Single Image Interpolation via Adaptive Non-Local Sparsity-Based Modeling

Yaniv Romano
The Electrical Engineering Department
Technion – Israel Institute of Technology

Matan Protter
The Computer Science Department
Technion – Israel Institute of Technology

Michael Elad
The Computer Science Department
Technion – Israel Institute of Technology

Motivation and Goals

Adaptive sparse representation modeling is a promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Processing groups of related patches together (based on the self-similarity assumption) exploits their correspondence and leading often times to improved results.

The Interpolation Problem

- Given a Low-Resolution (LR) image \(y = U_L x \), where \(x \) is the High-Resolution (HR) image and \(U_L \) decimates the image by a factor of \(L \) along the horizontal and vertical dimensions, our goal is to recover \(x \) from \(y \).

The Proposed Algorithm

- We suggest training a dictionary using the LR image itself and restore each decimated patch by a sparse composition over the dictionary using a weighted version of the Simultaneous OMP.
- The restored image is obtained by averaging the HR patches, followed by a simple projection of the known pixels in \(x \) on the outcome.

The Core Idea

- A common patch-based image restoration scheme:
- Zero-filled Image
- Initial Dictionary
- Interpolated each patch
- Dictionary Update
- Notations:
 - \(W_{ij} \) sets a high weight for known pixels and a low one for the unknown ones, multiples by \(\exp(-\|r_i - s_j\|/\omega) \).
 - \(|A_i|^p \) counts the non-zero elements rows in the matrix \([c_i, A_i]^p \).
 - \(A_i^p \) is the representation of the non-weighted version of the reference patch (stabilizer).
 - \(A_i \) is the representation of the weighted versions of the reference patch and its K – Nearest Neighbors.
 - \(R_i \) is an operator that extracts the \(i \)-th patch from the image.
- The proposed two-stage algorithm:
 - **First stage:** Joint sparse-coding using the K-nearest “strong” patches and reconstructing the image using the “strongest” patches.
 - **Second stage:** Use all the patches (“strong” and “weak”), both in the sparse-coding and the reconstruction steps.

A Basic Observation

- The more known pixels within a patch, the better the restoration.
- The number of known pixels depends on its location ("strong" and "weak" patches).
- We suggest "increasing" the number of known pixels based on the self-similarity assumption (e.g., the bright patches are the K-Nearest Neighbors of each dark patch).

Visual Results

- Interpolation by a factor of 2 (75% missing pixels)
- Interpolation by a factor of 3 (~89% missing pixels)

Results

- State-of-the-art Performance
 - Average PSNR over 18 well-known images:
 - \(\text{Method} \) \hspace{1cm} \text{Cubic} \hspace{1cm} \text{SAI} \hspace{1cm} \text{SME} \hspace{1cm} \text{PLE} \hspace{1cm} \text{NARM} \hspace{1cm} \text{Ours} \hspace{1cm} \text{Cubic} \hspace{1cm} \text{SAI} \hspace{1cm} \text{SME} \hspace{1cm} \text{PLE} \hspace{1cm} \text{NARM} \hspace{1cm} \text{Ours}
 - \text{PSNR} \hspace{1cm} 28.98 \hspace{1cm} 29.51 \hspace{1cm} 29.62 \hspace{1cm} 29.62 \hspace{1cm} 29.98 \hspace{1cm} 30.09 \hspace{1cm} 25.52 \hspace{1cm} 25.83 \hspace{1cm} 25.95 \hspace{1cm} 26.08 \hspace{1cm} 26.21 \hspace{1cm} 26.44
 - Peak Signal to Noise Ratio (PSNR) (dB) = 20 \log_{10} (255/\text{MSE}), Higher is better.

References

This research was supported by the European Research Council under EU’s 7th Framework Program, ERC Grant agreement no. 320649, and by the Intel Collaborative Research Institute for Computational Intelligence.