Deterministic Compression with Uncertain Priors

Presenting: Elad Haramaty. Joint with: Madhu Sudan

Main Question

Knowledge
- Sender input:
 - probability \(P \)
 - message \(m \) in \(\{1, \ldots, N\} \), drawn according to \(P \)
- Receiver input:
 - probability \(Q \) “close” to \(P \)

Game Rules
- Sender sends \(k \) bits to the receiver.
- Receiver tries to guess \(m \).

Goal
- Minimize the amount of communication such that the receiver is able to know \(m \).

Easier problem
- Bob has a very good estimation of Alice’s top boy ranking (for each boy he can be wrong by at most one position).
- Alice tries to communicate to Bob her top ranked boy.

Motivation
- Communication between two parties who estimate the distribution of the messages independently.
- Explain phenomena in human communication:
 - Dictionary: Words often have multiple meanings.
 - Redundant: But not as in any predefined way (not an error-correcting code).

schemes

No assumption on \(P \) & \(Q \)
- Best possible performance: \(\log(N) \)
- Scheme: binary representation

\(P = Q \)
- Best possible performance: \(H(P) = \sum_{m=1}^{N} P \log \left(\frac{1}{P} \right) \)
- Scheme: Huffman coding

\(P \sim Q \), high entropy
- Sender:
 1. Send an estimation of \(P_m \).
 2. Find a function \(h \) such that \(h(m) \) is different from \(h(m') \) for any \(m' \) that has a close distribution to \(m \).
 3. Send \(h \)'s identifier.
 4. Send \(h(m) \).
- Decoder:
 1. Output message \(m^* \) such that \(Q_{m^*} \) is close to \(P_m \) and \(h(m^*) = h(m) \)
- Performance: \(O(H(P) + \log \log(N)) \)
- Correctness:
 - Need to prove: There is a “small” family \(\{h\} \) of functions to a “small range” that for any \(m \) and a set of \(\{m'\} \), there is a function in the family which satisfies step 2’s requirements.

\(P \sim Q \), low entropy
- Scheme: “Chain Coloring”
- Performance: \(\exp(H(P) + \log(N)) \)