

MultiAR Project
Michael Pekel, Ofir Elmakias

[GIP] | [234329]

Supervisors

 Dr. Matan Sela

Mr. Yaron Honen

Assistants

Alexander Porotskiy

PAGE 1

Summary

MultiAR is a multiplayer quest (Outdoor Real Time Multiplayer AR Shooting) Game

targeting the augmented reality platform, Google Tango. This game simulates the

game mechanics in PokémonGO coop with a random opponent, but with fantasy

elements and interesting game mechanics. The key experiences from this game are

the game mechanics, power-ups, social element and challenging tasks. The game is

made more immersive by using the capabilities of VR and AR platforms by scanning

the play field in RT.

Introduction

We created a mobile game that runs on the Google Tango,
developed in Unity 5 - graphic engine, scripted with C# in
Visual Studio 2015 and MonoDevelop environment.
Unity is a cross-platform game engine that is used to
develop video games for PC, consoles, mobile devices and
websites.

Tango is a platform that uses computer vision to give devices the ability to
understand their position relative to the world around them. It’s similar to how you
use your eyes to find your way to a room, and then to know where you are in the
room and where the floor, the walls, and objects around you are. These physical
relationships are an essential part of how we move through our daily lives. Tango
gives mobile devices this kind of understanding by using three core technologies:
Motion Tracking, Area Learning, and Depth Perception.

Motion Tracking means that a Tango device can track its own movement and
orientation through 3D space. Walk around with a device and move it forward,
backward, up, or down, or tilt it in any direction, and it can tell you where it is and
which way it's facing.

PAGE 2

With Area Learning turned on, the device not only remembers what it sees, it can
also save and recall that information. When you enter a previously saved area, the
device uses a process called localization to recognize where you are in the area. This
feature opens up a wide range of creative applications. The device also uses Area
Learning to improve the accuracy of Motion Tracking.

Tango gives your mobile device the same ability. With Motion Tracking alone,
the device "sees" the visual features of the area it is moving through but doesn’t
"remember" them.

With depth perception, your device can understand the shape of your
surroundings. This lets you create "augmented reality," where virtual objects not
only appear to be a part of your actual environment, they can also interact with that
environment.

What Are Tango Poses?

As your device moves through 3D space, it calculates where it is (position) and how
it's rotated (orientation) up to 100 times per second. A single instance of this
combined calculation is called the device's pose. The pose is an essential concept
when working with motion tracking, area learning, or depth perception.

To calculate the poses, you must choose base and target frames of reference, which
may use different coordinate systems. You can view a pose as the translation and
rotation required to transform vertices from the target frame to the base frame.

Here is a simplified version of a Tango pose struct in C:

The two key components of a pose are:

• A quaternion that defines the rotation of the target frame with respect to the
base frame.

• A 3D vector that defines the translation of the target frame with respect to the
base frame.

PAGE 3

Unity Coordinate System

The Tango API returns pose data as a rotation and translation between two
coordinate frames with X, Y, and Z values.

The Unity World Frame and Camera Frame both use a left-handed coordinate
system: the X axis is horizontal with the positive direction to the right, the Y axis is
vertical with the positive direction pointing up, and the Z axis is depth (forward and
back), with the positive direction pointing away from the user. In this system, the
camera looks in the direction the Z axis is pointing.

Converting Tango Pose data into the Unity Coordinate System

We can handle Unity Coordinate System conversion as follows. The first
transformation converts between the Project Tango START_OF_SERVICE (SS)
coordinate frame and the Unity World (UW) coordinate frame.

The second transformation converts between the Unity Camera (UC) coordinate

frame and the Tango Device (D) coordinate frame. You’ll notice that this is not the

identity matrix because Unity uses a left-handed coordinate system.

PAGE 4

Multiply the first conversion and then multiply the second conversion to get a

matrix that converts pose data between the Unity Camera (UC) coordinate frame

and the Unity World (UW) coordinate frame.

Characters

Since the game is to simulate the real world experience, the characters in this game
retain their identities as in the real world. We added portal gun which the user can
control, carry, shoot & open portals with.

Components

AR Environment and tracking using Google Tango plugin
Multiplayer networking using own implemented Client-Server + API
Google VR DayDream Plugin integrate controller emulators to interact with objects
in Mixed-Reality
Physics using the Unity’s physics engine

Headset
The Tango Development kit itself uses us as a Gateway between Real world & Mixed
Reality, where it uses the camera to project what goes in front of the player on the
screen & augments virtual objects in the scene.

Controllers
Mobile devices run emulator app to function as a Gyro tracked handheld controllers
to vividly manipulate objects, interact with precision, communicate and experience
immersive environments

PAGE 5

Virtual Reality Setup

Tango SDK
https://developers.google.com/tango/downloads

The Controller Emulator
https://developers.google.com/vr/daydream/controller-emulator

Google VR SDK for Unity
https://developers.google.com/vr/unity/

Unity3D Game Engine
https://store.unity.com/download?ref=personal

https://developers.google.com/tango/downloads
https://developers.google.com/vr/daydream/controller-emulator
https://developers.google.com/vr/unity/
https://store.unity.com/download?ref=personal

PAGE 6

Application User Guide
Interface
The Controller Emulator UI contains these elements:

• Connection indicator (top): This text indicates
whether the emulator is connected to a
headset phone. It also shows network
information for the controller phone.

• Touchpad area (large circle): This area
emulates the touchpad area of a controller. It
does not support multi-touch.

• Touchpad click emulation: The touchpad can
be clicked by pressing down on it. This is
considered to be a button. Clicking is
emulated by double-tapping the touchpad in
the Controller Emulator and will send Click
button events to the app.

• App button (immediately below touchpad):
This button sends App button events to the app.

• Home button (bottom): This button is reserved for system use and cannot be
used by app. It is also used to recenter the controller.

Gestures

The touchpad area functions as 5 different UI’s to make it more immersive
sense of control. We implemented Swipe detector to distinguish between
actions same as compass rose, therefore we can detect 4 different swipes: up,
down, left & right. (the fifth UI is the Touchpad click)

➔ Swipe UP – throws the shells, where the force is controlled by the swipe speed
➔ Swipe Down – clear the portals
➔ Swipe Left – Open left portal
➔ Swipe Right – Open right portal
➔ App button – functions as general purpose button (Accept Quest msgs)

Notice: After room scanned & calibration, if someone is moving inside the room it
builds a mesh around him and stays as a physical object in the scene.

PAGE 7

Features and Implementations (UI/UX)

Basically, we added mesh builder and occlusion both together to get immersive

effects. The mesh renderer is entirely contained in a mesh rendering script. The

mesh is represented as a multitude of in­engine Game Objects with shader and

transform components. The shader gives the mesh the color of the object being

represented. The transform determines the position and orientation of the mesh in

the application world. The transform is extremely important as an accurate

transform determines the accuracy of the model generated.

The mesh rendering processing goes through quite a few steps. The mesh renderer

subscribes to the Tango’s depth sensor callback. The Tango feeds the mesh renderer

depth data allowing the renderer to find flat surfaces. Each surface is then

transformed into a grid in which a square on that grid can then be meshed.

Depending on the resolution determined beforehand (we found 5 cm to be

efficient) the grid will have differently sized squares. A point cloud is generated to

coloring each mesh to better represent what is being mapped.

To improve the user experience, the computationally heavy mesh rendering is done

on a separate thread. When indices are seen that require meshing, they are pushed

into a queue data structure to await their turn. This backlog is processed for a small

portion of the computation cycle every cycle. Of course, this means that mapping a

brand-new area creates a surge in meshes that need to be processed.

By keeping the Tango focused on a previously rendered area or by pausing the

rendering process through the GUI, the backlog can be processed much more

quickly. The size of the mesh can be controlled, if you want to get a more detailed

result, increase voxel resolution in MeshManager and MeshingCube.

Then we make the mesh be translucent. there are lots of ways to do that. What we

did is to use mask shader, so the mesh cube’s material is mask, and the game object

(bullet) has SetRenderQueue on them. more details here:

http://wiki.unity3d.com/index.php?title=DepthMask

http://wiki.unity3d.com/index.php?title=DepthMask

PAGE 8

Server

We decided to use the centralized server. Basically, the "host" device is the server

and if we add an object, we would add that to the state of the server. Periodically all

the devices are polling for updates of state. How quickly you want to poll depends

on the use case. At certain events, we made it so that it could send updates to the

server. The main info we upload is the vector and quaternion for position and

orientation and a string with the name of the object we want to place and bullets

when player shoot is recorded. The only thing we need to keep in sync with devices

is just those position and orientation information is only 7 numbers, which is not as

expensive. The only time this becomes a problem is if there are lots of objects,

because then it becomes a lot of information that needs to be polled very quickly.

PAGE 9

API Overview

This is the current Tango application development stack:

TangoService is an Android service running on a standalone process. It uses

standard Android Interprocess Communication to support apps written in Java,

Unity, and C. TangoService performs all of the main Tango technologies, such as

motion tracking, area learning, and depth perception. Applications can connect to

TangoService through APIs. We chose to work with Unity SDK which is great for

making games and other programs requiring 3D visualization.

Mechanics

Each user holds tight the Tango device while it initialized and pointed to the same

orientation and place. Our mission is to defeat the bad guys (3D creatures) in the

scene and cooperate while moving through the quests (each quest is followed by

unique message). The players move in the real world holding the Tango Device and

the controller to navigate and shoot the enemies. They can carry objects and take it

with them while they moving while it’s necessary to accomplish the quest.

The final quest is to build in the right order the puzzle in order to win the game.

❖ Teleporter

Provides to the user an ability to traverse portable objects, freely in the scene,

PAGE 10

of various heights as the endpoint can be curved on top of objects that are not

necessarily visible to the user. The user can open portals (Orange & Blue) and

throw portable objects from one side to another. The teleporter consists of

Red straight Laser Pointer that emits a straight line, made out of game objects

from the end of the controller to a raycast hit surface (at any height or place).

❖ Ray cast

Finds closest object by shooting a ray into the scene and highlights the

selected one.

Bibliography
• Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially-Hashed Signed Distance

Fields

http://www.roboticsproceedings.org/rss11/p40.pdf

• Appearance-Based Loop Closure Detection for Online Large-Scale and Long-Term Operation

https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/b/bc/TRO2013.pdf

• Large-scale, Real-Time Visual-Inertial Localization

http://people.inf.ethz.ch/sattlert/publications/Lynen2015RSS.pdf

• Accurate, Dense, and Robust Multi-View Stereopsis

http://www.cse.wustl.edu/~furukawa/papers/pami08a.pdf

• Dense 3D Semantic Mapping of Indoor Scenes from RGB-D Images

http://strands.acin.tuwien.ac.at/publications/2014/hermans-icra14.pdf

• 3D Modeling on the Go: Interactive 3D Reconstruction of Large-Scale Scenes on Mobile Devices

https://www.cvg.ethz.ch/research/3d-modeling-on-the-go/schoeps3dv2015.pdf

• Fast Retina Keypoint

https://infoscience.epfl.ch/record/175537/files/2069.pdf

• Binary Robust Invariant Scalable Keypoints

https://www.robots.ox.ac.uk/~vgg/rg/papers/brisk.pdf

• Large-Scale Location Recognition and the Geometric Burstiness Problem

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sattler_Large-

Scale_Location_Recognition_CVPR_2016_paper.pdf

https://en.wikipedia.org/wiki/Ray_casting
http://www.roboticsproceedings.org/rss11/p40.pdf
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/b/bc/TRO2013.pdf
http://people.inf.ethz.ch/sattlert/publications/Lynen2015RSS.pdf
http://www.cse.wustl.edu/~furukawa/papers/pami08a.pdf
http://strands.acin.tuwien.ac.at/publications/2014/hermans-icra14.pdf
https://www.cvg.ethz.ch/research/3d-modeling-on-the-go/schoeps3dv2015.pdf
https://infoscience.epfl.ch/record/175537/files/2069.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/brisk.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sattler_Large-Scale_Location_Recognition_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sattler_Large-Scale_Location_Recognition_CVPR_2016_paper.pdf

PAGE 11

Screenshots

PAGE 12

PAGE 13

PAGE 14

PAGE 15

