Assume, Guarantee, or Repair

Hadar Frenkel, Orna Grumberg, Corina Pasareanu and Sarai Sheinvald

Computer Science Department, Technion – Israel Institute of Technology

Goal

- Modularly verify the correctness of a program against a safety specification, or repair the program, in case the verification fails.
- Using automata learning & abduction

Programs

1: pass = readInput;
2: while (pass ≤ 999)
3: pass = readInput;
4: pass2 = encrypt(pass);
5: return pass2;

AGR Framework

Assume - Guarantee

Generate assumption A_1

(input: M_1, M_2, P

output: $A_i)$

model checking

(Step 1) $A_i \parallel M_1 = P$

false

true

false

spurious cex – weaken assumption

cex analysis

R_j

A_i

(Step 2) $M_2 \times R_j = A_i$

cex – strengthen assumption

Repair via Abduction

$\Sigma_j = \Sigma_{j-1} \cup \{c\}$

Σ_j

abduction on t

Generate repair R_j

to eliminate t

Repair to satisfy A_i

cex analysis

Real cex t

Verification

Property

Does M_1 composed with M_2 satisfy the property?
The composition is too big - look for a small assumption A such that M_1 composed with A satisfy the property, and A models M_2.

M_1 composed with A satisfies the property!

But: A does not model M_2 correctly.

A violating trace is:

$t = read(pass), pass > 999, enc(pass), pass2 := (pass - 11) \cdot 2, pass2 < 100000$ for the initial value $pass = 90000$.

We thus repair M_2.

We wish to learn a new constraint C such that:

$C \land pass > 999 \land pass2 = (pass - 11) \cdot 2 \rightarrow pass2 < 100000$

C is over the input variables of the system, here $- pass$.

$C := \forall pass2: pass > 999 \land pass2 = (pass - 11) \cdot 2 \rightarrow pass2 < 100000$

After quantifier elimination & simplification: $C = pass < 50012$.

Repaired M_2, constructed using automata learning:

1: pass = readInput;
2: while (pass ≤ 999 or pass ≥ 50012)
3: pass = readInput;
4: pass2 = encrypt(pass);
5: return pass2;