\(\epsilon \)-descriptiveness of Lipshitz functions on a closed interval

Sa’ar Zehavi

July 9, 2017

Abstract

We define a notion of \(\epsilon \)-approximation and show that the space of Lipshitz functions from \([0,1]\) to \([0,1]\) can be \(\epsilon \)-approximated using just one function, \(G \).

1

Assume a world \(I \) of cardinality at most the continuum. \(I \) can be thought about as a set of chess players (not necessarily countable), such that for every two elements \(i, j \in I \) there exists some \(p_{i,j} \in [0,1] \) which describes the odds of \(i \) defeating \(j \).

Definition 1 Given a function \(F : \mathbb{R} \rightarrow [0,1] \), not necessarily Lipshitz, and merits \(\mu : I \rightarrow \mathbb{R} \), we will say that \(F, \mu \) describes \(I, p \) if \(\forall i, j \in I, F(\mu(i) - \mu(j)) = p_{i,j} \).

Definition 2 Given a world, \(I, p \), we will say that \(G \) \(\epsilon \)-approximates \(F, \mu \), if \(\forall i, j \in I, |F(\mu(i) - \mu(j)) - G(\nu(i) - \nu(j))| \leq \epsilon \).

In the following sections we will be interested in \(\epsilon \)-approximating the set of Lipshitz function on a bounded interval.

Definition 3 Let \(L_C \) be the following function space, \(L_C := \{ f : [0,1] \rightarrow [0,1] \mid \forall x, y \in [0,1] : |f(x) - f(y)| < C|x - y| \} \), namely the \(\text{C-Lipshitz functions} \) over the \([0,1]\) interval.

We are ready to state the main theorem, assuming the existence of a function \(G \) as described in the abstract, which we shall define after stating the theorem.

Theorem 1 There exists a function \(G \), such that for any world \(I \) of at most continuum cardinality, and probabilities \(p \), which are described by a Lipshitz function \(F \in L_C \), with merits: \(\mu \) which satisfy: \(\mu(R) \subseteq [0,1] \). \(G \) \(\epsilon \)-approximates \(F, \mu \).
In order to prove the previous claim we will have to first define G, in order to do so, we will need to state and prove some key lemmas.

Lemma 1 L_C has a finite covering with ϵ-radius balls, with respect to the L_∞ norm.

Proof 1 It is well known that L_C is compact with respect to the L_∞ norm, via the Arzelà-Ascoli theorem. Let $B(f, \epsilon) = \{g \in L_C||f - g||_\infty < \epsilon\}$, and consider the open covering of L_C by balls of radius ϵ over all elements $f \in L_C$, i.e. $\bigcup_{f \in L_C} B(f, \epsilon)$. This is an infinite covering of a compact space by open sets, and hence, has a finite covering by the Heine–Borel theorem. I.e., there exists a number N and a family $(f_i)_{i=1}^N$, such that $\forall i \in [N] : f_i \in L_C$. Then it holds that $\bigcup_{i=1}^N B(f_i, \epsilon) = L_C$.

Given the finite covering of L_C, with ϵ-radius balls, centered at $(f_i)_{i=1}^N$, it holds that for any $g \in L_C$, $\exists i_0 \in [N]$, such that $||f - g||_\infty < \epsilon$. We will name these f_i, the representatives of L_C.

Lemma 2 There exists an algebraically independent set $A \subseteq [0, 1]$ with cardinality of the real line.

Let A be such a set, $|A| = \aleph_0$ implies that $|A^N| = |A|$, and hence $\exists \Phi : [N] \times R \rightarrow A$, such that Φ is bijective.

Claim 1 $\forall i, j \in [N], i \neq j$, $\Phi(i, R) \cap \Phi(j, R) = \emptyset$.

Definition 4 A set S with the operation (\cdot) is said to have unique differences if $\forall a, b, c, d \in S$ such that $a \neq b, c \neq d, a - b \neq c - d$. I.e., the differences of different elements of S are different.

Claim 2 $\forall i \in [N], \Phi(i, R)$ has unique differences, moreover, $\forall i, j \in [N]$ it holds that \forall distinct $a_i, b_i \in \Phi(i, R), a_j, b_j \in \Phi(j, R) : a_i - b_i \neq a_j - b_j$.

Proof 2 This holds due to the algebraic independence of each $\Phi(i, R)$, and due to the algebraic independence of A.

Definition 5 Denote the difference set of a set S as ΔS, where $\Delta S := \{a - b | a, b \in S\}$.

Let $i \in [N]$, for each $f_i \in L_C$, define $\tilde{f}_i : \Delta \Phi(i, R) \rightarrow [0, 1]$ in the following way: Given $a - b \in \Delta \Phi(i, R)$, such that $a, b \in \Phi(i, R)$, and assume $(i, x) = \Phi^{-1}(a)$, then, for convenience, denote $x = \Phi^{-1}(a)_2$, we define $\tilde{f}_i(a - b) = f_i(\Phi^{-1}(a)_2 - \Phi^{-1}(b)_2)$.

We are finally ready to define G:

Definition 6 $\forall i \in [N] : G_{|\Phi_i(i, R)} = \tilde{f}_i$.

Theorem 2 G, ϵ-approximates any function $F \in L_C$ with merits μ that satisfy $\mu(R) \subseteq [0, 1]$.

2
Proof 3 Given a world I, a function $F \in \mathcal{L}$, and merits μ that satisfy that $\forall \tau \in I : \mu(\tau) \in [0,1]$, we will show that there exists a $\nu : I \rightarrow [0,1]$, such that $\forall \sigma, \tau \in I : |F(\mu(\tau) - \mu(\sigma)) - G(\nu(\tau) - \nu(\sigma))| < \epsilon$. As we know, there exists a $t \in [N]$, such that $\|f_t - F\|_{\infty} < \epsilon$. Let $\tau, \sigma \in I$, set $\nu(\tau) = \Phi(t, \mu(\tau))$, then $|F(\mu(\tau) - \mu(\sigma)) - G(\nu(\tau) - \nu(\sigma))| = |F(\mu(\tau) - \mu(\sigma)) - G(\Phi(t, \mu(\tau)) - \Phi(t, \mu(\sigma)))| = |F(\mu(\tau) - \mu(\sigma)) - \tilde{f}_t(\Phi(t, \mu(\tau)) - \Phi(t, \mu(\sigma)))| = |F(\mu(\tau) - \mu(\sigma)) - \tilde{f}_t(\Phi^{-1}(\Phi(t, \mu(\tau))) - \Phi^{-1}(\Phi(t, \mu(\sigma))))| = |F(\mu(\tau) - \mu(\sigma)) - \tilde{f}_t(\mu(\tau) - \mu(\sigma))| < \epsilon$.

Which establishes the proof, thus G ϵ-approximates any function $F \in \mathcal{L}$ with merits μ that satisfy $\mu(\mathcal{R}) \subseteq [0,1]$.
