Skip to content (access key 's')
Logo of Technion
Logo of CS Department
Events

Events

CGGC Seminar: Depth with Respect to a Family of Convex Sets
event speaker icon
Leonardo Martínez (Ben-Gurion University)
event date icon
Sunday, 14.5.2017, 13:30
event location icon
Room 337 Taub Bld.
We introduce the notion of depth with respect to a finite family F of convex sets in R^d that generalizes the well-studied Tukey depth. Specifically, we say that a point p has depth m with respect to F if every hyperplane that contains p intersects at least m sets of F. We study some nice properties of Tukey depth that extend to this definition and point out some key differences.

By imposing additional intersection hypothesis to the family F, we prove a centerpoint theorem for family depth. This result can be thought of as a refinement that interpolates between the classical Rado's centerpoint theorem and Helly's theorem. The main theorem ties centerpoints with a purely combinatorial problem on hitting sets.

Finally, we apply the results and techniques above to geometric transverals theory. We get a new Helly-type theorem for fractional transversal hyperplanes and a new proof for a line transversal theorem of A. Holmsen.
[Back to the index of events]