AG from Theorem 3.6, we
get that Algorithm 4.2 returns M;||My = P only if M ||M> satisfies P. On the other hand
Algorithm 4.2 returns that M; || My [~ P if and only if Algorithm 5.1 returns so. The latter may
return M;|| My = P in line 5 of Algorithm 5.2, in line 11 of Algorithm 5.1 and in line 5 of
Algorithm 5.1. All these cases are conditioned by the existence of o in (cg; U aga)* such that o
isin L(Milag, ||M2lag,) but olqp is not in P, which implies that M1 ]qg, || M2lag, does not
satisfy P. Therefore, by Lemma 3.5 we get that M; || M> does not satisfy P.

Termination: (1) By Corollary 6.2 we get that, at any iteration of Algorithm 4.2, there exists
k = O2Mtag| 4 2lM2las|) where SatEncy,(C) is satisfiable. Since in GENASSMP, k is
increased when Sat Ency(C) is unsatisfiable, it is guaranteed that a satisfying assignment 1 will
be found. (2) By Lemma 6.6 and by Corollary 6.7 we get that at each iteration of Algorithm 4.2
we get a different pair of DLTSs A;(v)) and A2(7)) that satisfy C' and their total size is less
than k. Since there are only finitely many pairs of DTLS for every k, in the worst case, we
eventually get to k = |det(Mylag, )| + |det(Malag,)| = O(2!Mban| 4 2lMzlagsl) and get
the pair of DLTSs det(Milag, ) and det(Malag,) that by Lemma 5.5 satisfy C' and have total
number of states that is less than k. For this pair, Algorithm 5.1 is guaranteed to return either
“M||Ms |= P” or “M; || My £~ P”. Hence, Algorithm 4.2 is guaranteed to terminate. O
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Theorem 7.2 (Minimality). If M;||My |= P then ACR terminates with DLTSs g1 and go
whose total number of states is minimal among all pairs of DLTSs that satisfy the CIRC-AG

rule.

Proof. Theorem 7.1 already ensures that Algorithm 4.2 will terminate with the result “M; || My =
P”. It remains to prove the minimality of the obtained assumptions. By Lemma 5.4, we get
that the DLTSs with minimum total number of states that satisfy rule CIRC-AG satisfy any set
of constraints C' that is being produced by Algorithm 5.1. We denote by n the total number
of states in the DLTSs with minimum total number of states that satisfy rule CIRC-AG. By
applying Lemma 6.1 we get that Sat Enc, (C) is satisfiable. Since SatEnc, (C) is satisfiable,
k never gets to be greater than n. By Lemma 6.6 we get that the DLTSs pair (A1 (1)), A2(1))) of
any satisfying assignment ¢ of SatEnc,(C') has a total number of states which is less than or
equal to n. In particular this holds for the final assumptions for which Algorithm 5.1 returns
“M;|| My |= P, and the claim follows. O
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Chapter 8

Evaluation

We implemented ACR in the LTSA (Labelled Transition System Analyser) tool [MK99]; we
use MiniSAT [ES] for SAT solving. We optimized our implementation to perform incremental
SAT encoding using the ability of MiniSAT to solve CNF formulas under a set of unit clause
assumptions. We also made ACR return (at each iteration) k£ counterexamples for the three
premises where, k is |g1| + |g2]|.

We compared ACR with learning-based assume guarantee reasoning (based on rule ASYM-
AG), on the following examples [PGBT08]: Gas Station (3 to 5 customers), Chiron — a model
of a GUI (2 to 5 event handlers), Client Server — a client-server application (6 to 9 clients), and
a NASA rover model: MER (2 to 4 users competing for two common resources). We used the
same two-way decompositions reported in previous experiments. Experiments were performed
on a MacBook Pro with a 2.3 GHz Intel Core i7 CPU and with 16 GB RAM running OS X
10.9.4 and a Sun’s JDK version 7.

Table 8.1 summarizes our results. For both approaches, we report the model sizes (in states),
the analysis time (in seconds) and the assumption sizes (in states). Measuring memory is
unreliable due to the garbage collection and the interfacing with MiniSAT via native method
calls (our measurements indicate that memory consumption is stable and does not increase
dramatically for larger cases). We instead report the maximum numbers of states observed for
checking the premises of the two rules. We put a limit of 1800 seconds for each experiment; “-"
indicates that the time for that case exceeds this limit.

In all the experiments ACR generates smaller assumptions and in the majority of cases
this results in smaller analysis time and state space explored. For larger cases the assumptions
generated by ACR are significantly smaller. For the Gas Station, ACR significantly outperforms
learning in terms of analysis time and states explored, while for all other cases the two approaches
are comparable, at smaller sizes. However at larger configurations (Client Server 8 and 9, MER
4) ACR again significantly outperforms the learning-based approach. In all but one case (Chiron
5) the smaller assumptions generated with ACR lead to smaller state spaces for checking the
rule premises. Case Chiron 5 is still comparable in terms of running time but it may indicate that
the two-way decomposition that we used (found to be optimal for learning in previous studies)

may not be optimal for ACR. We plan to investigate this further in future work.
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Table 8.1: Comparison of ACR (rule CIRC-AG) and learning (rule ASYM-AG). Best results are shown in bold.

Case 7 | M | 7 | Mo| : ACR Time 7 lg1] 7 |g2] 7 Premisel 7 Premise2 7 Premise3 : L* Time 7 |A] 7 Premisel | Premise2
GasSt 3 1715 643 26 3 3 2588 1093 6 - >351 | >8243 >4045
GasSt 4 14406 1623 48 3 3 19503 2196 4 - >381 | >165836 | >47360
GasSt5 | 117649 | 3447 309 3 3 132608 6995 6 - >207 | >560000 | >61058
Chiron2 | 176 102 1.257 2 2 134 204 5 0.5 9 256 198
Chiron 3 364 1122 2.013 2 2 341 2244 5 2.121 25 492 2736
Chiron4 | 703 5559 3.149 2 2 449 6681 5 6.341 45 860 18370
Chiron 5 | 1905 | 129228 34 2 2 1152 258456 5 33 122 2101 138537
ClServ 6 729 49 11 7 2 256 16 10 8 256 256 2505
ClServ7 | 2187 64 33 8 2 576 17 10 33 576 576 6455
ClServ 8 | 6561 81 53 9 2 1280 17 9 138 1280 1280 16199
ClServ9 | 19683 100 249839 | 10 | 2 2816 23 14 725 2816 2816 39769
MER 2 225 36 4.397 5 2 30 147 6 4.54 46 313 79
MER 3 1625 76 35 7 2 83 1198 13 50 274 3146 250
MER 4 10625 129 1220.649 9 2 97 7109 9 - >1210 | >128883 >549
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Chapter 9

Conclusion and Future Work

We have introduced a novel technique for automatic assume guarantee reasoning using the
circular rule CIRC-AG. To the best of our knowledge this is the first work that proposes an
automatic compositional verification framework based on a circular rule.

Our algorithm constructs set of joint constraints on the desired assumptions based on
counterexamples obtained from checking the premises of the rule, and uses a SAT solver to
synthesize minimal assumptions that satisfy the constraints. When M; || Mz = P, our algorithm
terminates with minimal assumptions that satisfy the premises of the rule CIRC-AG. When
M;||Ms W~ P the algorithm returns a counterexample as a witness for the fact that M;|| M,
does not satisfy P.

We have studied the properties of the new algorithm and have experimented with different
examples. Our experiments show a significant improvement with respect to learning-based
assume guarantee reasoning (based on the rule ASYM-AG) in terms of the sizes of resulting
assumptions and in terms of the time consumption.

ACR can be optimized in many ways. Our current implementation checks the three premises
of the rule one after the other at each iteration and gets k different counterexamples for each of
them. A natural optimization would be to parallelize these checks (e.g. on different machines).
We further plan to investigate alphabet refinement and generalization to n-way decomposition
(for n > 2) — both these techniques significantly enhanced the performance of compositional
acyclic techniques [PGBT08]. For the n-way decomposition we can consider a recursive
application of our current approach to the system decomposed into two components, each
decomposed into two sub-components, etc. Another possibility, which is more involved, would
be to directly synthesize n assumptions, one for each component in the system. We leave this
for future work. We also plan to explore learning and abstraction-refinement for discovering
suitable assumptions. Although these techniques might not guarantee minimal assumptions,

they can be less computationally demanding than our current approach.
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