Adding High Availability to Condor Central Manager

Gabi Kliot
Technion – Israel Institute of Technology
Outline

- Current Condor pool
- Motivation for Highly Available Central Manager
- The solution - HA Daemon
- Performance impacts
- Testing
- Future Work
Current Condor Pool

Collector

Negotiator

Central Manager

Startd and Schedd

Startd and Schedd
Why Highly Available Central Manager

- Central manager is a single-point-of-failure
 - Negotiator’s failure - No additional matches will be possible
 - Collector’s failure – negotiator is out of job, tools querying collector won’t work, etc.

- Our goal
 - Allow continuous pool functioning in case of failure
Highly Available Condor Pool

- Startd and Schedd
- Idle Central Manager
- Active Central Manager
- Idle Central Manager
- Startd and Schedd
- Startd and Schedd
- Startd and Schedd
- Startd and Schedd
Highly Available Central Manager

- Our solution - Highly Available Central Manager
 - **Automatic** failure detection
 - **Transparent** failover to backup matchmaker (no global configuration change for the pool entities)
 - "**Split brain**" reconciliation after network partitions
 - **State replication** between active and backups
 - No changes to Negotiator/Collector code
Highly Available Central Manager
How it works

- Collector’s HA is provided by **redundancy**
- Negotiator’s HA is provided by **HA daemons**
How it works – Election

Collector

HAD

Collector

HAD

Collector

HAD

Collector

Election msg

Election msg

Election msg

Workstation – Startd and Schedd

Workstation – Startd and Schedd
How it works – Election

I’m alive

Leader HAD

Collector

HAD

Collector

Negotiator

I’m alive

HAD

Collector

Workstation – Startd and Schedd

Workstation – Startd and Schedd

©Gabriel Kliot, Technion

Condor week – March 2005
How it works – basic scenario

Collector

Leader HAD

Collector

I’m alive

I’m alive

Negotiator

Idle CM

Active CM

Idle CM

Workstation – Startd and Schedd

Workstation – Startd and Schedd
How it works – crash event

- Collector
- Leader HAD
- Negotiator
- Active CM
- Idle CM
- Workstation – Startd and Schedd

I’m alive

©Gabriel Kliot, Technion
Condor week – March 2005
How it works – crash event

Election

HAD

Collector

Idle CM

Active CM

Collector

Leader HAD

Negotiator

Collector

HAD

Idle CM

Workstation – Startd and Schedd

Workstation – Startd and Schedd

©Gabriel Kliot, Technion

12

Condor week – March 2005
How it works – crash event

LEADER HAD

Collector

Active CM

Workstation – Startd and Schedd

HAD

Collector

Idle CM

Workstation – Startd and Schedd

I’m Alive

Negotiator

Leader HAD

Collector

Negotiator
High Availability Daemon

State machine
Performance impact

- **Stabilization time** – the time it takes for HA daemons to detect failure and fix it. Depends on number of CMs and network performance.
- **HAD_CONNECT_TIMEOUT** – the time it takes to establish TCP connection (depends on network type, presence of encryption, etc…)
- Assuming it takes up to 2 seconds to establish TCP connection and 2 CMs are used - new Negotiator is up and running after **48** seconds.
Testing

- Special **automatic distributed testing framework** was built:
 - simulation of node crashes
 - network disconnections
 - network partition and merges

- **Extensive testing** effort:
 - distributed testing on 5 linux machines in the Technion
 - interactive distributed testing in Wisc pool
 - automatic testing with NMI framework

- Already **deployed and fully functioning** for 3 weeks on our production pool in the Technion
Future development

- HAD publishing in Collectors
 - condor_status –had
- Accounting file replication
 - current solution is provided for NFS
- Software High Availability
Collaboration with Condor team

- Compliance with high Condor coding standards
- Peer-reviewed code
- Integration with NMI framework
- Automation of testing
- Open-minded attitude of Condor team to numerous requests and questions
- Unique experience of working with large peer-managed group of talented programmers
Collaboration with Condor team

This work was a collaborative effort of:

- **Distributed Systems Laboratory in Technion**
 - Prof Assaf Schuster, Mark Silberstein, Gabi Kliot, Svetlana Kantorovitch, Dedi Carmeli, Artiom Sharov

- **Condor team**
 - Prof Miron Livni, Nick, Todd, Derek, Erik, Carey, Peter, Becky, Parag, Zack, Dan
You should definitely try it!

- Part of the official 6.7.6 development release
- Full support by the Technion team
- More information:
 - http://dsl.cs.technion.ac.il/projects/gozal/project_pages/ha/ha.html
 - more details + configuration on my tutorial tomorrow
- Contact:
 - gabik@cs.technion.ac.il
 - condor-users@cs.wisc.edu
In case of time
How it works – basic scenario

- **Startd and Schedd**: Runs on workstations.
- **Collector**: Sends heartbeat messages to HAD.
- **Negotiator**: Manages active and backup servers.
- **HAD**: High Availability دائما (leader and follower).
- **Machine A**: Backup server.
- **Machine B**: Active server.
- **Machine C**: Backup server.
- **Workstation**: Runs Startd and Schedd.

Connections:
- Workstation to Collector
- Collector to HAD
- HAD to Negotiator
- Negotiator to Collector
- Collector to HAD
- HAD to Workstation

Heartbeat messages: "I'm alive"
How it works – crash event
Usability and administration

- Configuration sanity check perl script
- Disable HAD perl script
- Detailed manual section
- Full support by Technion team