Geometric Covering

Nadav Shragai
CGGC, CS, Technion, Israel

MSc Thesis

Introduction

Geometric Covering (GC) queries appear in numerous applications:
\square Mold design in manufacturing
\square Inspection
\square Security and surveillance
\square Placements of cellular antennas
\square Illumination design
\square Spraying of paint

Layout of the Rest of the Talk

We are focusing on mold-design and security. Related work in mold-design and security.
\square A generic unified framework for answering geometric covering.
\square Geometric Covering is an NP-hard problem.
\square Examples of the generic framework as implemented in a 3D mold-design and security.
\square Conclusions and future work.

Related Work I
 Mold design

2-pieces-mold polygonal decomposition in R^{3} [Ahn02, Khardekar06, Chen06]
n-pieces-mold polygonal decomposition in R^{3} [Liu09, Priyadarshi04, Stoyan10]
2-pieces-mold freeform surface decomposition in R^{3} [Elber04]
\square Algebraic analysis of visibility of freeforms in R^{3} [Seong06]
Nothing so far on automatic n-pieces-mold freeform decomposition in R^{3}

Related Work II Security

Polygonal 2.5D terrain where $z=f(x, y)$.
Guards on the vertices or above them [Lee91, Goodchild89]
\square Edge guards [Bose96, Bose97]
\square Different greedy solutions [Goodchild89, Kaucic04]
\square Guards limited to strategic locations [Kim04]
\square Calculating partial visibility [Franklin94, Rana03]

Set-Cover I

\square Set-cover (SC) is a classic computer science query.
$\square \mathrm{SC}$ is considered a very hard problem to solve (NP hard).
\square Given some universe U and a family F of subsets of U which their union equals U, a cover of U is a subfamily of F whose union still equals U.
\square In SC we are seeking a cover with minimal number of subsets.

Set-Cover II

\square The universe U is a set of circles.
\square A subset of U is a group of circles.
\square The family F is all these groups of circles.
\square The subfamily F_{1} is the brown, yellow, blue and green groups. F_{1} is a cover of U.
\square The subfamily \boldsymbol{F}_{2} is the red, purple and yellow group.
 F_{1} is a minimal cover of U.
We will now show a reduction from GC problems to SC problems.

Visibility Map I

\square We receive a 2 manifold geometry in R^{3}, C, which has a parameterization $x_{u v} y_{u v}, z_{u v}$.
The domain D_{C} of C is a 2-dimensional box a rectangle, possibly trimmed.
\square We are creating a discrete representation of D_{C} as an image, as a visibility map.
\square The visibility map can serve as a controlled approximation for the coverage of C.

Visibility Map II

The Utah Teapot with its interior curved in.

TWásoibititity lonaly olfothaioute the body dff thite CateathoTeapot

Visible locations are set to white.
Hidden locations are set to black.
> Trimmed away bits are set to green- don't care.

Visibility Map III

Linearize the visibility map, as a vector of bits as follow:
\square Don't care locations are simply skipped.
\square Each bit is either 1 (visible pixel) or 0 (hidden pixel).
\square Sequence the $1 / 0$ bits in some order over the visibility map (for example:
 left to right, top to bottom).

Visibility Map IV

Visibility map of 8×7

11110001111000011110000111100000111000001110000011100000 Vector of 56 bits

Set-Cover II

Set-cover can be clearly applied to vectors of bits:
\square The universe U is the domain D_{C}.
A subset of U is a vector of bits.
\square A family F of subsets of U is a set of vectors of bits from different views around the geometry C.
\square A cover of U is a subfamily of F, a set of vectors of bits which their union equals D_{C}.

Set-Cover III

Subfamily of the set of visibility maps

The union of the visibility maps

\square The set-cover is done in the parametric domain.

Creating Visibility Maps I

Input geometry C can be a surface or a set of surfaces, possibly trimmed.

Each surface has its own rectangular domain, created independently of the other surfaces.

We rearrange the domains of all the surfaces in one large image: The visibility map of C.

Creating Visibility Maps II

Creating Visibility Maps III

Given C and D_{C}, the visibility map from direction V_{i} is computed as follow:
The surface is tessellated into triangles.
Two-rendering passes:
I. A regular (Z-buffer) rendering of C from V_{i} keeping only the Z-depth information, in ZBuffer (x, y).
II. Scan conversion of C in the domain, D_{C}, and deciding visibility by comparing the Z-depths

Creating Visibility Maps IV Pass II

A tessellation $T=\left\{T_{i}\right\}$ of triangles with $U V$ parametric coordinates is given.
For each triangle T_{i} in T, scan convert T_{i} by its UV coordinates. For each pixel $p_{w v}$ in T_{i}

$$
\begin{aligned}
& x_{u v}, y_{u v}, z_{u v} \leftarrow X Y Z \text { coordinates of } p_{u v} ; \\
& \operatorname{VisMap}(u, v) \leftarrow z_{u v} \approx \operatorname{ZBuffer}\left(x_{u v}, y_{u v}\right) ;
\end{aligned}
$$

EndFor

EndFor

UV Domain of
4×2

Creating Visibility Maps V UV domain pass II
 Euclidean space pass I

$$
\begin{aligned}
& \left(u_{1}, v_{1}\right) \\
& \left(x, y, z_{1}\right)
\end{aligned}
$$

$$
\left(u_{2}, v_{2}\right)
$$

$\operatorname{ZBuffer}(x, y) \approx z_{1}$

$$
\left(x, y, z_{2}\right)
$$

Creating Visibility Maps VII Mold Design

Orthographic projection

Security

Perspective
projection

Creating Visibility Maps VIII Perspective projection I

Camera

Creating Visibility Maps IX Perspective projection II

Combining visibility

> maps

Pixel Collapsing I

$n \times n \times m \square 2^{m}$ possible pixels vector.
n^{2} different pixels vector at most.
In practice, much less.

Pixel Collapsing II

Subfamily of the set of visibility maps

The union of the visibility maps

Reduction from SC to GC I

 We have shown a polynomial reduction from GC to SC. For completeness we will also show a polynomial reduction from SC to GC, proving that GC is NP-hard as SC is.We have a standard SC as described before.
We will create a geometry corresponding to the universe U.
\square We will create guards corresponding to the subsets of U.
\square Solving the GC will solve the SC as well.

Reduction from SC to GC II

Subset of U - a possible guard.

U - a long strip.
Elements of U - regions on the strip.

Reduction from SC to GC III

F - as many guards as are subsets in the problem, spread over the entire plane.
All the upper strips are entirely covered by each of the guards.

Examples General Notes

\square The following examples were created using Visibility maps of size 4096×4096.
\square Both exhaustive (exponential) set cover solution and greedy (non-optimal) solution were sought.
\square All implementation is software based and with single thread.
\square In the examples we seek high coverage percent rather than a complete coverage.

Mold-Design Examples General Notes

\square The following examples were created using 266 views:
>130 general views around S^{2}, duplicated as V and -V.
>6 views of $\pm \mathrm{X}, \pm \mathrm{Y}, \pm \mathrm{Z}$.

Examples

Example - a Cup Model

99.827% cover in greedy SC in ~ 4 seconds.
99.995\% cover in exhaustive SC in ~ 10 hours.

First two view directions 95\% cover.

Example - The Utah Teapot I

99.7% cover in greedy SC in ~ 6 seconds.

Example - The Utah Teapot II

(a)

(b)

(c)

(d)

(e)
99.7% cover in exhaustive SC in ~433 hours.

Security Examples General Notes

\square The following examples were created using about 300 guards/cameras.
\square The guards where evenly spread on a curve or a plane.

Examples

A free form shape gallery

Examples

Cameras on the walls

Cameras on the wall - 2 cameras solution

Examples

Cameras on the ceiling

Examples

Cameras on the ceiling - 2 cameras solution

A military compound

A military compound - candidates above the perimeter

Examples

Candidates above the perimeter - 3 guards solution

A military compound - candidates above the compound

Examples

Candidates above the compound- 2 guards solution

Examples

Ben Gurion airport

Examples

Ben Gurion airport - candidate cameras

Examples

Ben Gurion airport - exhaustive 4 views solution

Conclusions and Future Work I

We solve the GC problem in the parametric domain and reduce the analysis into the pixel level.
\square Though we presented the framework in R^{3}, nothing prevents the use of this framework in R^{n} for arbitrary n.
\square The reduction to the discrete SC problem allows to optimally solve only discrete GC problems with a few views.
\square We are looking for the solution in the continues problem.

Conclusions and Future Work II

Use of GPU in proposed framework can benefit the computation times (expect \sim two orders of magnitudes).
\square Viewing angle and location distance limitations can be integrated into the creation of the visibility map.
\square Many of the visibility maps are very similar. Can we use this property to reduce set cover calculations?
\square The suggested framework can be used in other GC problems beside mold design and security.

End

