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Abstract

Model checking is a successful approach for verifying hardware and software systems. Despite

its success, the technique suffers from the state explosion problem which arises due to the

huge state space of real-life systems. The size of the model induces high memory and time

requirements that may make model checking not applicable to large systems.

One solution to face the state explosion problem is the use of compositional verification,

that aims to decompose the verification of a large system into the more manageable verification

of its components. To account for dependencies between the components, assume-guarantee

reasoning defines rules that break-up the global verification of a system into local verification of

individual components, using assumptions about the rest of the program.

In recent years, compositional techniques have gained significant successes following a

breakthrough in the ability to automate assume-guarantee reasoning. However, automation is

still restricted to simple acyclic assume-guarantee rules.

In this work, we focus on automating circular assume-guarantee reasoning in which the

verification of individual components mutually depends on each other. We use a sound and

complete circular assume-guarantee rule and we describe how to automatically build the assump-

tions needed for using the rule. Our algorithm accumulates joint constraints on the assumptions

based on (spurious) counterexamples obtained from checking the premises of the rule, and uses

a SAT solver to synthesize minimal assumptions that satisfy these constraints. To the best of our

knowledge, our work is the first to fully automate circular assume-guarantee reasoning.

We implemented our approach and compared it with an established learning-based method

that uses an acyclic rule. In all cases, the assumptions generated for the circular rule were

significantly smaller, leading to smaller verification problems. Further, on larger examples, we

obtained a significant speedup as well.
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Chapter 1

Introduction

This work proposes an automated, sound and complete circular compositional verification

technique to address the most central scalability problem in model checking, namely the state-

explosion.

Model checking [CGP99] is a widely accepted technique for automatically checking that

software systems conform with given properties. Despite its successes, the technique still

suffers from the state explosion problem, which refers to the worst-case exponential growth of a

program’s state space with the number of variables and concurrent components. Compositional

techniques have shown promise in addressing this problem, by breaking-up the global verifica-

tion of a program into local, more manageable, verification of its individual components. The

environment for each component, consisting of the other program’s components, is replaced

by a “small” assumption, making each verification task easier. This style of reasoning is often

referred to as Assume-Guarantee (AG) reasoning [MC81, Pnu85].

Progress has been made on automating compositional reasoning using learning and abstraction-

refinement techniques for iterative building of the necessary assumptions [CGP03, PGB+08,

BPG08]. Other learning-based approaches for automating assumption generation have been

proposed as well, e.g. [CCST05, AMN05, CCF+10, CFC+09].

This work has been done mostly in the context of applying a simple compositional assume-

guarantee rule, where assumptions and properties are related in an acyclic manner. For example,

in a two component program, suppose component M1 guarantees property P under assumption

A on its environment. Further suppose that M2 unconditionally guarantees A. Then it follows

that the composition M1||M2 also satisfies P .

However there is another important category of rules that have not been studied for au-

tomation. These rules typically involve circular reasoning and use inductive arguments, over

time, formulas to be checked, or both, e.g. [MC81, McM98, McM99a, NT00], which makes

automation challenging.

Circular Assume-Guarantee rules have been successful in scaling model checking, and have

often been more effective than non-circular rules [McM98, McM99a, McM99b, Rus01]. Further,

they could naturally exploit the inherent circular dependency exhibited by the verified systems.

However, their applicability has been hindered by the manual effort involved in defining the
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assumptions.

In this work we propose a novel circular compositional verification technique that is fully

automated. The technique uses the following assume-guarantee circular rule CIRC-AG, for

proving that M1||M2 |= P , based on assumptions g1 and g2. The rule CIRC-AG is both sound

and complete. Components, properties and assumptions are Labeled Transition Systems (LTSs).

(Premise 1) M1 |= g2 . g1

(Premise 2) M2 |= g1 . g2

(Premise 3) g1||g2 |= P

M1||M2 |= P

Similar rules have been studied before [McM99a, NT00, GPQ14].

Premises 1 and 2 of the rule are based on induction over time and have the form M |= A.P ,

which means that for every trace σ of size k, if σ is in the language of M , and its prefix of size

k − 1 is in the language of A then σ is also in the language of P .

Intuitively, premises 1 and 2 prove, in a compositional and inductive manner, that every trace

in the language of M1||M2 is also included in the language of g1||g2. Premise 3 ensures that

every trace in the language of g1||g2 is also included in the language of P , thus the consequence

of the rule is obtained. Completeness of the rule stems from the fact that M1 and M2 (restricted

to appropriate alphabets) can be used for g1 and g2 in a successful application of the rule.

The above explanation implies that in a successful application of CIRC-AG, g1||g2 over-

approximates M1||M2. This means that g1 overapproximates the part of M1 restricted to the

“intersection” with M2. Similarly, g2 overapproximates the part of M2 restricted to the “inter-

section” with M1. In contrast, for the acyclic rule mentioned earlier, the assumption A has to

overapproximate M2 as a whole. Therefore, CIRC-AG can potentially result in substantially

smaller assumptions.

We prove soundness and completeness of our CIRC-AG rule, and then turn to its automation.

As a first step we suggest an algorithm for checking statements of the form M |= A . P ,

this algorithm is needed for checking the first two premises. The third premise is checked by

standard language inclusion between LTSs (with possibly different alphabets).

To automate Rule CIRC-AG, we develop the Automated Circular Reasoning (ACR) algo-

rithm. ACR works iteratively, with the goal to automate the assumption generation. It runs

two algorithms. Algorithm APPLYAG automatically checks whether given assumptions g1 and

g2 satisfy the premises of the proof rule. If a counterexample is obtained for at least one of

the premises, but it cannot be extended into a counterexample for M1||M2 |= P , the algorithm

produces constraints that determine how the assumptions should be refined in order to avoid the

same counterexample in subsequent iterations. The other algorithm, GENASSMP, uses a SAT

solver to synthesize assumptions g1 and g2 that satisfy all the constraints produced by the former

algorithm. These algorithms are repeated until assumptions g1 and g2 that are suitable for the

proof rule are generated, or until a real counterexample is found. ACR always terminates and

returns either “M1||M2 |= P ” or “M1||M2 6|= P ”, in which case it also finds a counterexample:

a trace in M1||M2 which is not in P .
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For Rule CIRC-AG to be useful in practice, the assumptions g1 and g2 must be as small

as possible, and clearly smaller than the components M1 and M2 they represent. To achieve

this, we prove that, at every iteration the generated set of constraints C is the weakest possible

in the sense that every (g1, g2) which satisfy the rule also satisfy C. Thus, we have no loss of

optional assumptions. In addition, the synthesizing algorithm GENASSMP works iteratively

with increasing bounds on the total number of states in g1 and g2 (i.e., |g1|+ |g2|). Only if the

set of constraints is not satisfiable for a given bound, the bound is increased. Thus, g1 and g2 are

guaranteed to be the smallest (in total number of states) assumptions that satisfy the premises

of the rule. Indeed, our experimental results confirm the usefulness of this approach: In all

examples |g1|+ |g2| is smaller than the size of the single assumption produced by an established

learning-based method based on an acyclic rule.

Generating assumptions for the circular rule poses unusual challenges. This is because the

two assumptions strongly depend on each other and should be generated in a tightly related

manner. To achieve this, our constraints can express the fact that a certain trace must or must

not be included in the language of an assumption gi. More importantly, we can express boolean

combinations of constraints.

To see why this is needed, consider for example a counterexample for premise 1. Such a

counterexample consists of a trace σ and a letter a such that σa is in M1, σ is in g2 but σa is not

in g1. In order to eliminate this counterexample we need to either remove σ from g2 or add σa

to g1. This is done by adding the constraint “the trace σ must not be in g1 or the trace σa must

be in g2”. The SAT encoding of this constraint makes sure that at least one of its disjuncts is

satisfied. Therefor the trace σa will be no longer a counterexample for premise 1 in subsequent

iterations.

We implemented our algorithm and compared it with an established learning-based method

that uses the acyclic rule ASYM-AG [CGP03]. Our experiments indicate that the assumptions

generated using the circular rule can be much smaller, leading to smaller verification problems,

both in the number of explored states and the analysis time.

1.1 Related Work

We discuss here some of the most closely related work.

Assume-guarantee reasoning. In the assume-guarantee paradigm a formula is a triple <

A > M < P >, where M is a component, P is a property, and A is an assumption about

M ’s environment. The formula is true if whenever M is part of a system satisfying A, then

the system must also guarantees P. Assume guarantee reasoning can be applied through several

rules. The simplest such rule, called ASYM-AG. It checks if a system composed of components

M1 and M2 satisfies a property P by checking that M1 under assumption A satisfies P and that

any system containing M2 as a component satisfies A. The rule can be formulated as follows:

Rule ASYM-AG:
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(Premise 1) < A > M1 < P >

(Premise 2) < true > M2 < A >

M1||M2 |= P

In this rule, A denotes an assumption about the environment of M1. For the use of the rule

ASYM-AG to be justified the assumption must be more abstracted than M2 but still reflect M2’s

behavior. Several frameworks have been proposed to support this style of reasoning using the

rule ASYM-AG. However, their practical impact has been limited because they require non-

trivial human input in defining assumptions that are strong enough to eliminate false violations,

but that also respect appropriately the remaining system.

Learning Assumptions. Progress has been made on automating assumption generation for

the rule ASYM-AG using learning and abstraction refinement techniques. [CGP03] proposed

a framework that fully automates assume-guarantee model checking of safety properties for

finite LTSs. They use the learning algorithm L* [Ang87], to compute the assumption. [GPB05]

extended the framework of [CGP03] to support a set of symmetric assume-guarantee rules that

are sound and complete. In both [CGP03] and [GPB05] the learning-based frameworks are

guaranteed to terminate, either stating that the property holds for the system or returning a

counterexample if the property is violated.

It has been shown in [CK99] that compositional techniques are particularly effective for

well-structured systems that have small interfaces between components. The alphabets of the

assumption automata in both [CGP03] and [GPB05] include all the actions in the component

interface. In a case study presented in [PG06] it has been observed that a smaller alphabet

can be sufficient to prove the property. In this case, using smaller alphabet, assume-guarantee

reasoning achieved order of magnitude improvement over non-compositional model checking.

Motivated by the success of a smaller alphabet in learning, [GGP07] and [CS07] proposed

automatic process of discovering a smaller alphabet that is sufficient to prove the property.

Smaller alphabets mean smaller interfaces, which may lead to smaller assumptions, and hence to

smaller verification problems. The process in [GGP07] starts with a small subset of the alphabet

and refines it by adding actions to it as necessary until the required property is either shown to

hold or shown to be violated by the system. Actions to be added are discovered by an analysis

of spurious counterexamples obtained from model checking the components. [CS07] proposed

minimizing the assumption alphabet by collecting all the spurious counterexamples encountered

so far and finding a minimal eliminating alphabet for them. This is done by reducing the problem

to Pseudo-Boolean constraints and solving them using SAT engines for linear constraints over

boolean variables. To reduce the assumption even further [BPG08] proposed to combine

interface alphabet refinement with orthogonal well-known technique, CEGAR (Counterexample

Guided Abstraction Refinement) [CGJ+03]. Using CEGAR, assumptions in [BPG08] basically

start from small automata and split states iteratively based on spurious counterexamples that

result from the abstraction being too coarse.

The frameworks in [GPB05, PGB+08, GGP07, CS07, BPG08] use the L* [Ang87] automata

learning algorithm to iteratively compute assumptions in the form of deterministic finite-state
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automata. Other learning-based approaches for automating assumption generation have been

suggested as well. The work in [CCF+10] considered a symbolic representation of assumptions

and models via Boolean functions. Accordingly they used the CDNF [Bsh95, CW12] learning

algorithm of Boolean function in order to learn appropriate assumptions. Another learning-based

approach proposed in [CFC+09] used an algorithm for learning a minimal separating automaton

as an assumption for rule ASYM-AG. This work uses the observation from [GMF08] that on

the one hand an assumption A for the rule ASYM-AG includes all traces of M1, and on the

other hand, it is disjoint from all traces of M2 that violate P . The work in [GMF08] finds the

separating automaton using a SAT solver while [CFC+09] finds it by reducing the problem to

the minimization problem of incompletely specified finite state machine.

Our search for minimal assumptions using SAT with an increasing bound is inspired

by [GMF08]. However there, a single (separating) assumption is generated for the ASYM-AG

rule, while we generate two, mutually dependent assumptions for the CIRC-AG rule.

Circular Rules. Compositional proofs regarding systems of many components often involve

apparently circular arguments. That is, the correctness of component M1 must be assumed

when verifying component M2, and vice versa. Circular Rules were shown as valuable tools in

the verification of real-world systems in a number of case studies [McM98, HQR98, HQR00,

Hoa69, TB97].

Several works [McM99a, NT00] have proposed sound compositional rules for systems

with many components that require circular reasoning principles in which properties of other

components need to be assumed in proving properties of individual components. An example of

a circular rule [McM99a] is given below.

Rule CIRC-1:

(Premise 1) M1 |= g2 ≺ g1

(Premise 2) M2 |= g1 ≺ g2

M1||M2 |= P

The rule CIRC-1 is not sound if we interpret ≺ as logical implication. The apparent circular-

ity in rule CIRC-1 can be resolved by defining≺ with induction over time, in which case the rule

becomes sound. However, it has been shown in [NT00] that it is incomplete. [NT00] studied

the incompleteness of rule CIRC-1 and indicates that the reason for CIRC-1 incompleteness

is the absence of auxiliary assumptions. This work also suggested a generalization of the rule

CIRC-1 which is both sound and complete where h1 and h2 are auxiliary assumptions:

Rule CIRC-2:

(Premise 1) M1 |= (h2 ∧ g2) ≺ ((h2 ⇒ g1) ∧ h1)

(Premise 2) M2 |= (h1 ∧ g1) ≺ ((h1 ⇒ g2) ∧ h2)

M1||M2 |= G(g1 ∧ g2)
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Interestingly, [NT00] also shows how proofs derived using the rule CIRC-2 can be translated

into proofs using the non-circular rule ASYM-AG. This suggests that circular reasoning is

redundant, at least in the case of this rule. However, while circularity is avoided, [NT00] shows

that the translation of such proofs is still defined with the≺ operator. That is, inductive reasoning

is still needed.

Most of the work on circular assume-guarantee reasoning has been concerned with soundness

only. Completeness has rarely been an issue, except for work on assume-guarantee proof

systems for deductive verification, see [dRdBH+00]. In the context of compositional model

checking, [NT00] was the first work to investigate completeness of circular assume-guarantee

rules. It showed a number of circular rules to be incomplete and proposed generalizations which

ensure completeness, at the expense of introducing auxiliary variables.

In contrast, [Mai03] introduced the terms backward reasoning and forward reasoning.

Backward reasoning corresponds to AG rules in which we match the verification goal against

the conclusion of a proof rule and from the premises we can infer what subgoals needed

to be established. Example of such sound and complete rule can be found in [NT00]. In

forward reasoning, we exploit prior knowledge about components that guarantee properties

based on other properties to infer that the system guarantees a conjunction of properties. For

example the rule presented in [McM99a] is a forward reasoning rule. The terms backward

completeness and forward completeness refer to completeness of backward reasoning AG rules

and to completeness of forward reasoning AG rules, respectively. The main result in [Mai03] is

that forward reasoning AG rules cannot be sound and complete.

The work in [LDD+13] addresses synthesizing automatically circular compositional proofs

based on logical abduction. A key difference is that they refer to a decomposition of a sequential

program, while we consider concurrent systems.

1.2 Organization

The rest of this thesis is organized as follows. In the next chapter we give the necessary

background for model checking of LTSs. In Chapter 3 we define the Inductive Properties and

formally establish the soundness and completeness of the circular rule CIRC-AG. In Chapter

4 we show how to check Inductive Properties, present the ACR algorithm that automates the

application of rule CIRC-AG and define Membership Constraints that are essential part of

the ACR algorithm. In Chapters 5 and 6 we then describe in detail the algorithms ApplyAG

and GenAssmp, respectively. These two algorithms are the main building blocks of the ACR

algorithm. In Chapter 7 we prove the correctness of the ACR algorithm and show that it produces

minimal assumptions. We provide an experimental evaluation of the proposed algorithm in

Chapter 8. Finally, we discuss some conclusions and future work in Chapter 9.
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Chapter 2

Preliminaries

In this chapter we provide the necessary background for our work. We introduce labeled

transition systems together with their associated operators, and also present how properties are

expressed and checked in this context.

Let Act be the universal set of observable actions and let τ denote a local action, unobserv-

able to a component’s environment.

Definition 2.1. A Labeled Transition System (LTS) M is a quadruple M = (Q,αM, δ, q0)

where:

• Q is a finite set of states.

• αM ⊆ Act is a finite set of observable actions called the alphabet of M .

• δ ⊆ Q× (αM ∪ {τ})×Q is a transition relation.

• q0 ∈ Q is the initial state.

An LTS M = (Q,αM, δ, q0) is nondeterministic if it contains a τ transition or if there exist

(q, a, q′), (q, a, q′′) ∈ δ such that q′ 6= q′′. Otherwise, M is deterministic (denoted as DLTS).

We write δ(q, a) =⊥ if there is no q′ such that (q, a, q′) ∈ δ. For a DLTS, we write δ(q, a) = q′

to denote that (q, a, q′) ∈ δ.

Paths and Traces A trace σ is a sequence of observable actions. For a trace σ, We use σi
to denote the prefix of σ of length i. A path in an LTS M = (Q,αM, δ, q0) is a sequence

p = q0, a0, q1, a1 · · · , an−1, qn of alternating states and observable or unobservable actions of

M , such that for every k ∈ {0, . . . , n− 1} we have (qk, ak, qk+1) ∈ δ. The trace of p, denoted

σ(p) is the sequence b0b1 · · · bl of actions along p, obtained by removing from a0 · · · an−1 all

occurrences of τ . The set of all traces of paths in M is called the language of M , denoted

L(M). A trace σ is accepted by M if σ ∈ L(M). Note that L(M) is prefix-closed and that the

empty trace, denoted by ε, is accepted by any LTS.
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Figure 2.1: LTSs describing the In and Out components and the Order property. αIn =
{in, send, ack}, αOut = {out, send, ack} and αOrder = {send, ack}.

Note. A non-deterministic LTS can be converted to a deterministic LTS that accepts the

same language. However the deterministic LTS might have exponentially more states than the

non-deterministic LTS.

Projections For Σ ⊆ Act, we use σ↓Σ to denote the trace obtained by removing from σ all

occurrences of actions a 6∈ Σ. M↓Σ is defined to be the LTS over alphabet Σ obtained by

renaming to τ all the transitions labeled with actions that are not in Σ. Note that L(M↓Σ) =

{σ↓Σ | σ ∈ L(M)}.

Parallel Composition Given two LTSsM1 andM2 over alphabetαM1 andαM2, respectively,

their interface alphabet αI consists of their common alphabet. That is, αI = αM1 ∩αM2. The

parallel composition operator || is a commutative and associative operator that combines the

behavior of two components by synchronizing on the actions in their interface and interleaving

the remaining actions.

Let M1 = (Q1, αM1, δ1, q01) and M2 = (Q2, αM2, δ2, q02) be two LTSs. Then M1||M2 is

an LTS M = (Q,αM, δ, q0), where Q = Q1 ×Q2, q0 = (q01 , q02), αM = αM1 ∪ αM2, and

δ is defined as follows where a ∈ αM ∪ {τ}:

• if (q1, a, q
′
1) ∈ δ1 for a 6∈ αM2, then ((q1, q2), a, (q′1, q2)) ∈ δ for every q2 ∈ Q2,

• if (q2, a, q
′
2) ∈ δ2 for a 6∈ αM1, then ((q1, q2), a, (q1, q

′
2)) ∈ δ for every q1 ∈ Q1, and

• if (q1, a, q
′
1) ∈ δ1 and (q2, a, q

′
2) ∈ δ2 for a 6= τ , then ((q1, q2), a, (q′1, q

′
2)) ∈ δ.

Lemma 2.2. [CGP03] For every t ∈ (αM1 ∪ αM2)∗, t ∈ L(M1||M2) if and only if t↓αM1 ∈
L(M1) and t↓αM2 ∈ L(M2).

Example 1. Consider the example in Figure 2.1. This is a variation of the example of [CGP03]

modified to illustrate circular dependencies. LTSs In andOut have interface alphabet {send, ack}.
Their composition In||Out is an LTS where the transition from state 0 to 1 in component In

(labeled with ack) never takes place, since there is no corresponding matching transition in

component Out. Similarly the transition from state 2 to 3 in component Out (labeled with send)

never takes place. As a result, In||Out simply repeats the trace 〈in, send, out, ack〉.

12



Properties and Satisfiability A safety property is defined as an LTS P , whose language L(P )

defines the set of acceptable behaviors over the alphabet αP of P . An LTS M over αM ⊇ αP
satisfies P , denoted M |= P , if ∀σ ∈ L(M).σ↓αP ∈ L(P ). To check a safety property P , its

LTS is transformed into a deterministic LTS, which is also completed by adding an error state

π and adding transitions from every state q in the deterministic LTS into π for all the missing

outgoing actions of q; the resulting LTS is called an error LTS, denoted by Perr. Checking that

M |= P is done by checking that π is not reachable in M ||Perr.
A trace σ ∈ αM∗ is a counterexample for M |= P if σ ∈ L(M) but σ↓αP 6∈ L(P ).

The Order LTS from Figure 2.1 depicts a safety property satisfied by In||Out. Order
is defined over alphabet {send, ack}. Note that neither In, nor Out, satisfy this property

individually. For example, the trace 〈in, send, ack, ack〉 of In is a counterexample for In |=
Order.
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Chapter 3

Circular Assume-Guarantee
Reasoning

In this chapter we formally establish the soundness and completeness of the circular rule CIRC-

AG introduced in Chapter 1. We start by defining inductive properties. CIRC-AG uses formulas

of the form M |= A . P , where M is a component, P is a property, and A is an assumption

about M ’s environment. To ensure soundness of the circular rule the assume-guarantee formula

is defined using induction over the length of finite traces.

Soundness states that if there exist LTS assumptions g1 and g2 that satisfy all premises of

CIRC-AG, then M1||M2 |= P . Completeness states that if M1||M2 |= P holds we can always

find g1 and g2 such that the premises of the rule hold.

3.1 Inductive Properties

Definition 3.1 (The . operator). Let M,A and P be LTSs over αM,αA and αP respectively,

such that αP ⊆ αM . We say that M |= A . P holds if ∀k ≥ 1 ∀σ ∈ (αM ∪ αA)∗ of length k

such that σ↓αM ∈ L(M), if σk−1↓αA ∈ L(A) then σ↓αP ∈ L(P ).

Intuitively, the formula states that if a trace in M satisfies the assumption A up to step k − 1,

it should guarantee P up to step k. As an example consider the LTSs In from Figure 2.1 and

g1 and g2 from Figure 3.1. Then In |= g2 . g1. On the other hand, In 6|= g1 . g2 since the

trace σ = 〈in, send, ack, ack〉 ∈ L(In) is such that σk−1↓αg1 = 〈send, ack〉 ∈ L(g1), but

σ↓αg2 = 〈send, ack, ack〉 6∈ L(g2). σ is therefore a counterexample for In |= g1 . g2.

Definition 3.2 (Counterexample for M |= A . P ). A trace σ ∈ (αM ∪ αA)∗ of length k is a

counterexample for M |= A . P if σ↓αM ∈ L(M) and σk−1↓αA ∈ L(A) but σ↓αP 6∈ L(P ).

3.2 Soundness and Completeness of Rule CIRC-AG

To establish the soundness of rule CIRC-AG we have the following requirements. M1,M2 and

P are LTSs where αP ⊆ αM1 ∪ αM2. Moreover, g1, g2 are LTSs, used as assumptions in the
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rule, such that αM1 ∩ αP ⊆ αg1 and αM2 ∩ αP ⊆ αg2.

The following lemma is used in the proof of soundness of the rule, but it also provides

some insight as to how g1 and g2 should be constructed. We will use this insight, and insight

from Lemma 3.4, in our algorithm.

Lemma 3.3. Let g1 and g2 be LTS assumptions successfully used in CIRC-AG. ThenM1||M2 |=
g1||g2.

Proof. Let g1 and g2 be assumptions successfully used in the CIRC-AG rule. Assume, by

contradiction, that M1||M2 6|= g1||g2. Then, let σ ∈ (αM1 ∪ αM2)∗ be a shortest trace such

that σ ∈ L(M1||M2) but σ↓(αg1∪αg2) 6∈ L(g1||g2), i.e. σ↓αg1 6∈ L(g1) or σ↓αg2 6∈ L(g2) (by

Lemma 2.2). Without loss of generality assume that (1) σ↓αg1 6∈ L(g1). Note that σ 6= ε since

ε ∈ L(A) for every LTS A. In addition σ ∈ L(M1||M2) implies in particular that (2) σ↓αM1 ∈
L(M1). Since σ is the shortest trace refuting the relation, σ|σ|−1↓(αg1∪αg2) ∈ L(g1||g2), and

in particular, (3) σ|σ|−1↓αg2 ∈ L(g2). Let σ′ be σ↓(αM1∪αg1∪αg2). Note that the last letter of

σ has to be in αg1 ∪ αg2 (otherwise, σ|σ|−1 is a shorter trace such that σ|σ|−1 ∈ L(M1||M2)

but σ|σ|−1↓(αg1∪αg2) = σ↓(αg1∪αg2) 6∈ L(g1||g2)). Therefore, σ′ is also nonempty. Moreover, σ

and σ′ share their last action and σ|σ|−1↓(αM1∪αg1∪αg2) = σ′|σ′|−1. By (2) we get that σ′↓αM1

is a trace of M1, whose prefix σ′|σ′|−1↓αg2 = σ|σ|−1↓αg2 is in L(g2) (by (3)), but by (1),

σ′↓αg1 = σ↓αg1 is not in L(g1). This contradicts the fact that M1 |= g2 . g1. ut

Note that M1||M2 |= g1||g2 implies that M1||M2 |= g1 and M1||M2 |= g2. Therefore,

Lemma 3.3 states that in a successful application of CIRC-AG, gi overapproximates the part of

Mi restricted to the composition (or if we ignore the different alphabets – intersection) with the

other component, as opposed to overapproximating Mi as a whole.

Lemma 3.4. Let g1 and g2 be LTS assumptions successfully used in CIRC-AG, such that

αMi ∩ αP ⊆ αgi. Then M1||g2 |= P and M2||g1 |= P .

Proof. To prove that M1||g2 |= P , let g1 and g2 be LTS assumptions successfully used in

CIRC-AG. Assume, by way of contradiction, that M1||g2 6|= P . Then, there is a trace σ ∈
L(M1||g2) such that σ↓αP 6∈ L(P ). By Lemma 2.2 we have that (1) σ↓αM1 ∈ L(M1)

and σ↓αg2 ∈ L(g2). Since g2 is an LTS (and hence prefix-closed), σ|σ|−1↓αg2 ∈ L(g2) as

well. By premise 1, M1 |= g2 . g1. It follows that (2) σ↓αg1 ∈ L(g1). By (1) and (2) and

by Lemma 2.2 we get that σ↓αg1∪αg2 ∈ L(g1||g2). However, since σ↓αP 6∈ L(P ) (where

αP ⊆ αg1 ∪ αg2), we conclude that g1||g2 6|= P , in contradiction to premise 3.

The proof of M2||g1 |= P is similar to the proof of M1||g2 |= P . ut

The next lemma is used in the completeness proof of CIRC-AG. It shows that under certain

restrictions on αg1 and αg2, it is possible to verify and falsify properties of the composition of

M1 and M2 by considering their projections on αg1 and αg2. These restrictions guide us in the

choice of the alphabets of the assumptions, αg1 and αg2, used by our algorithm.
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Lemma 3.5. Let M1,M2, P be LTSs over αM1, αM2, αP respectively. Let αg1 ⊇ αI ∪
(αM1∩αP ) andαg2 ⊇ αI∪(αM2∩αP ). ThenM1||M2 |= P if and only ifM1↓αg1 ||M2↓αg2 |=
P . 1

Proof. (⇐=:) We prove the implication from M1↓αg1 ||M2↓αg2 |= P to M1||M2 |= P . Sup-

pose M1↓αg1 ||M2↓αg2 |= P . Let αg′1 = αg1 ∩ αM1 and αg′2 = αg2 ∩ αM2. Clearly,

M1↓αg1 = M1↓αg′1 and M2↓αg2 = M2↓αg′2 . Therefore also M1↓αg′1 ||M2↓αg′2 |= P . To show

that M1||M2 |= P , consider a trace σ ∈ L(M1||M2). We show that σ↓αP ∈ L(P ).

Let σ′ = σ↓(αg′1∪αg′2). Then σ′ ∈ L((M1||M2)↓αg′1∪αg′2). Further, since αg′1 ⊆ αM1

and αg′2 ⊆ αM2, we have that L((M1||M2)↓αg′1∪αg′2) ⊆ L(M1↓αg′1 ||M2↓αg′2). Therefore,

σ′ ∈ L(M1↓αg′1 ||M2↓αg′2), hence σ′↓αP ∈ L(P ). In addition, since αP ⊆ αg′1 ∪ αg′2 (since

αg′1 ⊇ αM1 ∩ αP and αg′2 ⊇ αM2 ∩ αP ) it follows that σ↓αP = σ′↓αP and therefore

σ↓αP ∈ L(P ).

(=⇒:) SupposeM1||M2 |= P . We show thatM1↓αg1 ||M2↓αg2 |= P . Let αg′1 = αg1∩αM1

and αg′2 = αg2 ∩ αM2. As before, M1↓αg1 = M1↓αg′1 and M2↓αg2 = M2↓αg′2 . Therefore it

suffices to show that M1↓αg′1 ||M2↓αg′2 |= P . Consider a trace σ ∈ L(M1↓αg′1 ||M2↓αg′2) (i.e.

σ ∈ (αg′1 ∪ αg′2)∗). We show that σ↓αP ∈ L(P ).

Recall that αg′1 ⊆ αM1 and αg′2 ⊆ αM2. Further, since αg′1 ∩ αM2 = αI and also

αg′2 ∩ αM1 = αI , we have that L(M1↓αg′1 ||M2↓αg′2) = L((M1||M2)↓αg′1∪αg′2). Therefore,

σ ∈ L((M1||M2)↓αg′1∪αg′2). This means that there exists σ′ ∈ (αM1 ∪ αM2)∗ such that

σ′ ∈ L(M1||M2) and σ′↓αg′1∪αg′2 = σ. Since M1||M2 |= P , it follows that σ′↓αP ∈ L(P ). As

before, αP ⊆ αg′1 ∪ αg′2. Therefore, σ′↓αP = σ↓αP and we conclude that σ↓αP ∈ L(P ). ut

Theorem 3.6. The Rule CIRC-AG is sound and complete.

Proof. We start by proving the soundness of the rule CIRC-AG and then turn to proving its

completeness:

• Soundness: We show that if there exist LTS assumptions g1 and g2 that satisfy all

premises of CIRC-AG, then M1||M2 |= P . Assume by way of contradiction that the

premises of the CIRC-AG rule hold for some g1 and g2 but M1||M2 6|= P . Consider a

counterexample trace σ ∈ (αM1 ∪ αM2)∗ for M1||M2 |= P , i.e. σ is a trace of M1||M2

that violates the property P . In other words σ↓αP 6∈ L(P ). By Lemma 3.3, we know that

M1||M2 |= g1||g2. Therefore, σ↓αg1∪αg2 ∈ L(g1||g2). In addition, αP ⊆ αg1 ∪ αg2.

It follows that σ′ = σ↓(αg2∪αg2) satisfies the following conditions: σ′ ∈ L(g1||g2) and

σ′↓αP = σ↓αP 6∈ L(P ). But premise 3 states that such σ′ does not exist. Hence we get a

contradiction.

• Completeness: We show that M1||M2 |= P implies that there exist assumptions g1, g2

over the alphabets αg1 = αM1∩(αM2∪αP ) and αg2 = αM2∩(αM1∪αP ) respectively

1For the implication from M1↓αg1 ||M2↓αg2 |= P to M1||M2 |= P it suffices to require that αg1 ⊇ αM1 ∩αP
and αg2 ⊇ αM2 ∩ αP .
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Figure 3.1: LTSs describing the assumptions g1 and g2 generated by ACR for verifying
In||Out |= Order from Figure 2.1 using the rule CIRC-AG , and the assumption A gen-
erated with L* for verifying In||Out |= Order from Figure 2.1 using the rule ASYM-AG.
αg1 = αg2 = αA = {send, ack}. g1 and g2 satisfy the three premises of the rule CIRC-AG.
Therefore, we can conclude that In||Out |= Order.

that satisfy the premises of the rule. To do so, we consider g1 = M1↓αg1 and g2 =

M2↓αg2 . Clearly premise 1 and 2 are satisfied by these g1 and g2 since Mi |= A.Mi↓αgi
for any A. It remains to show that premise 3 holds, i.e. g1||g2 |= P . Since M1||M2 |= P

and αgi ⊇ αI ∪ (αMi ∩ αP ), the latter follows from Lemma 3.5.

The completeness proof also shows that for a successful application of the rule it suffices to

consider assumptions g1 and g2 over αg1 = αM1∩(αM2∪αP ) and αg2 = αM2∩(αM1∪αP ).

Example 2. Consider our running example (Figure 2.1), and consider the assumptions g1 and

g2 depicted in Figure 3.1, over alphabet αg1 = αIn ∩ (αOut ∪ αOrder) and αg2 = αOut ∩
(αIn ∪ αOrder). In both cases αgi = {send, ack}. As stated above, In |= g2 . g1. Similarly,

Out |= g1 . g2. Moreover, g1||g2 |= Order. It follows that In||Out |= Order can be verified

using CIRC-AG with g1 and g2 as assumptions.
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Chapter 4

Automatic Reasoning with CIRC-AG

In this chapter we describe our ACR iterative algorithm to automate the application of rule CIRC-

AG by automating the assumption generation. We also introduce an algorithm for checking

inductive properties that is used for checking the first two premises of rule CIRC-AG. Finally, we

formally define membership constraints that are used in our algorithm for refining the generated

assumptions.

4.1 Checking Inductive Properties

We first introduce a simple algorithm CHECKINDUCTIVEPROPERTY (see Algorithm 4.1) that

checks if an inductive property of the form M |= A . P , where αP ⊆ αM , holds. If the

property does not hold, it returns a counterexample. To do so, we consider the LTS M ||A||Perr.
We label its states by (parameterized) propositions erra, where a ∈ αP . (sM , sA, sP ) is labeled

by erra if sM has an outgoing transition in M labeled by a, but the corresponding transition

(labelled by a) leads to π in Perr. We then check if a state q labeled by erra is reachable in

M ||A||Perr. If so, then the algorithm returns the trace of a path from q0 to q extended with

action a as a counterexample. Intuitively, such a path to q represents a trace in M that satisfies

A (because it is a trace in M ||A) such that if we extend it by a we get a trace in M violating P .

4.2 ACR Algorithm Overview

In this section we present an iterative algorithm to automate the application of the rule CIRC-AG

by automating the assumption generation. Previous work used approximate iterative techniques

based on automata learning or abstraction refinement to automate the assumption generation in

the context of acyclic rules [CGP03, PGB+08, BPG08, CCST05, AMN05, CCF+10, CFC+09].

A different approach [GMF08] used a SAT solver over a set of constraints encoding how the

assumptions should be updated to find minimal assumptions; the method was shown to work

well in practice, in the context of the same acyclic rule. We follow the latter approach here and

we adapt it to reasoning for cyclic rules and checking inductive assume-guarantee properties. As

mentioned, this is challenging due to the mutual dependencies between the two assumptions that
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Algorithm 4.1 Checking if M |= A . P

1: procedure CHECKINDUCTIVEPROPERTY(M,A,P )
2: L = (Q,αL, δ, q0)
3: L←M ||A||Perr
4: for each (sM , sA, sP ) in Q do

5: erra(sM , sA, sP ) =

{
true a ∈ αP ∧ δM (sM , a) 6=⊥ ∧δP (sP , a) = π
false otherwise

6: end for
7: if (exist q ∈ Q and a ∈ αP s.t. q is reachable from q0 in L and erra(q) = true) then
8: Let p be a path leading from q0 to q in L
9: return “σ(p)a is a counterexample for M |= A . P ”

10: else
11: return “M |= A . P ”
12: end if
13: end procedure

we need to generate. We achieve this by constraining the assumptions with boolean combinations

of requirements that certain traces must or must not be included in the language of the updated

assumptions.

Algorithm 4.2 describes the overall flow of our Automated Circular Reasoning (ACR)

algorithm for checking M1||M2 |= P using the rule CIRC-AG.

We fix the alphabet over which the assumptions g1 and g2 are computed to be αg1 =

αM1 ∩ (αM2 ∪ αP ) and αg2 = αM2 ∩ (αM1 ∪ αP ). By the completeness proof of the rule,

this suffices.

ACR maintains a set C of membership constraints on g1 and g2. At each iteration it

calls GENASSMP (described in Chapter 6) to synthesize, using a SAT solver, new minimal

assumptions g1 and g2 that satisfy all the constraints in C. GENASSMP also receives as input a

parameter k which provides a lower bound on the total number of states in the assumptions we

look for. k has the property that any pair of LTSs whose total number of states is smaller than

k does not satisfy the set of constraints C. The algorithm then invokes APPLYAG (described

in Chapter 5) to check the three premises of rule CIRC-AG using the obtained assumptions g1

and g2. APPLYAG may return a conclusive result: either “M1||M2 |= P ” or “M1||M2 6|= P ”,

in which case ACR terminates. If no conclusive result is obtained, it means that g1 and g2 do

not satisfy the premises of the rule. Further, the counterexamples demonstrating the falsification

of the premises are not suitable for concluding M1||M2 6|= P , i.e. they are spurious. In this case

APPLYAG returns “continue” together with new membership constraints that determine how the

assumptions should be refined. The new constraints are added to C. Note that since the set C

of constraints is monotonically increasing, any new pair (g′1, g
′
2) that satisfies it also satisfies

previous sets of constraints. The previous set was satisfied by assumptions whose total size is

|g1|+ |g2| but not smaller. Thus, we should start our search for new (g′1, g
′
2) from k = |g1|+ |g2|

number of states. k is updated accordingly (line 6).

Example 3. The assumptions g1 and g2 from Figure 3.1 used to verify In||Out |= Order with
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Algorithm 4.2 Main algorithm for automating rule CIRC-AG for checking M1||M2 |= P

1: procedure ACR(M1,M2, P )
2: Initialize: C = ∅, k = 2
3: repeat
4: (g1, g2) =GENASSMP(C, k)
5: (C ′, Result) =APPLYAG(M1,M2, P, g1, g2)
6: C = C ∪ C ′, k = |g1|+ |g2|
7: until (Result 6= “continue”)
8: return Result
9: end procedure

CIRC-AG were obtained by ACR in the 7th iteration. The LTS A from Figure 3.1 describes

the assumption obtained with the algorithm of [CGP03], which is based on the acyclic rule

ASYM-AG and uses L∗ for assumption generation. Notice that both g1 and g2 are smaller

than A (and our experiments show that they can be much smaller in practice). The reason

is that, after a successful application of CIRC-AG, g1||g2 overapproximates M1||M2. This

means that each gi overapproximates the part of Mi restricted to the composition with the

other component. For example g1 does not include the traces leading to state 1 from In since

they do not participate in the composition. Similarly g2 does not include the traces leading to

state 3 in Out. In contrast, for the acyclic rule, the assumption A has to overapproximate M2

(Out) as a whole. Therefore, CIRC-AG can result in substantially smaller assumptions, as also

demonstrated by our experiments.

4.3 Membership Constraints

Membership constraints are used by our algorithm to gather information about traces that

need to be in L(gi) or must not be in L(gi), for i = 1, 2. Thus they allow us to encode

dependencies between the languages of the two assumptions L(g1) and L(g2). Recall that

αg1 = αM1 ∩ (αM2 ∪ αP ) and αg2 = αM2 ∩ (αM1 ∪ αP ).The constraints are defined by

formulas with a special syntax and semantics, as defined below.

Definition 4.1 (Syntax). The set of membership constraints over (αg1, αg2) is defined induc-

tively as follows:

• For σ1 ∈ (αg1)∗ and σ2 ∈ (αg2)∗ the following are atomic membership constraints:

+(σ1, 1), −(σ1, 1), +(σ2, 2), −(σ2, 2).

• if c1 and c2 are membership constraints, then (c1 ∧ c2) and (c1 ∨ c2) are membership

constraints.

Intuitively +(σi, i) for i=1,2 constrains L(gi) to contain σi. Similarly −(σi, i) for i=1,2 con-

strains L(gi) not to contain σi.

Given a membership constraint formula c, Strings(c, i) is the set of prefixes of all σ ∈
(αgi)

∗ such that +(σ, i) or −(σ, i) is an atomic formula in c.
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Definition 4.2 (Semantics). Let c be a membership constraint over (αg1, αg2), and let A1 and

A2 be two LTSs. The satisfaction of c by (A1, A2), denoted (A1, A2) |= c is defined inductively.

(A1, A2) |= c if and only if αA1 = αg1 and αA2 = αg2, and in addition:

• if c is an atomic formula of the form +(σ, i) then σ ∈ L(Ai).

• if c is an atomic formula of the form −(σ, i) then σ 6∈ L(Ai).

• if c is of the form (c1 ∧ c2) then (A1, A2) |= c1 and (A1, A2) |= c2 .

• if c is of the form (c1 ∨ c2) then (A1, A2) |= c1 or (A1, A2) |= c2.

For a set C of membership constraints over (αg1, αg2), we say that A1 and A2 satisfy C if

and only if for every c ∈ C, (A1, A2) |= c.

For example, a membership constraint of the form +(σ1, 1) ∨ −(σ2, 2) requires that σ1 ∈
L(g1) or σ2 6∈ L(g2) (or both). As will be shown in section 5.2 our algorithm produces

membership constraints formulas over αg1 = αM1 ∩ (αM2 ∪αP ) and αg2 = αM2 ∩ (αM1 ∪
αP ).
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Chapter 5

APPLYAG Algorithm

This chapter is devoted to the description of APPLYAG. Given assumptions g1,g2, APPLYAG

(see Algorithm 5.1) applies assume-guarantee reasoning by checking the three premises of

rule CIRC-AG using g1 and g2. In the algorithm we check premises 1, 2, 3 in this order but

in fact the order of the checks does not matter and the checks can be done in parallel. If all

three premises are satisfied, then, since the rule is sound, it follows that M1||M2 |= P holds

(and this is returned to the user). Otherwise, at least one of the premises does not hold. Hence

a counterexample σ for (at least) one of the premises is found. APPLYAG then checks if the

counterexample indicates a real violation for M1||M2 |= P , as described below. If this is the

case, then APPLYAG returns M1||M2 6|= P . Otherwise APPLYAG uses the counterexample to

compute a set of new membership constraints C and returns “continue” (note that in the first

two cases an empty constraint set is returned).

Notation. For readability, in the pseudo-code of APPLYAG (and UPDATECONSTRAINTS)

we use σ↓ ∈ L(A) and σ↓ 6∈ L(A) as a shorthand for σ↓αA ∈ L(A) and σ↓αA 6∈ L(A),

respectively.

5.1 Checking Validity of a Counterexample

Given a counterexample σ for one of the premises of the CIRC-AG rule, APPLYAG checks if σ

can be extended into a trace in L(M1||M2) which does not satisfy P . This check is performed

either by APPLYAG directly (if premise 3 fails: in lines 9-16 of APPLYAG) or by algorithm

UPDATECONSTRAINTS (if one of the first two premises fails). In essence, a counterexample σ

is real if σ↓αg1 ∈ L(M1↓αg1), σ↓αg2 ∈ L(M2↓αg2) and σ↓αP 6∈ L(P ). This is also stated by

the following lemma, which follows from Lemma 2.2 and Lemma 3.5.

Lemma 5.1. If σ↓αg1 ∈ L(M1↓αg1), σ↓αg2 ∈ L(M2↓αg2) and σ↓αP 6∈ L(P ), thenM1||M2 6|=
P . Moreover, σ can be extended into a counterexample for M1||M2 |= P .

Proof. The first two checks ensure that σ↓αg1∪αg2 ∈ L(M1↓αg1 ||M2↓αg2), and sinceαg1, αg2 ⊇
αI this ensures that σ↓αg1∪αg2 ∈ L((M1||M2)↓αg1∪αg2). Since αP ⊆ αg1 ∪ αg2, the third
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check ensures that (σ↓αg1∪αg2)↓αP = σ↓αP 6∈ L(P ). Therefore σ↓αg1∪αg2 is a counterexample

for M1↓αg1 ||M2↓αg2 |= P , and by Lemma 3.5, σ↓αg1∪αg2 can be extended into a counterexam-

ple for M1||M2 |= P . ut

For example, in line 10 of Algorithm 5.1, σ ∈ (αg1 ∪ αg2)∗ is a counterexample for

premise 3, hence σ↓αP 6∈ L(P ). It therefore suffices to check if σ↓αg1 ∈ L(M1↓αg1) and

σ↓αg2 ∈ L(M2↓αg2) in order to conclude that a real counterexample exists (line 11). Similarly,

in Algorithm 5.2, σa ∈ (αMi ∪ αgj)∗ is a counterexample for premise i for i ∈ {1, 2}, hence

σa↓αMi ∈ L(Mi), and since αgi ⊆ αMi, also σa↓αgi ∈ L(Mi↓αgi). In line 3, the algorithm

then checks if, in addition, σa↓αgj ∈ L(Mj↓αgj ) and σa↓αP 6∈ L(P ). If these conditions hold

then by Lemma 5.1 the counterexample is real (line 5).

5.2 Computation of New Membership Constraints based on Coun-
terexamples

When the counterexample found for one of the premises does not produce a real counterexample

for M1||M2 |= P , then APPLYAG (or UPDATECONSTRAINTS) analyzes the counterexample

and computes new membership constraints to refine the assumptions. In essence, these con-

straints encode whether the counterexample trace (or a restriction of it) should be added to or

removed from the languages of the two assumptions such that future checks will not produce

the same counterexample again.

If premise 3 does not hold, i.e. g1||g2 6|= P and the reported counterexample σ is found not to

be real then it should be removed from L(g1) or from L(g2) (in this way the trace will no longer

be present in the composition g1||g2 for the assumptions computed in subsequent iterations).

Therefore in line 14, APPLYAG adds the corresponding constraint (−(σ↓αg1 , 1) ∨−(σ↓αg2 , 2))

to C.

If either premise 1 or 2 does not hold, i.e. Mi 6|= gj . gi, then the analysis of the coun-

terexample σiai (for i=1 or 2) and the addition of constraints (if needed) are performed by

UPDATECONSTRAINTS (see Algorithm 5.2). Specifically, in this case σiai should be added

to L(gi) or its prefix σi should be removed from L(gj) (where j 6= i). In both cases, this

ensures that checking Mi 6|= gj . gi in subsequent iterations will no longer produce the same

counterexample (see Definition 3.1).

We add this constraint in line 18 of Algorithm 5.2, where C is updated with (−(σ↓αgj , j) ∨
+(σa↓αgi , i). Although this simple refinement would work for all cases, note that Algorithm 5.2,

uses a more involved refinement. The reason is that we exploit the properties stated in Lemma 3.3

and Lemma 3.4, to detect more elaborate constraints; using the lemma and analyzing both σ

and σa allows us to accelerate the refinement process.

For example, in line 25, the subconstraint +(σa↓αgi , i) is conjoined with −(σa↓αgj , j).

This is because Lemma 3.3 establishes thatMi||gj |= P is a necessary condition for a successful

application of CIRC-AG. Therefore since σa↓αgi ∈ L(Mi↓αgi) and σa↓αP 6∈ L(P ), then

σa↓αgj must not be in L(gj). Explanations of other cases appear as comments in the pseudocode.
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Algorithm 5.1 Applying CIRC-AG with g1 and g2, and constraint updating.
1: procedure APPLYAG(M1,M2, P, g1, g2)
2: if M1 6|= g2 . g1 then
3: Let σ1a1 be a counterexample for M1 6|= g2 . g1

4: return UPDATECONSTRAINTS(1, 2,M1,M2, P, σ1a1)
5: else if M2 6|= g1 . g2 then
6: Let σ2a2 be a counterexample for M2 6|= g1 . g2

7: return UPDATECONSTRAINTS(2, 1,M2,M1, P, σ2a2)
8: else if g1||g2 6|= P then
9: Let σ be a counterexample for g1||g2 6|= P

10: if (σ↓ ∈ L(M1 ↓ αg1) && σ ↓∈ L(M2 ↓ αg2)) then
11: return (∅, “M1||M2 6|= P ”)
12: else // σ 6∈ L(M1↓αg1 ||M2↓αg2), σ↓ 6∈ L(P )
13: // Remove σ from g1 or remove σ from g2

14: C = {(−(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2))}
15: return (C, “continue”)
16: end if
17: else
18: return (∅, “M1||M2 |= P ”)
19: end if
20: end procedure

0

{ack,send}
0 1

send
ack

g
(6)
1 g

(6)
2

Figure 5.1: LTSs produced in the 6th iteration of ACR.

Example 4. Consider the LTSs from Figure 5.1, produced in the 6th iteration of ACR. When

trying to apply CIRC-AG with these assumptions, APPLYAG obtains the trace 〈send, out, send〉
as a counterexample for Out |= g

(6)
1 . g

(6)
2 (premise 2).

Since 〈send, out, send〉↓αg1 6∈ L(In↓αg1), the counterexample turns out to be spuri-

ous, and after checking the additional conditions in UPDATECONSTRAINTS, −(〈send〉, 1) ∨
(+(〈send, send〉, 2) ∧ −(〈send, send〉, 1)) is produced in line 25 as a membership constraint

in order to eliminate it in the following iterations.

In the following we state the progress obtained by assumption refinement, based on spurious

counterexamples.

Lemma 5.2. Let σ be a spurious counterexample obtained for premise i ∈ {1, 2, 3} of CIRC-

AG with respect to assumptions g1, g2 and let C be the updated set of constraints. Then any

pair of LTSs g′1 and g′2 such that (g′1, g
′
2) |= C will no longer exhibit σ as a counterexample for

premise i of CIRC-AG.
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Algorithm 5.2 Computation of constraints based on a counterexample for Mi |= gj . gi.

1: // σa is a counterexample for Mi |= gj . gi, i.e. σa↓ ∈ L(Mi), σ↓ ∈ L(gj), σa↓ 6∈ L(gi)
2: procedure UPDATECONSTRAINTS(i, j,Mi,Mj , P, σa)
3: if σa↓ ∈ L(Mj↓αgj ) and σa↓ 6∈ L(P ) then
4: // σa↓ ∈ L(Mi↓αgi ||Mj↓αgj ) and σa↓ 6∈ L(P )
5: return (∅, “Mi||Mj 6|= P ”)

6: if σa↓ ∈ L(Mj↓αgj ) and σa↓ ∈ L(P ) then
7: // Add σa to both gi and gj to ensure M1↓αg1 ||M2↓αg2 |= g1||g2 ( Lemma 3.3)
8: C = {+(σa↓αgi , i),+(σa↓αgj , j)}
9: if σa↓ 6∈ L(Mj↓αgj ) and σ↓ ∈ L(Mj↓αgj ) and σ↓ 6∈ L(P ) then

10: // σ↓ ∈ L(Mi↓αgi ||Mj↓αgj ) and σ↓ 6∈ L(P )
11: return (∅, Mi||Mj 6|= P )

12: if σa↓ 6∈ L(Mj↓αgj ) and σ↓ ∈ L(Mj↓αgj ) and σ↓ ∈ L(P ) then
13: // σ ∈ L(M1↓αg1 ||M2↓αg2), thus σ cannot be removed from gj ( Lemma 3.3)
14: // Add σa to gi.
15: C = {+(σa↓αgi , i)}
16: if σa↓ 6∈ L(Mj↓αgj ) and σ↓ 6∈ L(Mj↓αgj ) and σa↓ ∈ L(P ) then
17: // Remove σ from gj or add σa to gi
18: C = {(−(σ↓αgj , j) ∨+(σa↓αgi , i)}
19: if σa↓ 6∈ L(Mj↓αgj ) and σ↓ 6∈ L(Mj↓αgj ) and σa↓ 6∈ L(P ) and σ↓ 6∈ L(P ) then
20: // Remove σ from gj (Because of Lemma 3.4)
21: C = {−(σ↓αgj , j)}
22: if σa↓ 6∈ L(Mj↓αgj ) and σ↓ 6∈ L(Mj↓αgj ) and σa↓ 6∈ L(P ) and σ↓ ∈ L(P ) then
23: // Remove σ from gj or (add σa to gi and remove it from gj)
24: // In the latter case removal of σa from gj is due to Lemma 3.4
25: C = {(−(σ↓αgj , j) ∨ (+(σa↓αgi , i) ∧ −(σa↓αgj , j)))}
26: return (C, “continue”)
27: end procedure

Proof. Let σ be a spurious counterexample that has been produced by checking premise i of

rule CIRC-AG:

• i ∈ {1, 2}: When σ = σ′a is a spurious counterexample for premise i where i ∈ {1, 2}
then one of the following constraints is added by Algorithm 5.2 to the updated set of

constraints C:

– c = +(σ′a↓αgi , i) ∧+(σ′a↓αgj , j) in Algorithm 5.2, line 8.

– c = +(σ′a↓αgi , i) in Algorithm 5.2, line 15.

– c= −(σ′↓αgj , j) in Algorithm 5.2, line 21.

– c= −(σ′↓αgj , j) ∨+(σ′a↓αgi , i) in Algorithm 5.2, line 18.

– c= −(σ′↓αgj , j) ∨ (+(σ′a↓αgi , i) ∧ −(σ′a↓αgj , j)) in Algorithm 5.2, line 25.

Since (g′1, g
′
2) satisfies C it implies that (g′1, g

′
2) satisfies c as well. It is easy to see that

since c is one of the above constraints, adding it to C guarantees that σ′a can no longer
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be a counterexample for premise i with the assumptions g′1, g
′
2.

• i = 3: σ is a spurious counterexample that has been produced from checking premise 3 in

CIRC-AG. Thus, the constraint c = −(σ↓αg1 , 1)∨−(σ↓αg2 , 2) is added by Algorithm 5.1

to the updated set of constraints C (Algorithm 5.1, Line 14). Since (g′1, g
′
2) satisfies C it

follows that (g′1, g
′
2) satisfies c as well. It implies that σ↓αg1 is not in L(g′1) or σ↓αg2 is

not in L(g′2) therefore, σ can not be a counterexample for premise 3 when applying the

CIRC-AG rule with the assumptions (g′1, g
′
2).

Corollary 5.3. Any pair of LTSs g′1 and g′2 such that (g′1, g
′
2) |= C is different from every

previous pair of LTSs considered by the algorithm.

The following two lemmas state that the added membership constraints do not over-constrain

the assumptions. They ensure that the “desired” assumptions that enable to verify (Lemma 5.4)

or falsify (Lemma 5.5) the property are always within reach.

Lemma 5.4. Suppose M1||M2 |= P and let g1 and g2 be LTSs that satisfy the premises of rule

CIRC-AG. Then (g1, g2) satisfy every set of constraints C produced by APPLYAG.

Proof. To prove the lemma, we need to show that every g1, g2 that satisfy the premises of rule

CIRC-AG satisfy all the forms of constraints that are being produced by both Algorithm 5.1 and

Algorithm 5.2.

Algorithm 5.1: in line 14, the constraint is of the form c = (−(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2)). By

reaching line 14, it follows that σ↓αP is not in L(P ). We prove by way of contradiction

that (g1, g2) |= c. Suppose that (g1, g2) 6|= c then σ↓(αg1∪αg2) is in L(g1||g2) but σ↓αP is

not in L(P ). Hence, we have a contradiction to the fact that g1||g2 |= P .

Algorithm 5.2: For every (i, j) in {(1,2),(2,1)} :

• in line 8 we add the following two constraints +(σa↓αgi , i) and +(σa↓αgj , j). When

Algorithm 5.2 reaches line 8, we know that σa↓ ∈ L(M1↓αg1 ||M2↓αg2). Therefore,

by Lemma 3.3 we get that σa↓ ∈ L(gi) and σa↓ ∈ L(gj). Hence, it follows that

(g1, g2) |= +(σa↓αgi , i) and (g1, g2) |= +(σa↓αgj , j).

• in line 15 we add the following constraint +(σa↓αgi , i). When Algorithm 5.2

reaches line 15, we know that (1) σa↓ ∈ L(Mi), σ↓ ∈ L(Mi) and σ↓ ∈ L(Mj↓αgj ).

Assume by way of contradiction that (g1, g2) 6|= +(σa↓αgi , i), it follows that

σa↓ 6∈ L(gi). By (1) we get that σa↓αMi is a trace of Mi, whose prefix σ↓αgj
is in L(gj) (by (1) and Lemma 3.3), but σa↓αgi is not in L(gi). This contradicts the

fact that the premise Mi |= gj ≺ gi holds.

• in line 18 we add a constraint of the form c = (−(σ↓αgj , j) ∨ +(σa↓αgi , i)). We

know that σa↓αMi is a trace of Mi. Assume by way of contradiction that (g1, g2)

does not satisfy c, then we get that σ↓αgj is in L(gj) and σa↓αgi is not in L(gi).

This contradicts the fact that the premise Mi |= gj . gi holds.
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• in line 21 we add a constraint of the form c = −(σ↓αgj , j). When Algorithm 5.2

reaches line 21 we know that (1) σ↓αMi is in L(Mi) but σ↓αP is not in L(P ).

Assume by way of contradiction that (g1, g2) does not satisfy c then we get that

(2) σ↓αgj is in L(gj). By (1) and (2) we get that σ is in L(Mi||gj), which contra-

dicts Lemma 3.4 that states Mi||gj |= P .

• in line 25 we add a constraint of the form c = (−(σ↓αgj , j) ∨ (+(σa↓αgi , i) ∧
−(σa↓αgj , j))). Assume by way of contradiction that (g1, g2) does not satisfy c, it

follows that (1) σ↓αgj is in L(gj) and σa↓αgi is not in L(gi) or σa↓αgj is in L(gj).

We know that σa↓αMi is in L(Mi) and that σa↓αP is not in L(P ). g1 and g2 satisfy

premise (i) of rule CIRC-AG then by (1) we get the σa↓αgi is in L(gi), it implies that

σa↓αgj is in L(gj) (Again by 1). Therefore σa is in L(g1||g2) and this contradicts

the fact the g1 and g2 satisfy premise (3) of rule CIRC-AG.

Lemma 5.5. Let g1 = M1↓αg1 and g2 = M2↓αg2 . Then (g1, g2) satisfy every set of constraints

C produced by APPLYAG.

Proof. To prove the lemma we need to show that (M1↓αg1 ,M2↓αg2) satisfies all the forms of

constraints that are being produced by Algorithm 5.1 and Algorithm 5.2.

First note that M1↓αg1 and M2↓αg2 satisfy premises 1 and 2 of CIRC-AG. Furthermore,

M1||M2 |= M1↓αg1 ||M2↓αg2 . Therefore, similarly to the proof of Lemma 5.4, we get that

M1↓αg1 and M2↓αg2 satisfy all constraints produced in Algorithm 5.2, lines 8, 15 and 18

(These constraints do not require the assumptions to satisfy the third premise of rule CIRC-

AG). It remains to show that M1↓αg1 and M2↓αg2 satisfy the constraints that are produced in

Algorithm 5.1, line: 14 and Algorithm 5.2, lines: 21, 25.

Algorithm 5.1: in line 14, we add a constraint of the form c = (−(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2)).

If M1||M2 |= P then by Lemma 5.4 and by Lemma 3.5 we get that (M1↓αg1 ,M1↓αg2)

satisfies c. Otherwise M1||M2 6|= P , suppose that (M1↓αg1 ,M1↓αg2) does not satisfy c,

it follows that (σ↓ ∈ L(M1↓αg1) and σ↓ ∈ L(M2↓αg2)). It implies that the condition in

line 10 holds and this contradicts the fact that c has been added as a constraint.

Algorithm 5.2: For every (i, j) in {(1,2),(2,1)} :

• in line 21, we add the constraint of the form c = −(σ↓αgj , j). Suppose that

(M1↓αg1 ,M2↓αg2) does not satisfy c, it follows that σ↓ ∈ L(Mj↓αgj ), which

means that the condition in line 19 does not hold. This contradicts the fact that c has

been added as a constraint.

• in line 25, we add a constraint of the form c = (−(σ↓αgj , j) ∨ (+(σa↓αgi , i) ∧
−(σa↓αgj , j))). Suppose that (M1↓αg1 ,M2↓αg2) does not satisfy c then it follows

that σ↓αgj is in L(Mj↓αgj ). Thus, the condition in line 22 does not hold and this

contradicts the fact that c has been added as a constraint.

ut
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Chapter 6

GENASSMP Algorithm

In this chapter, we describe how we generate assumptions that satisfy the constraints that we

collect in Algorithm 5.1. Given a set of membership constraints C, and a lower bound k on the

total number of states in |g1|+ |g2|, GENASSMP (see Algorithm 6.1) computes assumptions g1

and g2 that satisfyC. Similarly to previous work [GMF08] we build assumptions as deterministic

LTSs (even though APPLYAG is not restricted to deterministic LTSs). Technically, for each

value of k starting from the given k, GENASSMP encodes the structural requirements of the

desired DLTSs g1 and g2 with |g1|+ |g2| ≤ k, as well as the membership constraints, as a SAT

instance SatEnck(C) (line 3). It then searches for a satisfying assignment and obtains DLTSs

g1 and g2 based on this assignment (lines 4-8). Since k is increased (line 10) only when the SAT

instance is unsatisfiable, minimal DLTSs that satisfy C are obtained.

Algorithm 6.1 Computation of assumptions g1 and g2 that satisfy a given set of constraints
1: procedure GENASSMP(C,k)
2: while 1 do
3: if SatEnck(C) is satisfiable then
4: Let ψ be a satisfying assignment for SatEnck(C)
5: Let A1 = A1(ψ)
6: Let A2 = A2(ψ)
7: Extend δA1 and δA2 to total functions
8: return (LTS(A1), LTS(A2))
9: end if

10: Let k = k + 1
11: end while
12: end procedure

6.1 Problem Encoding

We use the following encoding of the problem of finding whether there are DLTSs g1 and g2

with k states in total such that (g1, g2) |= C.
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Variables used for encoding the LTSs structure Let k be a number (representing the total

number of states in g1 and g2) and Let n = dlog2(k + 2)e. We use boolean vectors of length n

to encode the states of g1 and g2, where for each of them we add a special “error” state. Hence,

in total we consider k + 2 states. For each 0 ≤ m ≤ k + 1 we use m to denote the n-bit vector

that represents the number m. We fix the vector 0 to represent the error state of g1, and the

vector k + 1 to represent the error state of g2. We explicitly add the error states in order to

distinguish between traces that are rejected by the DLTS and traces for which the behavior is

unspecified. For every i ∈ {1, 2}:

• Let Si include the prefixes of all traces over αgi which are constrained in C with respect

to i. That is, Si =
⋃
c∈C Strings(c, i).

• For every σ ∈ Si, we introduce a set of boolean variables V ar(σ, i) = {vj(σ,i) | 0 ≤
j ≤ n− 1}. We denote by v(σ,i) the vector (v0

(σ,i) · · · v
n−1
(σ,i)) of boolean variables. v(σ,i)

represents the state of gi reached when traversing σ.

We define Vgi =
⋃
σ∈Si V ar(σ, i). In addition to Vg1 and Vg2 , we introduce a set Vaux of

boolean variables which consist of the following variables:

• To guarantee that the LTSs we produce are indeed deterministic, we add a set of boolean

variables which are used to encode the (non error) transitions in the DLTSs. For this we

use k × |αg1 ∪ αg2| vectors of boolean variables, each of size n: For every 1 ≤ m ≤ k
and a ∈ (αg1 ∪ αg2), we introduce a set of boolean variables V ar(m, a) = {uj(m,a) |
0 ≤ j ≤ n− 1}. We denote by u(m,a) the vector (u0

(m,a) · · ·u
n−1
(m,a)) of boolean variables.

u(m,a) represents the state (of either g1 or g2) reached from state m after seeing action a.

• To guarantee that the states of the DLTSs are disjoint, we introduce another vector

u = (u0 · · ·un−1) of boolean variables, used to represent the number l such that all states

of g1 are smaller than or equal to l and all states of g2 are larger than l.

Variables used for encoding membership constraints For every disjunctive membership

constraint formula c ∈ C we introduce a boolean “selector” variable enc that determines

which of the disjuncts of c must be satisfied (the other disjunct might be satisfied as well).

Technically, let Enc be the following set of boolean variables Enc = {enc | c ∈ C}, and let

A = Enc ∪ {¬enc | enc ∈ Enc} ∪ {true}.
We define θaddg1 , θremg1 : S1 → 2A and θaddg2 , θremg2 : S2 → 2A such that for every σ ∈ Si,

θaddgi (σ) and θremgi (σ) are the smallest sets such that true ∈ θaddg1 (ε) and true ∈ θaddg2 (ε), and for

every c ∈ C:

• if c = (−(σ↓αgi , i) ∨ −(σ↓αgj , j)) then enc ∈ θremgi (σ↓αgi) and ¬enc ∈ θremgj (σ↓αgj ).

• if c = +(σ↓αgi , i) then true ∈ θaddgi (σ↓αgi).

• if c = −(σ↓αgi , i) then true ∈ θremgi (σ↓αgi).
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• if c = (−(σ↓αgj , j) ∨+(σa↓αgi , i)) then enc ∈ θremgj (σ↓αgj ) and ¬enc ∈ θaddgi (σa↓αgi).

• if c = (−(σ↓αgj , j)∨ (+(σa↓αgi , i)∧−(σa↓αgj , j))) then enc ∈ θremgj (σ↓αgj ), ¬enc ∈
θaddgi (σa↓αgi) and ¬enc ∈ θremgj (σa↓αgj ).

Intuitively, if at least one of the literals in θaddgi (σ) is satisfied then σ must be added to the

language of gi, and similarly for θremgi (σ) with removal. These sets are therefore interpreted as

disjunctions. Formally, let Bool(A) be the set of boolean formulas over A. For θacgi : Si → 2A

(where ac ∈ {rem, add}), we define θ̃acgi : Si → Bool(A) as follows:

θ̃acgi (σ) =

{
false θacgi (σ) = ∅∨
θacgi (σ) otherwise

Encoding LTS structure and membership constraints into SAT constraints. SatEnck(C)

is a set of constraints (with the meaning of conjunction) over the variablesEnc∪Vg1∪Vg2∪Vaux
defined as follows:

• Encoding the LTSs structures into SAT constraints:

1. For every trace σ1 ∈ S1 we add the constraint v(σ1,1) ≤ u, and for every trace

σ2 ∈ S2 we add the constraint u < v(σ2,2) (separating states of the DLTSs). We

also add a constraint 1 ≤ u ≤ k − 1 to restrict the range of u.

2. For every σ ∈ S2 we add the following constraint v(σ,2) ≤ k + 1 (every trace is

mapped to a valid state in the DLTSs).

3. For every i ∈ {1, 2}, every trace σ ∈ Si, every action a ∈ αgi such that σa ∈ Si,
and for every 1 ≤ m ≤ k, we add the following constraint: v(σ,i) = m⇒ v(σa,i) =

u(m,a) (the DLTSs are deterministic).

4. For every trace σ ∈ S1 and action a ∈ αg1, if σa ∈ S1 then we add the following

constraint: v(σ,1) = 0⇒ v(σa,1) = 0 (the error state of g1 is a sink state; DLTSs are

prefix closed).

5. For every string σ ∈ S2 and action a ∈ αg2, if σa ∈ S2 then we add the following

constraint: v(σ,2) = k + 1 ⇒ v(σa,2) = k + 1 (the error state of g2 is a sink state;

DLTSs are prefix closed).

Remark 1. Item 1 ensures that for every trace σ1 ∈ S1 and for every trace σ2 ∈ S2,

v(σ1,1) 6= v(σ2,2). Encoding the latter requires O(|S1| × |S2|) constraints, whereas item 1

defines onlyO(|S1|+|S2|) constraints, with the use of Vaux. Similarly, item 3 ensures that

(v(σ,i) = v(σ′,i) ⇒ v(σa,i) = v(σ′a,i)). Again, a direct encoding requires O(|αgi| × |Si|2)

constraints, whereas the indirect encoding used in item 3 defines only O(k× |αgi| × |Si|)
constraints (where typically k << |Si|).

• Encoding the membership constraints formulas into SAT constraints:
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6. For every trace σ ∈ S1 we add the constraint: θ̃remg1 (σ)⇒ v(σ,1) = 0.

7. For every trace σ ∈ S2 we add the constraint: θ̃remg2 (σ)⇒ v(σ,2) = k + 1.

8. For every trace σ ∈ S1 we add the constraint: θ̃addg1 (σ)⇒ v(σ,1) 6= 0.

9. For every trace σ ∈ S2 we add the constraint: θ̃addg2 (σ)⇒ v(σ,2) 6= k + 1.

Note that the implications in constraints 6-9 guarantee that a trace is accepted by gi (leads

to a non-error state) whenever it is required to be added to gi (as encoded by θaddgi (σ↓αgi)).

However, it may be accepted also in other cases, provided it is not required to be removed by

other constraints. The same holds for removal of traces from gi.

Optimized implementation. When k does not change, and only C increases, the SAT en-

coding is incremental, as we only add constraints (in particular, the change in constraints 6-9

is encoded using additional clauses). In order to support incremental SAT calls also when k

changes into k′ such that dlog2(k + 2)e = dlog2(k′ + 2)e, we turn all constraints that refer to

k + 1 or k − 1 to conditional, guarded by some Boolean variable. When k increases into k′ we

then “cancel” the clauses that refer to k + 1 and k − 1 and replace them by clauses that refer

to k′ + 1 or k′ − 1, respectively. k + 1 is used in O(|S2|) constraints. In our implementation,

in order to minimize the number of conditional constraints, we therefore use another vector

umax = (u0
max · · ·un−1

max) of Boolean variables instead of k + 1 in all constraints, and add

a (single) conditional constraint umax = k + 1, guarded by another Boolean variable. The

desired values of the Boolean variables in the guards of the conditional constraints are sent as

assumptions to the SAT solver.

Lemma 6.1. SatEnck(C) is satisfiable if and only if there exist DLTSs g1 and g2 that satisfy

C such that |g1|+ |g2| = k.

Proof. (=⇒:) We defer the proof of the implication from the left to the right to section 6.2,

where we show how to construct LTSs from a satisfying assignment of SatEnck(C).

(⇐=:) Let g1 and g2 be two DLTSs that satisfy C such that |g1|+ |g2| = k. We show that

SatEnck(C) is satisfiable. We extend g1 by a sink error state denoted π1, and similarly extend

g2 by a sink error state denoted π2.

Let φg1 : Sg1 → {0, . . . , (|g1| − 1)} and φg2 : Sg2 → {|g1|, . . . , (|g1|+ |g2| − 1)} be two

bijective functions over the (extended) states of g1 and g2, respectively. We assume also that φg1
maps π1 to 0 and φg2 maps π2 to k + 1 (such functions can be easily constructed). Let ψ be the

following assignment:

• ∀enc ∈ Enc :

ψ(enc) =



σ↓ ∈ L(g1) ? 0 : 1 if c = −(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2)

σ↓ ∈ L(g1) ? 0 : 1 if c = −(σ↓αg1 , 1) ∨+(σa↓αg2 , 2)

σ↓ ∈ L(g2) ? 0 : 1 if c = −(σ↓αg2 , 2) ∨+(σa↓αg1 , 1)

σ↓ ∈ L(g1) ? 0 : 1 if c = −(σ↓αg1 , 1) ∨ (+(σa↓αg2 , 2) ∧ −(σa↓αg1 , 1))

σ↓ ∈ L(g2) ? 0 : 1 if c = −(σ↓αg2 , 2) ∨ (+(σa↓αg1 , 1) ∧ −(σa↓αg2 , 2))
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• ∀s ∈ S1 : ψ(v(s,1)) = φg1(δg1(sg10 , s))

• ∀s ∈ S2 : ψ(v(s,2)) = φg2(δg2(sg20 , s))

• ψ(u) = |g1| − 1

• ∀1 ≤ m ≤ k :ψ(u(m,a)) =

{
φg1(δg1(φ−1

g1 (m), a)) if m ≤ |g1| − 1

φg2(δg2(φ−1
g2 (m), a)), otherwise

Note that by the definition of ψ, ψ(v(σ,1)) = 0 implies that σ is not in L(g1) and similarly

ψ(v(σ,2)) = k + 1 implies that σ is not in L(g2). We now show that ψ is satisfying assignment

for SatEnck(C) by showing that ψ satisfies all constraints that are in SatEnck(C):

• Constraints numbers 1- 2 in SatEnck(C) are trivially satisfied by the definitions of ψ, φg1
and φg2 .

• Constraint number 3: For every i in {1, 2}, every 1 ≤ m ≤ k, every σ in Si, and for

every a in αgi such that σa ∈ Si, if ψ(v(σ,i)) is equal to m it implies by the definition

of ψ that δgi(s
gi
0 , σ) = φ−1

gi (m). Since δgi is deterministic it follows that (1) δgi(s
gi
0 , σa)

is equal to δgi(φ
−1
gi (m), a). By (1) and by the definition of ψ we get that ψ(v(σa,i)) is

equal to φgi(δgi(φ
−1
gi (m), a)). On the other hand, by the definition of φgi and ψ we know

that ψ(u(m,a)) is equal to φgi(δgi(φ
−1
i (m), a)). Hence, we get that ψ(v(σa,i)) is equal to

ψ(u(m,a)).

• Constraint number 4: For every σ in S1, ψ(v(σ,1)) = 0 implies that φg1(δg1(sg10 , σ)) = 0

therefore, δg1(sg10 , σ) = π1, which means that (1) σ is not in L(g1). For every a in

αg1, σa is is not in L(g1) (By (1) and by the fact that π1 is an error sink state), which

implies that δg1(sg10 , σa) = π1. By the definition of the assignment ψ we get that

ψ(v(σa,1)) = φg1(δg1(sg10 , σa)) = φg1(π1). Hence, we get that ψ(v(σa,1)) is equal to 0.

• Constraint number 5: The proof is similar to the proof of constraint number 4.

• Constraint number 6: For every σ in S1, θ̃remg1 (σ) equals 1 implies that one of following

three conditions hold:

– θ̃remg1 (σ) ≡ true, which implies that there exists c in C such that c = −(σ↓αg1 , 1).

Since (g1, g2) satisfies C we get that (g1, g2) satisfies c as well. It implies that σ↓αg1
is not in L(g1). Therefore, by the definitions of ψ and φg1 we get that ψ(v(σ,1)) is

equal to 0.

– θ̃remg1 (σ) = enc ∨ θg1(σ) and ψ(enc) = 1 for some constraint c and some boolean

function θg1(σ). Then, c is one of the following forms:

∗ c = −(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2).

∗ c = −(σ↓αg1 , 1) ∨+(σa↓αg2 , 2).

∗ c = −(σ↓αg1 , 1) ∨ (+(σa↓αg2 , 2) ∧ −(σa↓αg1 , 1)).
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For all these forms of constraints, ψ(enc) equals 1 implies by the definition of ψ

that σ is not in L(g1). Thus, by (1) we get that ψ(v(σ,i)) is equal to 0.

– θ̃remg1 (σ) = ¬enc ∨ θg1(σ) and ψ(enc) = 0 for some constraint c and some boolean

function θg1(σ) where σ = σ′a. Then, c must be of the following form:

∗ c = −(σ′↓αg1 , 1) ∨ (+(σ′a↓αg2 , 2) ∧ −(σ′a↓αg1 , 1))

For such a constraint c, by the definition of the assignment ψ, it follows that ψ(enc)

equals 0 implies that σ′↓αg1 is in L(g1). Therefore, since (g1, g2) satisfies c, it

follows that σ′a↓αg2 is in L(g2) and σ′a↓αg1 is not in L(g1), which implies that

ψ(v(σ,1)) = φg1(δg1(sg10 , σ)) = φg1(π1) = 0.

To summarize, we have shown that for every σ in S1, θ̃remg1 (σ) equals 1 implies that

ψ(v(σ,1)) equals 0. Hence, the assignment ψ satisfies constraint number 6.

Constraint number 7: The proof is similar to the proof of constraint number 6.

Constraint number 8: For every σ in S1, θ̃addg1 (σ) equals 1 implies that one of following two

conditions hold:

• θ̃addg1 (σ) ≡ true. Therefore, there exists c in C such that c equals +(σ↓αg1 , 1). Since

(g1, g2) satisfies C, it follows that (g1, g2) satisfies c. Thus, σ↓αg1 is in L(g1). Hence, by

the definition of ψ and φg1 we get that ψ(v(σ,1)) is not equal to φg1(π1), which equals 0.

• θ̃addg1 (σ) = ¬enc ∨ θgi(σ) and ψ(enc) = 0 for some constraint c and some boolean

function θg1(σ) where σ = σ′a. Then, c is one of the following forms:

– c = −(σ′↓αg2 , 2) ∨+(σ′a↓αg1 , 1).

– c = −(σ′↓αg2 , 2) ∨ (+(σ′a↓αg1 , 1) ∧ −(σ′a↓αg2 , 2)).

For all these forms of constraints, by the definition of the assignment ψ, it follows

that ψ(enc) equals 0 implies that σ↓αg2 is in L(g2). Therefore, since (g1, g2)

satisfies C we get that σa↓αg1 is in L(g1). Hence, we get that ψ(v(σ,1)) is not equal

to 0.

To summarize, we have shown that for every σ in S1, θ̃addg1 (σ) equals 1 implies that σ is

in L(g1), which implies that ψ(v(σ,1)) is not equal to 0.

• Constraint number 9: The proof is similar to the proof of constraint number 8

Due to Lemma 5.5 which ensures that (the nondeterministic) LTSs M1↓αg1 and M2↓αg2
satisfy C, we get the following corollary, which ensures termination of GENASSMP:

Corollary 6.2. At every iteration of ACR, there exists k ≤ O(2|M1↓αg1 | + 2|M2↓αg2 |) where

SatEnck(C) is satisfiable.

Proof. By Lemma 5.5 we know that (M1↓αg1 ,M2↓αg2) satisfy any set of constraints C. By

determinizing M1↓αg1 and M2↓αg2 we get DLTSs whose number of states are O(2|M1↓αg1 |) and

O(2|M2↓αg2 |) respectively. Then by Lemma 6.1 we get that at any iteration of Algorithm 4.2

there exists k = O(2|M1↓αg1 | + 2|M2↓αg2 |) for which SatEnck(C) is SAT.
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In fact, since satisfiability of SatEnck(C) is checked for increasing values of k, it is

ensured that the minimal k for which it is satisfiable is found. Therefore, minimal assumptions

that satisfy C are obtained. In particular, together with Lemma 5.4, this ensures that when

M1||M2 |= P , then minimal assumptions for which CIRC-AG is applicable are eventually

obtained.

6.2 From SAT Assignment to LTS Assumptions

Given a satisfying assignment ψ to SatEnck(C), lines 4-8 of Algorithm 6.1 uses the assignment

ψ to generate assumptions g1 and g2 that satisfy C, as described below.

First, in lines 5-6 we extract DLTSs A1(ψ) and A2(ψ) extended with error states. A1(ψ)

and A2(ψ) can be thought of as error LTSs, except that they might be incomplete. As in an error

LTS, traces leading to an error state in Ai(ψ) are rejected. Traces that have no corresponding

path are unspecified (recall that such traces do not exist in an error LTS, which is complete, and

in a DLTS, in contrast, such traces are rejected). The latter represent traces that do not affect the

satisfaction of C, and can therefore either be accepted or rejected.

Definition 6.3. Let ψ be a satisfying assignment for SatEnck(C). We defineA1(ψ) andA2(ψ)

derived from ψ in the following way: Ai(ψ) = (Qi, αgi, δi, q
i
0, πi) where:

• Qi = {m ∈ {0, 1}n | ∃σ ∈ Si such that ψ(v(σ,i)) = m}

• δi(m, a) =

{
m′ if ∃σ ∈ Si such that ψ(v(σ,i)) = m ∧ σa ∈ Si ∧ ψ(v(σa,i)) = m′

⊥ otherwise

• qi0 = ψ(v(ε,i))

• π1 = 0

• π2 = k + 1

Note that δi is deterministic and it is well defined, since constraint 3 of SatEnck(C) ensures

that if there exist σ, σ′ ∈ Si such that ψ(v(σ,i)) = ψ(v(σ′,i)) and both σa and σ′a are in Si, then

also ψ(v(σa,i)) = ψ(v(σ′a,i)). Note further, that due to constraint 1, Q1 ∩Q2 = ∅.
δ1 and δ2 are partial functions. In line 7 of Algorithm 6.1 we extend δ1 and δ2 to be total

functions, transforming A1(ψ) and A2(ψ) into (complete) error LTSs. As explained above, the

cases in which δ1 and δ2 are undefined are cases that do not affect satisfaction of C. Therefore,

any completion will result in DLTSs that satisfy C. In practice, we extend δ1 and δ2 to be

total functions in the following way: If the transition from a given state q ∈ Qi on action a is

undefined in the transition relation, we add a self loop for the state q labeled by a, i.e., we define

δi(q, a) = q.

In order to obtain DLTSs, it remains to remove the error states. In line 8 of Algorithm 6.1,

for every i in {1, 2} we compute LTS(Ai) defined as follows:
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Definition 6.4. Let Ai = (Qi, αgi, δi, q
i
0, πi) be defined as in Definition 6.3, with δi extended

as described above. Then LTS(Ai) is the DLTS (Qi \ {πi}, αgi, δ′i, qi0) where

δ′i(q, a) =

{
δi(q, a) if δi(q, a) 6= πi

⊥ otherwise

The following technical lemma states that the DLTSs obtained from definition 6.4 agree

with ψ on traces in Si that lead to a non-error state, and reject traces of Si that lead to an error

state.

Lemma 6.5. For every i ∈ {1, 2} and for every trace σ ∈ Si, we have that:

δ′i(q
i
0, σ) =

{
ψ(v(σ,i)) if ψ(v(σ,i)) 6= πi

⊥ otherwise

Proof. We prove the lemma by induction on the length of σ.

Base case: |σ| = 0 i.e. σ = ε. Since true ∈ θaddg1 (ε), based on constraint 8 and 9 of

SatEnck(C) we have that ψ(v(ε,i)) 6= πi. We therefore need to show that δ′i(q
i
0, ε) = ψ(v(ε,i)).

This holds since δ′i(q
i
0, ε) = qi0 and since qi0 = ψ(v(ε,i)) (by the definition of qi0 in Ai(ψ)).

Induction step: |σ| ≥ 1. Let σ be σ′a where a ∈ αgi. Note that since Si contains all the

prefixes of σ, we get that σ′ ∈ Si as well. Since both σ′ ∈ Si and σ = σ′a ∈ Si, the definition

of δi in Ai(ψ) ensures that δi(ψ(v(σ′,i)), a) = ψ(v(σ′a,i)) = ψ(v(σ,i)). We now distinguish

between the two possibilities:

• ψ(v(σ,i)) 6= πi: Recall that δi(ψ(v(σ′,i)), a) = ψ(v(σ,i)). Since ψ(v(σ,i)) 6= πi, we have

that δ′i(ψ(v(σ′,i)), a) = ψ(v(σ,i)) as well (see Definition 6.4). Based on constraints 4

and 5 of SatEnck(C) we have that ψ(v(σ′,i)) 6= πi (since ψ(v(σ,i)) 6= πi). Therefore,

by the induction hypothesis on σ′ ∈ Si, we have that δ′i(q
i
0, σ
′) = ψ(v(σ′,i)). Finally,

since LTS(Ai) is deterministic and since δ′i(q
i
0, σ
′) 6= ⊥, we have that δ′i(q

i
0, σ) =

δ′i(δ
′
i(q

i
0, σ
′), a) = δ′i(ψ(v(σ′,i)), a) = ψ(v(σ,i)), as required.

• ψ(v(σ,i)) = πi: Again, recall that δi(ψ(v(σ′,i)), a) = ψ(v(σ,i)), i.e., δi(ψ(v(σ′,i)), a) = πi.

Therefore, by Definition 6.4, δ′i(ψ(v(σ′,i)), a) = ⊥. Now, since LTS(Ai) is deterministic,

we get that if δ′i(q
i
0, σ
′) = ⊥, then δ′i(q

i
0, σ) = δ′i(q

i
0, σ
′) = ⊥, and if δ′i(q

i
0, σ
′) 6= ⊥ then

δ′i(q
i
0, σ) = δ′i(δ

′
i(q

i
0, σ
′), a) = ⊥. Either way, δ′i(q

i
0, σ) = ⊥, as required.

Lemma 6.6. Let ψ be a satisfying assignment for SatEnck(C), let g1 = LTS(A1(ψ)) and

g2 = LTS(A2(ψ)). Then g1 and g2 are DLTSs such that (1) (g1, g2) |= C and (2) |g1|+ |g2| ≤
k.

Proof. In order to prove that (LTS(A1(ψ)), LTS(A2(ψ)) satisfies C we need to show that

(LTS((A1(ψ)), LTS(A2(ψ))) satisfies every constraint c inC. For every (i, j) in {(1, 2), (2, 1)},
a constraint c in C can have one of the following forms:
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• c = −(σ↓αgi , 1))∨−(σ↓αgj , 2) implies by the definitions of θremg1 (σ↓αg1) and θremg2 (σ↓αg2),

that ψ(θremg1 (σ↓αg1)) is true or ψ(θremg2 (σ↓αg2)) is true. Therefore by constraints num-

ber 6 and 7 we get that ψ(v(σ↓αg1 ,1)) is equal to π1 or ψ(v(σ↓αg2 ,2)) is equal to π2.

Hence, by Lemma 6.5 we get that σ↓αg1 is not in L(LTS(A1(ψ))) or σ↓αg2 is not in

L(LTS(A2(ψ))), which means that (LTS(A1(ψ)), LTS(A2(ψ))) satisfies c.

• c = +(σ↓αgi , i) implies by the definition of θaddgi (σ↓αgi), that ψ(θaddgi (σ↓αgi)) is true.

Therefore by constraints number 8 and 9, we get that ψ(v(σ↓αgi ,i)) is not equal to πi. Thus,

by Lemma 6.5 it follows that σ↓αgi is inL(LTS(Ai(ψ))). Hence, (LTS(A1(ψ)), LTS(A2(ψ)))

satisfies c.

• c = −(σ↓αgi , i) implies by definition of θremgi (σ↓αgi) that ψ(θremgi (σ↓αgi)) is true.

Therefore, by constraints number 6 and 7 we get that ψ(v(σ↓αgi ,i)) is equal to πi.

Hence, by Lemma 6.5 we get that σ↓αgi is not in L(LTS(Ai(ψ))), which implies that

(LTS(A1(ψ)), LTS(A2(ψ))) satisfies c.

• c = −(σ↓αgj , j)∨+(σa↓αgi , i) implies by the definitions of θremgj (σ↓αgj ) and θaddgi (σ↓αgi),

that ψ(θremgj (σ↓αgj )) is true or ψ(θaddgi (σa↓αgi)) is true. As a result, constraints num-

ber 6 to 9 imply that ψ(v(σ↓αgj ,j)) is not equal to πj or ψ(v(σa↓αgi ,i)) is not equal to πi.

Hence, by Lemma 6.5 we get that σ↓αgj is not in L(LTS(Aj(ψ))) or that σa↓αgi is in

L(LTS(Ai(ψ))), which means that (LTS(A1(ψ)), LTS(A2(ψ))) satisfies c.

• c = −(σ↓αgj , j)∨(+(σa↓αgi , i)∧(σa↓αgj , j)) implies by the definitions of θremgj (σ↓αgj ))
and θaddgi (σ↓αgi)) thatψ(θremgj (σ↓αgj )) is true or bothψ(θaddgi (σa↓αgi) andψ(θremgj (σa↓αgj ))
are true. Therefore, by constraints number 6 to 9 it follows that ψ(v(σ↓αgj ,j)) is equal to

πj or both ψ(v(σa↓αgi ,i)) is not equal to πi and ψ(v(σa↓αgj ,j)) is equal to πj . Hence, by

Lemma 6.5 we get that σ↓αgj is not in L(LTS(Aj(ψ))) or σa↓αgi is in L(LTS(Ai(ψ)))

and σa↓αgj is not in L(LTS(Aj(ψ))), which means that (LTS(A1(ψ)), LTS(A2(ψ)))

satisfies c.

Now we show that |LTS(A1(ψ))| + |LTS(A2(ψ)) ≤ k: (i) We know that ψ satisfies

SatEnck(C), therefore by constraints number 1 and 2 we get that for every v in Vg1 , Vg2 , ψ(v)

is less than or equals to k− 1. This implies that Q1 and Q2 are subsets of {0 · · · k− 1}. (ii) By

constraint number 1 we get that for every v1 in Vg1 and every v2 in Vg2 , ψ(v1) is not equal to

ψ(v2). It follows that Q1 and Q2 do not intersect. From (i) and (ii) we get that |Q1|+ |Q2| ≤ k.

Hence, |A1(ψ)|+ |A2(ψ)| ≤ k ut

Combined with Corollary 5.3, we also conclude that:

Corollary 6.7. The DLTSs g1 = LTS(A1(ψ)) and g2 = LTS(A2(ψ)) generated by Algo-

rithm 6.1 are different from all the pairs of DLTSs considered in previous iterations.

Example 5. Consider the 7th (and final) iteration of ACR on the example from section 5.2. Since

the assumptions from the 6th iteration (Figure 5.1) have a total of 3 states, the search performed
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by GENASSMP at the 7th iteration starts with k = 3, and since no satisfying assignment is found

for SatEnc3(C), k is increased to 4, yielding g1 and g2 with a total of 4 states (Figure 3.1). Note

that the (final) assumptions g1 and g2 generated by GENASSMP in the 7th iteration indeed satisfy

the membership constraint −(〈send〉, 1) ∨ (+(〈send, send〉, 2) ∧ −(〈send, send〉, 1)) ∈ C
from the previous iteration (due to the right disjunct). In particular, they do not exhibit the

counterexample from Example 4.

To complete this chapter, we complete the proof of lemma 6.1:

Proof of lemma 6.1 (cont.). (=⇒:) By Lemma 6.6, there exist g1 and g2 that satisfy C such that

|g1|+ |g2| ≤ k. It remains to show that there exist g1 and g2 such that k = |g1|+ |g2| as needed

in lemma 6.1. In the case where |g1|+ |g2| < k, to get g1 and g2 such that k = |g1|+ |g2| we

add some unreachable states to g1 or to g2.
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Chapter 7

Correctness, Termination and
Minimality

In this chapter we argue that our main algorithm ACR is correct, it terminates and produces

minimal assumptions.

Theorem 7.1 (Correctness and Termination). Given components M1 and M2, and property P ,

ACR terminates and returns “M1||M2 |= P” if P holds on M1||M2 and “M1||M2 6|= P”,

otherwise.

Proof. Partial Correctness: Algorithm 4.2 returns M1||M2 |= P if and only if Algorithm 5.1

returns M1||M2 |= P . The latter returns M1||M2 |= P if and only if g1 and g2 satisfy all

the three premises of CIRC-AG. Thus, by the soundness of CIRC-AG from Theorem 3.6, we

get that Algorithm 4.2 returns M1||M2 |= P only if M1||M2 satisfies P . On the other hand

Algorithm 4.2 returns that M1||M2 6|= P if and only if Algorithm 5.1 returns so. The latter may

return M1||M2 6|= P in line 5 of Algorithm 5.2, in line 11 of Algorithm 5.1 and in line 5 of

Algorithm 5.1. All these cases are conditioned by the existence of σ in (αg1 ∪αg2)∗ such that σ

is in L(M1↓αg1 ||M2↓αg2) but σ↓αP is not in P , which implies that M1↓αg1 ||M2↓αg2 does not

satisfy P . Therefore, by Lemma 3.5 we get that M1||M2 does not satisfy P .

Termination: (1) By Corollary 6.2 we get that, at any iteration of Algorithm 4.2, there exists

k = O(2|M1↓αg1 | + 2|M2↓αg2 |) where SatEnck(C) is satisfiable. Since in GENASSMP, k is

increased when SatEnck(C) is unsatisfiable, it is guaranteed that a satisfying assignment ψ will

be found. (2) By Lemma 6.6 and by Corollary 6.7 we get that at each iteration of Algorithm 4.2

we get a different pair of DLTSs A1(ψ) and A2(ψ) that satisfy C and their total size is less

than k. Since there are only finitely many pairs of DTLS for every k, in the worst case, we

eventually get to k = |det(M1↓αg1)| + |det(M2↓αg2)| = O(2|M1↓αg1 | + 2|M2↓αg2 |) and get

the pair of DLTSs det(M1↓αg1) and det(M2↓αg2) that by Lemma 5.5 satisfy C and have total

number of states that is less than k. For this pair, Algorithm 5.1 is guaranteed to return either

“M1||M2 |= P ” or “M1||M2 6|= P ”. Hence, Algorithm 4.2 is guaranteed to terminate.
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Theorem 7.2 (Minimality). If M1||M2 |= P then ACR terminates with DLTSs g1 and g2

whose total number of states is minimal among all pairs of DLTSs that satisfy the CIRC-AG

rule.

Proof. Theorem 7.1 already ensures that Algorithm 4.2 will terminate with the result “M1||M2 |=
P ”. It remains to prove the minimality of the obtained assumptions. By Lemma 5.4, we get

that the DLTSs with minimum total number of states that satisfy rule CIRC-AG satisfy any set

of constraints C that is being produced by Algorithm 5.1. We denote by n the total number

of states in the DLTSs with minimum total number of states that satisfy rule CIRC-AG. By

applying Lemma 6.1 we get that SatEncn(C) is satisfiable. Since SatEncn(C) is satisfiable,

k never gets to be greater than n. By Lemma 6.6 we get that the DLTSs pair (A1(ψ), A2(ψ)) of

any satisfying assignment ψ of SatEncn(C) has a total number of states which is less than or

equal to n. In particular this holds for the final assumptions for which Algorithm 5.1 returns

“M1||M2 |= P ”, and the claim follows. ut
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Chapter 8

Evaluation

We implemented ACR in the LTSA (Labelled Transition System Analyser) tool [MK99]; we

use MiniSAT [ES] for SAT solving. We optimized our implementation to perform incremental

SAT encoding using the ability of MiniSAT to solve CNF formulas under a set of unit clause

assumptions. We also made ACR return (at each iteration) k counterexamples for the three

premises where, k is |g1|+ |g2|.
We compared ACR with learning-based assume guarantee reasoning (based on rule ASYM-

AG), on the following examples [PGB+08]: Gas Station (3 to 5 customers), Chiron – a model

of a GUI (2 to 5 event handlers), Client Server – a client-server application (6 to 9 clients), and

a NASA rover model: MER (2 to 4 users competing for two common resources). We used the

same two-way decompositions reported in previous experiments. Experiments were performed

on a MacBook Pro with a 2.3 GHz Intel Core i7 CPU and with 16 GB RAM running OS X

10.9.4 and a Sun’s JDK version 7.

Table 8.1 summarizes our results. For both approaches, we report the model sizes (in states),

the analysis time (in seconds) and the assumption sizes (in states). Measuring memory is

unreliable due to the garbage collection and the interfacing with MiniSAT via native method

calls (our measurements indicate that memory consumption is stable and does not increase

dramatically for larger cases). We instead report the maximum numbers of states observed for

checking the premises of the two rules. We put a limit of 1800 seconds for each experiment; “–”

indicates that the time for that case exceeds this limit.

In all the experiments ACR generates smaller assumptions and in the majority of cases

this results in smaller analysis time and state space explored. For larger cases the assumptions

generated by ACR are significantly smaller. For the Gas Station, ACR significantly outperforms

learning in terms of analysis time and states explored, while for all other cases the two approaches

are comparable, at smaller sizes. However at larger configurations (Client Server 8 and 9, MER

4) ACR again significantly outperforms the learning-based approach. In all but one case (Chiron

5) the smaller assumptions generated with ACR lead to smaller state spaces for checking the

rule premises. Case Chiron 5 is still comparable in terms of running time but it may indicate that

the two-way decomposition that we used (found to be optimal for learning in previous studies)

may not be optimal for ACR. We plan to investigate this further in future work.
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Chapter 9

Conclusion and Future Work

We have introduced a novel technique for automatic assume guarantee reasoning using the

circular rule CIRC-AG. To the best of our knowledge this is the first work that proposes an

automatic compositional verification framework based on a circular rule.

Our algorithm constructs set of joint constraints on the desired assumptions based on

counterexamples obtained from checking the premises of the rule, and uses a SAT solver to

synthesize minimal assumptions that satisfy the constraints. When M1||M2 |= P , our algorithm

terminates with minimal assumptions that satisfy the premises of the rule CIRC-AG. When

M1||M2 6|= P the algorithm returns a counterexample as a witness for the fact that M1||M2

does not satisfy P .

We have studied the properties of the new algorithm and have experimented with different

examples. Our experiments show a significant improvement with respect to learning-based

assume guarantee reasoning (based on the rule ASYM-AG) in terms of the sizes of resulting

assumptions and in terms of the time consumption.

ACR can be optimized in many ways. Our current implementation checks the three premises

of the rule one after the other at each iteration and gets k different counterexamples for each of

them. A natural optimization would be to parallelize these checks (e.g. on different machines).

We further plan to investigate alphabet refinement and generalization to n-way decomposition

(for n > 2) – both these techniques significantly enhanced the performance of compositional

acyclic techniques [PGB+08]. For the n-way decomposition we can consider a recursive

application of our current approach to the system decomposed into two components, each

decomposed into two sub-components, etc. Another possibility, which is more involved, would

be to directly synthesize n assumptions, one for each component in the system. We leave this

for future work. We also plan to explore learning and abstraction-refinement for discovering

suitable assumptions. Although these techniques might not guarantee minimal assumptions,

they can be less computationally demanding than our current approach.
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ולכן , חוק הלא מעגליל הנחוצותשמיוצרות עבור החוק המעגלי הן הרבה יותר קטנות מאלה 
מכילות פחות מצבים וצורכות פחות , בעיות האימות שאנו נדרשים לבדוק הן יותר קטנות

 .זמן
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



. 𝑀1מוגבלת ל  𝑀2כאשר סביבת  𝑀2אבסטרקציה ל  ההינ 𝑔2באופן דומה . 𝑀2מוגבלת ל 

ללא  𝑀2חייבת להיות אבסטרקציה לכל  Aבחוק הלא מעגלי שתואר למעלה ההנחה , מנגד

CIRCפוטנציאלית ההנחות שצריך להשתמש בהן בחוק , לכן. שום הגבלה על סביבתו − AG 
 .יכולות להיות הרבה יותר קטנות מאלה של החוק הלא מעגלי

 

CIRCשל הכלל והשלמות הנאותות  מוכחים תחילה את בעבודה זו אנו − AG. ולאחר מכן אנ 

CIRCלבניית הנחות מתאימות לכלל  אלגוריתםמציגים  − AG . כצעד ראשון אנו מציגים

M  לבדיקת טענות מהסוג אלגוריתם ⊨ A ⊳ P. כזה נחוץ לבדיקת שתי הטענות  אלגוריתם
סטנדרטית של הכלת שפות בין  נבדקת על ידי בדיקה תהשלישיהטענה . הראשונות של הכלל

LTSs. 

 
בי חדש שמוצג יאיטרט אלגוריתםפיתחנו , יאוטומטעל מנת שתהליך יצירת ההנחות יהיה 

 .Automated Circular Reasoning (ACR) 4בפרק 
 

 ACRהראשון הוא האלגוריתםםאלגוריתמישני מורכב מ . APPLYAG  שבודק בצורה

CIRCמקיימות את הטענות של הכלל  g2 ו g1האם שתי הנחות  תאוטומטי − AG . אם
אינה המתקבלת מבדיקת הטענות ההנחות לא מקיימות את שלושת הטענות והדוגמא הנגדית 

יצר אילוץ חדש שקובע איך צריך לעדן את ההנחות הנוכחיות על מנת ימ םהאלגורית, תיתיאמ
 ,השני האלגוריתם .טרציות הבאותיבא (תיתיאמ )שאינהאותה דוגמא נגדית קבלת למנוע את 

GENASSUMP , משתמש בSAT solver  שתי הנחות חדשות  לייצרעל מנתg1 ו g2 

ממשיך לקרוא לשני  ACR. הקודם יצר שהאלגוריתםשמספקות את כל האילוצים 

שמספקות את הכלל או עד שדוגמא  g2 ו g1האלה עד שהוא מוצא שתי הנחות םהאלגוריתמי

M1||𝑀2"תמיד עוצר ומחזיר או  ACR. תית נמצאתינגדית אמ ⊨ 𝑃" או "M1||𝑀2 ⊭ 𝑃" . 

 

CIRCהחוק שבכדי  − AG ההנחות , יהיה שימושי במקרים פרקטייםg1 ו g2  צריכות להיות

חים יעל מנת להשיג זאת אנו מוכ. 𝑀2ו  𝑀1וכמובן יותר קטנות מ , קטנות ככל האפשר

הינה הקבוצה החלשה ביותר  APPLYAG האלגוריתםשיוצר  g2 ו g1על  םהאילוציצת ושקב
 ,יתרה מזו. במובן שכל שתי הנחות שמספקות את הכלל מספקות גם קבוצה זו של אילוצים

עובד בצורה איטרטבית והוא מגדיל את מספר המצבים האפשרי  GENASSUMP האלגוריתם

הנוכחית אינה ספיקה על ידי הנחות עם  םהאילוצירק אם קבוצת  g2ו g1בשתי ההנחות 

יהיה קטן  g2 ו g1ב  הכולל מבטיח שסכום המצבים ACRבאופן הזה . מצבים הנוכחימספר ה
 . ככל האפשר

 
שמבוסס על למידה אשר משתמש  אלגוריתםאותו עם  ווהשווינשלנו  האלגוריתםאת  ומימשנ

ASYMלא מעגלי הבחוק  − AG  מהעבודה ב[CGP03]  .נחות השלנו מראים שה תהניסיונו 



פול טי מבטיח עבור ווןהינו כם ימעגלי Assume-Guaranteeדולרי על ידי חוקי ואימות מ

-Assumeחוקי  ידולרי על ידובדרך כלל אימות מ ,יתרה מזאת .המצבים התפוצצות תבבעיי

Guarantee דולרי בעזרת וים הינו יותר יעיל מאימות מימעגלAssume-Guarantee   לא

,McM98], לדוגמא, מעגלי McM99a, McM99b]. 
 

לנצל באופן טבעי את הקשר  היכולת שלהם אחת הסיבות ליתרונם של חוקים מעגליים היא
למרות היתרונות הרבים של החוקים . א בין הרכיבים של המערכת הנבדקתצהמעגלי שנמ

שלא הייתה ידועה דרך  כיווןדולרי היה מוגבל והשימוש בהם באימות מ, המעגליים
פן ידני והמאמץ לעשות זאת בא. חוקים אלה םליישלמציאת הנחות שאיתן ניתן  תאוטומטי

 . מורכב ולא סביר הוא
 

-Assumeעל חוק  תדולרי המבוססועים סכמה חדשה לאימות מיאנו מצ, בעבודה זו

Guarantee השיטה משתמשת . בצורה מלאה תאוטומטיהסכמה שאנו מצעים הינה . מעגלי

CIRC המעגלי  Assume-Guaranteeבחוק  − AG ,להוכחה ש- M1||𝑀2 ⊨ 𝑃 , בהסתמך

CIRCהחוק . 𝑔2 ו 𝑔1על ההנחות − AG התכונות וההנחות של , הרכיבים. הינו נאות ושלם

 החוק מתואר להלן:. (LTSs) על המעברים בין מצבים מכונות מצבים עם תוויות םהחוק ה

 

 
 

Mזמן ויש להן את הצורה של  האינדוקציבחוק מתבססות על   2ו 1טענות מספר ⊨ A ⊳ P  ,

 באורך 𝜎אם הרישא של ו Mבשפה של המודל 𝜎  אם, kבאורך  𝜎לכל מילה  :שמשמעותה

𝑘 −  . Pבשפה של נמצאת  𝜎אזי  Aהינה בשפה של  1

 

CIRCבחוק  2ו  1טענות מספר , יתאינטואיטיב − AG תמודולריבצורה , מוכיחות 

. g1||g2נמצאת גם בשפה של   M1||𝑀2שנמצאת בשפה של 𝜎שכל מילה  תואינדוקטיבי

נמצאת גם בשפה  g1||g2בחוק מוודאת שכל מילה בשפה של  תהשלישיהטענה , זאת לעומת

שלמות החוק נובעת . קיום שלושת הטענות ביחד מבטיח את המסקנה של החוק. Pשל 

 . בהתאמה 𝑔1ו  g2במקום   𝑀1ו  𝑀2מהעובדה שניתן להשתמש ב 

 

CIRCמההסבר לעיל נובע שבשימוש מוצלח בחוק  − AG , ההרכבה של ההנחותg1||g2  הינה

  𝑀1כאשר סביבת  𝑀1אבסטרקציה ל  ההינ 𝑔1 ש משמעות היאה . M1||𝑀2אבסטרקציה ל 



 תקציר מורחב 

 

 

 
בעיה עם ה להתמודדדולרי מעגלי על מנת ולאימות מ תאוטומטיעבודה זו מציעה שיטה 

השיטה המוצעת הינה  ."מצביםההתפוצצות " ידועה בשם, המערכותהמרכזית באימות 
 נאותה ושלמה.

     

אך המגבלה המרכזית של  ,יושמה ומיושמת בבדיקת מערכות תוכנה [𝐶𝐺𝑃99]בדיקת מודל 
. תיותיאמבעיה זו מקורה במספר המצבים במערכות . בעיית התפוצצות המצבים השיטה היא

עבור מודלים , ולכן, וחישוב מורכב ביחס לגודל המודל בדיקת המודל דורשת זיכרון רב
 . ישימהבדיקת מודל עלולה להיות בלתי , גדולים

 
מנסים להתמודד עם בעיית התפוצצות המצבים על ידי בדיקת חלקים של , דולריובאימות מ

במרבית המקרים . מבניית המודל של המערכת המלאה להימנעהמערכת בנפרד על מנת 
זאת כיוון שההתנהגות . אי אפשר לאמת את רכיבי המערכת בנפרד זה מזה ימודולרבאימות 

על כן הוצעה (. שאר הרכיבים)סביבה השלו עם  הבאינטראקציהתקינה של כל רכיב תלויה 

המציעה לאמת רכיב תחת הנחה על התנהגות  Assume-Guaranteeבספרות סכמת ה 
 . היא מספקת את ההנחההסביבה נבדקת על מנת להבטיח ש, לאחר מכן. הסביבה

 

-Assumeעל סכמת ה  תהמבוסס יהמודולרשיטת האימות  ביישום תהעיקריואחת הבעיות 

Guarantee ,תפתרונוכמה  והוצעלבעיה זו . יאוטומטנחות באופן ההינה בעיה מציאת ה 
הנחות הנדרשות העל מנת לבנות את , עידון-אבסטרקציותל שיטות למידה ועהמסתמכים 

,CGP03]  ביתיבצורה איטרט BPG08] . בנוסף לשיטות אלה הוצעו גם שיטות אחרות לבניית

,CCST05]:כמו, ססות על גישות למידה אחרות וההנחות בדרכים אחרות שמב AMN05] . 

 

 Assume-Guarantee -הכל העבודות שתוארו לעיל עסקו במציאת הנחות עבור חוק 

ASYM הפשוט − AG , תלויות זו בזו בצורה לא מעגליתכאשר בחוק זה ההנחות והתכונות .

 P מספק את התכונה 𝑀1 נניח שהחלק הראשון, שמורכבת משני חלקים בתוכנית, לדוגמא

מספק  𝑀2 החלק השניבנוסף לכך נניח ש. Aתחת ההנחה שהסביבה שלו מספקת את ההנחה 

∥ההרכבה נוכל להסיק שעל פי החוק אז  .A ללא שום הנחה את 𝑀2 𝑀1  מספקת אתP . 

 

. אוטומציהאשר לא נחקרו בספרות לצורך  Assume-Guaranteeסוג אחר של חוקי  וישנ
על הזמן ועל  ותאינדוקטיביבדרך כלל משתמשים בהסקה מעגלית וטענות  החוקים אל

,MC81]., לדוגמא, נבדקותהנות והתכ McM98, McM99a NT00]  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

        ברג וד"ר שרון שוהם, בפקולטה למדעי מיבוצע בהנחייתן של פרופסור ארנה גרהמחקר 
 המחשב.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
אוטומציה של כלל  באמצעותאימות מודולרי 

 הוכחה מעגלי
 
 

 חיבור על מחקר
 

 

 

 
 לשם מילוי חלקי של הדרישות לקבלת התואר 

 מגיסטר למדעים במדעי המחשב
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