Compressed Learning: A Deep Neural Network Approach

Amir Adler, Ev Zisselman, and Michael Elad

The Computer Science Department
Technion – Israel Institute of Technology

The research leading to these results has received funding from the European Research Council under European Union’s Seventh Framework Program, ERC Grant agreement no. 320,649.

1. Compressed Sensing

- For a signal \(\mathbf{x} \in \mathbb{R}^N \) and a sensing matrix \(\Phi \in \mathbb{R}^{M \times N} (M \ll N) \) we measure the vector \(\mathbf{y} = \Phi \mathbf{x} \). The sensing rate is defined as \(R = M / N \) and since \(R \ll 1 \) the recovery of \(\mathbf{x} \) is not possible in general.
- Compressed-Sensing (CS) theory [1,2] suggests that for a signal that has a sparse representation in the domain of some linear transform

\[
\mathbf{x} = \Phi \alpha \quad \text{with} \quad \|\alpha\|_0 \ll N
\]

- Recovering the signal \(\mathbf{x} \) is possible (with theoretical guarantees) by solving the following optimization problem

\[
\min_{\alpha} \|\alpha\|_0 \quad \text{st} \quad \mathbf{y} = \Phi \mathbf{D} \alpha
\]

2. Compressed Learning

- Compressed-Learning (CL): applying learning on the projected values \(\mathbf{y} = \Phi \mathbf{x} \) directly, skipping reconstruction
 - [3]: Theoretical foundations
 - [4,5]: Practical results (see later)

This work proposes a holistic way to learn the projection and the recognition jointly via DNN.

3. Our approach

- End-to-end solution to CL
 - The first layer learns the compressed representation towards classification.
 - The second layer expands the output of the sensing layer.
 - DNN is learned jointly with the first two layers.

4. Results

- MNIST classification error (%) (lower is better)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>196</td>
<td>27.41%</td>
<td>1.63%</td>
<td>1.38%</td>
<td>1.48%</td>
</tr>
<tr>
<td>0.1</td>
<td>78</td>
<td>43.55%</td>
<td>2.99%</td>
<td>1.6%</td>
<td>1.51%</td>
</tr>
<tr>
<td>0.05</td>
<td>39</td>
<td>53.21%</td>
<td>5.41%</td>
<td>1.87%</td>
<td>1.67%</td>
</tr>
<tr>
<td>0.01</td>
<td>8</td>
<td>63.03%</td>
<td>41.06%</td>
<td>6.9%</td>
<td>5.1%</td>
</tr>
</tbody>
</table>

- CIFAR10 classification results (%) (higher is better)

<table>
<thead>
<tr>
<th>Sensing Rate</th>
<th>No. of Measurements</th>
<th>Random Sensing + CNN</th>
<th>PCA + CNN</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Oracle)</td>
<td>1024</td>
<td>63.84%</td>
<td>76.08%</td>
<td>76.3%</td>
</tr>
<tr>
<td>0.25</td>
<td>256</td>
<td>54.94%</td>
<td>72.606%</td>
<td>74.05%</td>
</tr>
<tr>
<td>0.1</td>
<td>102</td>
<td>49.84%</td>
<td>68.276%</td>
<td>69.238%</td>
</tr>
<tr>
<td>0.025</td>
<td>26</td>
<td>44.26%</td>
<td>59.104%</td>
<td>62.43%</td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
<td>38.22%</td>
<td>52.173%</td>
<td>55.67%</td>
</tr>
</tbody>
</table>

5. Conclusions

- This work presents a novel deep learning approach to Compressed-Learning.
- Jointly optimizing the sensing and inference operators.
- Outperforming state-of-the-art CL methods on MNIST and CIFAR10.
- Extendible to numerous CL applications.

6. References