Pixel Club Seminar: Unsupervised organization of image collections: taxonomies and beyond

יבגני בארט (ראייה חישובית, מכון טכנולוגי, קליפורניה)
יום שלישי, 6.1.2009, 11:30
חדר 1061, בניין מאייר, הפקולטה להנדסת חשמל

Organizing images is crucial for dealing efficiently with large image collections. In this talk, I will explore approaches to such an organization and its benefits. I introduce a non-parametric Bayesian model called TAX (similar to NCRP), which can organize images into a tree-shaped taxonomy in an unsupervised manner.

The main conclusions are: (a) images can be organized automatically, in a completely unsupervised manner; (b) this organization is intuitively appealing, and helps represent and interpret images more efficiently. The main benefits of the organization are easier navigation through image collections (for both computers and humans) and reduced description length.
A natural question is whether a taxonomy is the optimal form of organization for natural images. I will present experiments indicating that although taxonomies can organize images in a useful manner, more elaborate structures may be even better suited for this task.

בחזרה לאינדקס האירועים