Adding
High Availability
to Condor Central Manager
Tutorial

Artyom Sharov
Computer Sciences Department
Technion - Israel Institute of Technology
Outline

› Overview of HA design
› Configuration parameters
› Sample configuration files
› Miscellaneous

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Overview of HA design
Design highlights (HAD)

- Modified version of Bully algorithm
- One HAD leader + many backups
- HAD as a state machine
- “I am alive” messages from leader to backups
 - Detection of leader failure
 - Detection of multiple leaders (split-brain)
- “I am leader” messages from HAD to replication

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
HAD state diagram

- **Passive**
 - Self ID < Other ID (Kill Negotiator)
 - Self ID > Other received ID

- **Leader**
 - I am the HAD with highest ID after election timeout (Run Negotiator)

- **Election**
 - Timeout with no I'm Alive message

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Design highlights (replication)

- Replication daemon must have a matching HAD
- Loose coupling between replication and HAD
- Separation between a replication mechanism and a consistency policy
- Default replication mechanism
 - Transferers
 - File transfer integrity (MAC)
 - Transfer transactionality
- Default consistency policy
 - Replication daemon as a state machine
 - Version numbers + version file
 - “Split brain” reconciliation support
- Treating the state file as a black box
Replication daemon state diagram

JOINING — consists of two sub-states, see the next diagram/
Trying to download 'Accountantnew.log' version from the pool

After downloading/several attempts of receiving any version

BACKUP/
Downloads 'Accountantnew.log' versions from the leader and uploads it to joining machines

Detects that had leader stopped sending updates

REPLICATION_LEADER
Synchronizes local version against real 'Accountantnew.log' and uploads it to backup

Receiving update from had leader

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
HAD-enabled pool

➤ Multiple Collectors run simultaneously on each CM machine
➤ All submission and execution machines must be configured to report to all CMs
➤ High Availability
 • HAD runs on each CM
 • Replication daemon runs on each CM (if enabled)
➤ HAD makes sure a single Negotiator runs on one of the CMs
➤ Replication daemon makes sure the up-to-date accountant file is available

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Basic Scenario

Replication

State update

Leader replication

You're leader

I'm alive

Replication

HAD

Collector

I'm alive

HAD

Collector

Collector

Idle CM

Active CM

Idle CM

Workstation – Started and Schedd

Workstation – Started and Schedd

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Enablements

- HA mechanism must be explicitly enabled
- Replication mechanism is optional and might be disabled
Configuration variables

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
HAD_LIST

- List of machines, where the HADs are installed, configured and run
- Each entry is either IP:port or hostname:port, optionally embraced in <>. The entries are comma-separated
- Should be identical on all CM machines
- Should be identical (ports excluded) to the COLLECTOR_HOST list, and in the same order

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
HAD_USE_PRIMARY

› One HAD could be declared as primary
› Primary HAD is always guaranteed to be elected as active CM, as long as it is alive
› After primary recovers, it will become active CM, substituting one of its backups
› In case HAD_USE_PRIMARY = true the first element in the HAD_LIST will be the primary HAD. In that case, the rest of the daemons will serve as backups
› Default is false

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
HAD_CONNECTION_TIMEOUT

- An upper bound on the time (in seconds) it takes for HAD to establish a TCP connection
- Recommended value is 2 seconds
- Default is 5 seconds
- Affects stabilization time - the time it takes for HA daemons to detect failure and fix it
- Stabilization time = \(12 \times \#\text{CMs} \times \text{HAD_CONNECTION_TIMEOUT}\)
HAD_USE_REPLICATION

› Allows administrator of the machine to disable/enable the replication feature on Condor machine configuration level

› Default is no

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
REPLICATION_LIST

- List of machines, where the replication daemons are installed, configured and run
- Each entry is either IP:port or hostname:port, optionally embraced in <>. The entries are comma-separated
- Identical on all CM machines
- In the same order as HAD_LIST
STATE_FILE

- This file is protected by the replication mechanism. Replicated between all the replication daemons of REPLICATION_LIST
- Default is $(SPOOL)/Accountantnew.log
REPLICATION_INTERVAL

- Determines how frequently the RD wakes up to do its periodic activities: probing for update of the state file, broadcasting the update to backups, monitoring and managing the downloading/uploading process by transferer processes etc.
- Since the accounting information file normally changes, as negotiator daemon wakes up, then REPLICATION_INTERVAL value must be like UPDATE_INTERVAL
- Therefore the default is 300
HAD_ARGS/REPLICATION_ARGS

› HAD_ARGS = -p <HAD_PORT>
› REPLICATION_ARGS = -p <REPLICATION_PORT>
› HAD_PORT/REPLICATION_PORT should be identical to the port defined in HAD_LIST/REPLICATION_LIST for that host
› Allows master to start HAD/replication on a specified command port
› No default value. This one is a must
Regular daemon configuration

- HAD/REPLICATION - path to condor_had/condor_replication binary
- HAD_LOG/REPLICATION_LOG - path to the respective log file
- MAX_HAD_LOG/MAX_REPLICATION_LOG - maximum size of the respective log file
- HAD_DEBUG/REPLICATION_DEBUG - logging level for condor_had/condor_replication
Influenced configuration variables

- On both client (schedd + startd) and CM machines:
 - COLLECTOR_HOST - list of CM machines
 - HOSTALLOW_NEGOTIATOR - must include all CM machines

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Influenced configuration variables

➤ Only on Schedd machines:
 • HOSTALLOW_NEGOTIATOR_SCHEDD - must include all CMs, because negotiator might theoretically raise on any of CMs

➤ Only on CM machines:
 • HOSTALLOW_ADMINISTRATOR - CM must have administrative privileges in order to turn Negotiator on and off
 • DAEMON_LIST - must include Collector, Negotiator, HAD and (optionally) RD
 • DC_DAEMON_LIST - must include Collector, Negotiator, HAD and (optionally) RD

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Sample configuration files

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Deprecated variables

- `#unset these variables - they are deprecated`

- `NEGOTIATOR_HOST=`

- `CONDOR_HOST=`
condor_config.local
ha_central_manager

> CENTRAL_MANAGER1 = cm1.wisc.edu

> CENTRAL_MANAGER2 = cm2.wisc.edu

> COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
condor_config.local.

ha_central_manager (cont.)

> HAD_PORT = 51450
> HAD_LIST = $(CENTRAL_MANAGER1):$(HAD_PORT),
> $(CENTRAL_MANAGER2):$(HAD_PORT)
> HAD_ARGS = -p $(HAD_PORT)
> HAD_CONNECTION_TIMEOUT = 2
> HAD_USE_PRIMARY = true
> HAD = $(SBIN)/condor_had
> MAX_HAD_LOG = 640000
> HAD_DEBUG = D_FULLDEBUG
> HAD_LOG = $(LOG)/HADLog
condor_config.local.
ha_central_manager (cont.)

> HAD_USE_REPLICATION = true
> REPLICATION_PORT = 41450
> REPLICATION_LIST =
 $(CENTRAL_MANAGER1):$(REPLICATION_PORT),
 $(CENTRAL_MANAGER2):$(REPLICATION_PORT)
> REPLICATION_ARGS = -p $(REPLICATION_PORT)
> REPLICATION = $(SBIN)/condor_replication
> MAX_REPLICATION_LOG = 640000
> REPLICATION_DEBUG = D_FULLDEBUG
> REPLICATION_LOG = $(LOG)/HADLog
condor_config.local.
ha_central_manager (cont.)

- **DAEMON_LIST** = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION
- **DC_DAEMON_LIST** = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION
- **HOSTALLOW_NEGOTIATOR** = $(COLLECTOR_HOST)
- **HOSTALLOW_ADMINISTRATOR** = $(COLLECTOR_HOST)
condor_config.local
ha_client

> CENTRAL_MANAGER1 = cm1.wisc.edu
> CENTRAL_MANAGER2 = cm2.wisc.edu
> COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)
> HOSTALLOW_NEGOTIATOR = $(COLLECTOR_HOST)
> HOSTALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST)

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Miscellaneous

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
HAD Monitoring System

- Analyzes daemons logs
- Detects failures of the HA mechanism itself
- Announces about failures to the administrators
- Runs as a batch job once in some period of time

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Disabling HA mechanism

- Dynamically disabling HA - DisableHAD Perl script
- Remove HAD, REPLICATION and NEGOTIATOR from DAEMON_LIST on all machines
- Leave one NEGOTIATOR in DAEMON_LIST on one machine
- condor_restart CM machines
- Or turn off running HA mechanism:
 - condor_off -all -negotiator
 - condor_off -all -subsystem replication
 - condor_off -all -subsystem had
 - condor_on -negotiator on one machine

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Configuration sanity check script

> Checks that all HA-related configuration parameters of RUNNING pool are correct

- HAD_LIST consistent on all CMs
- HAD_CONNECTION_TIMEOUT consistent on all CMs
- COLLECTOR_HOST consistent on all machines and corresponds to HAD_LIST
- DAEMON_LIST contains HAD, COLLECTOR, NEGOTIATOR
- HAD_ARGS is consistent with HAD_LIST
- HOSTALLOW_NEGOTIATOR and HOSTALLOW_ADMINISTRATOR are set correct
- REPLICATION_LIST is consistent with HAD_LIST and REPLICATION_ARGS is consistent with REPLICATION_LIST

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
Backward Compatibility

› Non-upgraded client machines will run fine as long as the machine that served as Central Manager before the upgrade is configured as primary CM

› Non-upgraded client machines will of course not benefit from CM failover

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/
FAQ

› Reconfigure and restart all your pool nodes, not only CMs
› Run sanity check script
› Condor_off -neg will actively shut down the Neg. No HA is provided
› In case primary CM failed, it takes more time for tools to return results. This is since they query the Collectors in order of COLLECTOR_HOST
› More than one Neg can be noticed at the beginning for very short time
› Run monitoring system to track the failures
› Collector can be queried about the status of HADs in the pool by condor_status utility

http://www.cs.technion.ac.il/Labs/dsl/projects/gozal/